文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米制造及其关键性技术

纳米制造及其关键性技术

纳米制造及其关键性技术
纳米制造及其关键性技术

纳米制造及其关键技术简介

——机械制造技术基础专题研究与讨论

摘要纳米制造是多学科的新型交叉研究领域,对其基础研究的深入展开可为前沿制造技术的进步提供有力支撑。在过去的20 多年里,基于纳米制造的探索已展示出宽广的发展前景,并将在多个行业为社会带来巨大的经济效益。纳米制造可分为机械加工、化学腐蚀、能量束加工、复合加工、隧道扫描显微技术加工等多种方法。本文在简要介绍纳米制造背景、应用的同时,着重介绍纳米制造技术的加工技术。

关键词:纳米制造纳米机械加工能量束加工隧道式近场放电加工

1. 综述

纳米科学技术是目前发展迅速、最富有活力的科学技术领域,受到世界各国的高度重视。纳米科学与技术集合交叉了多学科内容,是一个融前沿探索、高技术、工程应用于一体的科学技术体系。纳米科技在纳米尺寸范围内认识和改造自然,开辟了人类认识世界的新层次,使人们改造自然的能力直接延伸到分子、原子尺度水平,这标志着人类的科学技术进入了一个新时代。许多专家认为,以纳米科学为中心的科学技术将成为21世纪的主导。

纳米科技包括有:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米制造学等等。其中纳米制造学占有重要地位。纳米科学技术在不同的科学领域有具体的内涵和表现,纳米制造科学技术主要涉及到纳米量级(0.1~100nm)的几何加工精度、形位加工精度和表面粗糙度。

纳米制造任务不是由某一项技术独自完成的,而是由许多方法和技术所共同承担。这些方法相辅相成,各具所长,构成了纳米制造技术群,承担着丰富多样的纳米制造任务。

从实现纳米微结构的方式和途径来看,构成纳米制造技术体系的方法可以分作为两类:一种是通过原子、分子的移动、搬迁、重组来构成纳米尺度的微结构,即所谓的自下而上(Bottom—up)的方法,基于扫描隧道显微镜STM的原子搬移方法属于此类;另一类方法是将大的原材料加工变小,逐步形成所需要的纳米结构或器件,这种通常所见的方式可称为自上而下(Top—down)的方式,束流、超精加工等许多方法都属于这一类。另一方面,纳米制造技术也可以按在制造过程中材料的增减方式进行分类:减材过程(微蚀除、切削加工、电加工、激光加工等)、增材过程(微沉积、ILGA精密电铸)。

纳米制造有着重要的工业前景,是许多技术领域发生重大发展的基础和支撑技术。纳米制造科学技术领域还存在许多未知,需要人们去探索、了解、掌握、发明和创造。纳米制造的新概念、新技术、新工艺将不断出现,在生产实际中的应用会愈来愈深入和广泛。

2. 纳米技术与纳米制造

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构

尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。

图1 利用纳米技术将氙原子排成IBM 图2 应用纳米技术制成的服装

纳米制造是描述对纳米尺度的粉末、液体等材料的规模化的生产,或者描述从纳米尺度按照自上而下或自下而上的方式制造器件,是纳米技术的一项具体的应用。

“纳米制造”尽管被美国国家纳米技术倡议(NNI)等广泛使用,但并没有给出纳米制造的明确定义。相反,纳米组装则被定义为:通过直接或者自组装方法,在原子或分子水平上制造功能结构或者设备的能力。相对于纳米组装而言,纳米制造更偏重于纳米技术产品的工业级别制造,其重点更多的在于低成本和可靠性等方面。

3.纳米制造技术的制造对象

广义地说,只要尺寸至少在一维尺度上小于100nm结构都是纳米技术的制造对象。

具体言之,该结构应满足以下几点要求:

(1)它是一种符合物理和化学定律的结构,这些定律是在原子水平级上的。

(2)它是一种生产价格不超过所需原材料和能源成本的结构。

(3)它能定位装配和自我复制。定位装配就是在适当地方放上适当的分子零件;自我复制能始终保持价格低廉。

纳米技术发展的不同时期,纳米制造对象的内涵也不同。例如,1990年以前,主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体的制备;而1990年到1994年间主要是制备纳米复合材料,一般采用纳米微粒与微粒复合、纳米微粒与常规块体复合、以及发展复合纳米薄膜;1994年以后,纳米制造的对象开始涉及纳米丝、纳米管、微孔和介孔材料;未来的方向则是制作仅由一个或数个原子构成的“纳米结构”,并以此来构筑具有三维纳米结构的系统。

4.纳米制造的加工技术

按加工方式,纳米级加工可分为切削加工、磨料加工(分固结磨料和游离磨料)、特种加工和复合加工四类。

纳米级加工还可分为传统加工、非传统加工和复合加工。传统加工是指刀具切削加工、固有磨料和游离磨料加工;非传统加工是指利用各种能量对材料进行加工和处理;

复合加工是采用多种加工方法的复合作用。

纳米级加工技术也可以分为机械加工、化学腐蚀、能量束加工、复合加工、隧道扫描显微技术加工等多种方法。机械加工方法有单晶金刚石刀具的超精密切削,金刚石砂轮和CBN砂轮的超精密磨削和镜面磨削、磨、砂带抛光等固定磨料工具的加工,研磨、抛光等自由磨料的加工等,能束加工可以对被加工对象进行去除,添加和表面改性等工艺,例如,用激光进行切割、钻孔和表面硬化改性处理。用电子束进行光刻、焊接、微米级和纳米级钻孔、切削加工,离子和等离子体刻蚀等。属于能量束的加工方法还包括电火花加工、电化学加工、电解射流加工、分子束外延等。STM加工是最新技术,可以进行原子级操作和原子去除、增添和搬迁等。

4.1 纳米机械加工

纳米机械加工技术具有原理简单、应用广泛的特点,是一种重要的由上而下的纳米加工技术。典型的纳米机械加工技术包括金刚石刀具车削、金刚石磨粒加工以及金刚石微探针纳米刻划。上个世纪80年代,日本大阪大学和美国劳伦斯实验室开展了超精密切削加工极限的实验研究,使用单点金刚石刀具直角车削电镀铜,实现了切削厚度为1nm 的稳定切削。中国科学院长春光学精密机械与物理研究所采用弹性顶针式光栅刻划刀刀架和圆弧形刀刃光栅刻划刀,加工出了刻线密度为1001/mm的10.6Lm激光系统用30 m曲率半径凹面金属光栅。

图3 纳米刃口刀具的制备图4 基于所制备的刀具制造的菲涅耳衍射元件

4.2微细电解加工

电解加工是利用金属阳极电化学溶解原理来去除材料的加工技术,这种加工原理使得电解加工具有微细加工的可能。如图5所示,电解加工系统由阴极、阳极、电源、电解液及电解槽等部分组成。通过降低加工电压、提高脉冲频率和电解液浓度, 可将加工间隙控制在10μm以下。

图5 电解加工原理图6 电解加工机床

4.3 能量束加工

能量束加工包含电子束加工、离子束加工和激光束加工,可用于打孔、切割、刻蚀、焊接、表面热处理、表面改性等加工。下面介绍电子束加工。

电子束加工原理如图7所示,在真空中将阴极(电子枪)不断发射出来的负电子向正极加速,并聚焦成极细的、能量密度极高的束流,高速运动的电子撞击到工件表面,动能转化为热能,使材料熔化、气化并在真空中被抽走。控制电子束的强弱和偏转方向,配合工作台x、y方向的数控位移,可实现打孔、成型切割、刻蚀、焊接、表面热处理、光刻曝光等工艺。可在0.5mm不锈钢板上加工出3μm的小孔,切割出3—6μm的窄缝,可在硅片上刻出宽2.5μm、深0.25μm的细槽。集成电路制造中广泛采用电子束光刻曝光,由于电子束射线的波长比可见光短得多,所以比用可见光光刻可以达到更高的0.25μm线条图形分辨率。用波长更短的x射线聚焦后对特殊的光敏抗蚀剂进行扫描曝光,可以刻蚀出更精密的图形。

图7电子束加工原理图图8 电子束加工设备

4.4基于STM的纳米加工

扫描隧道显微镜(STM)是一种基于量子隧道效应的高分辨率显微镜,它可达到原子量级的分辨率,同时它还可以进行原子、分子的搬迁、去除和添加,实现纳米量级甚至原子量级的超微细加工。在STM工作时,探针针尖与工件表面之间保持1纳米以下极

其微小的距离,施加在针尖和基材间的电压导致很高的场强,产生隧道电流束。通过改变场强等某些参数,处于针尖下的样品由于电子束的影响会发生某些物理化学变化,如:相变、化学反应、吸附、化学沉淀和腐蚀等,这就给“加工”提供了可能。同时由于隧道电流束空间通道极其狭小,因此受到影响或发生反应的表面区域也十分微小,直径通常在纳米量级。在如此小的区域上发生某种反应和变化意味着纳米级加工、纳米级微结构的制造。自1981年STM问世以来,基于它的加工技术己经进行了很多探索性工作,研究在多个方面展开:微小粒子及单原子操作、表面直接刻写、光刻、沉积和刻蚀,已经有许多加工实例被演示和报道。

利用STM技术进行刻蚀和沉积也受到特别关注。加工过程可在溶液中或气相环境下进行。采用稀释的HF等腐蚀性液体作为电解液,施加适当的隧道电流、偏置电压和扫描速度,可在某些材料上进行直接刻蚀,腐蚀出纳米级宽度的线条,而当采用含有金属离子的电解液时,通过适当的加工规准和条件,针尖对应的局部微小区域会产生金属离子的电化学沉积,形成纳米级宽和高的微结构。STM可以提供低能聚焦电子束,由计算机控制作精确的扫描运动,对涂覆了抗蚀膜的样品表面进行直写光刻口由于这个低能电子束的束径极小,因此可以获得很小线宽的图形。通过对抗蚀膜显影处理、金属沉积、抗蚀膜去除等一系列工艺,最终在表面形成金属薄膜构成的图形。STM在纳米刻蚀方面的表现已引起极大的关注。

图9 STM结构示意图图10 STM 加工系统

4.5 复合加工

复合加工是采用几种不同的能量形式、几种不同的工艺方法, 相互取常补短、复合作用的加工技术, 例如电解研磨、超声电解、超声电解研磨、超声电铸、超声电火花、超声激光加工等等, 可比单一加工方法更有效, 适用范围更广泛。

5.结束语

纳米制造是纳米科学技术的核心部分。它是高度交叉的综合性学科,这一新的学科体系正在形成,它涉及到许多新原理、新技术、新思维,交叉融会了多学科知识。纳米制造技术在航空、航天、电子、信息、微机械、生物、医疗等领域有着广阔的应用前景。

通过查阅资料,我对纳米制造技术有了初步的认识,了解了纳米制造与传统的制造工艺的主要不同与其各自的优势,从整体上把握了纳米加工常用的几类方法,并对其中典型的方法进行了初步了解。纳米制造及其关键技术是一项范围很大的研究题目,涉及到物理、化学、机械、等多领域的知识,在短时间内是不可能尽数掌握的,但在撰写小论文的过程对我开阔视野、扩展知识面有着很大的帮助。

参考文献:

[1] 朱荻. 纳米制造技术与特种加工[D]. 南京:南京航空航天大学.

[2]房丰洲. 纳米制造基础研究的相关进展[J].中国基础科学, 2014, 5: 9-15.

[3] 沈健. 纳米技术进展研究[D]. 中南大学, 2004.

[4] 丁成伟. 高频窄脉一冲微细电解加工机理的研究[D]. 山东大学,2008.

[5]张华丽. 基于扫描探针显微镜的纳米加工相关理论及技术研究[D]. 哈尔滨工业大学,

2008.

[6]赵家齐,永丰,刘永红,赵万生. 用于纳米级加工的特种加工技术[J].仪器仪表学报, 1995,

16(1): 42-46.

[7] 百度百科:纳米加工技术. https://www.docsj.com/doc/a118386327.html,.2015-1-19.

[8]百度文库:纳米制造技术. https://www.docsj.com/doc/a118386327.html,. 2015-1-19.

[9] 何丹农. 纳米制造[M]. 上海:华东理工大学出版社, 2011.12.

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择作者:admin 更新时间:2009-3-9 20:25:14 在全国高校中在高分子领域领先: 工科: 偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学; 偏加工和应用的:四川大学、华南理工大学、东华大学(原中国纺织大学)、上海交通大学理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:中科院北化所(明显领先)、南京大学、复旦大学、北京大学(上述为网上摘录,不一定全面)简单评述下 浙江大学是出高分子院士最多的学校。 北京大学合成做的好,特别是高分子液晶。 复旦大学的研究偏向理论研究,有杨玉良和江明两位院士,实力不凡。上海交通大学也有新评上一个高分子方面的院士:颜德岳, 华南理工和北京化工大学研究领域较广,在橡胶、塑料、纤维方面做的都不错。华南理工大学有3位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2人、珠江学者特聘教授2人、博士生导师43人),副教授、副研究员和高级工程师67人;高分子加工实力很强的。在全国排前3名。 四川大学有高分子材料工程国家重点实验室,主要是做塑料的加工改性,实力虽有下滑,但仍然很强,毕竟其根基很厚。 东华大学的研究重点在纤维方面,建有纤维素改性国家重点实验室。 中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。长春应化所在一直是在做合成方面比较强。化学所在前两年还有个工程塑料国家重点实验室,不过现在降格为中科院的重点实验室了。所以化学所的合成和加工做的都还不错。 青岛科技大学在高分子方面主要的特色是其橡胶,2003年建成了教育部橡塑工程重点实验室,也是多年来对青岛科技大学研究工作的肯定。 研究生的方向很多,大的方面大概一下几个:树脂合成(环氧,丙烯酸,聚苯,聚酯等每个方向都很多);塑料/纤维加工(加工工艺川大最强的,模具和机械华南理工及北化都不错);生物医用高分子(华东理工等);高分子理论及表征(中科院化学所及南京大学最强);液晶高分子(吉大,北大,北科大等);导电高分子(化学所等);纳米高分子(化学所);碳纤维/碳纳米(北化,清华);有机硅(化学所)等等 而在珠三角这一带,华南理工中山大学都是不错选择,有志在高分子领域深入了解的同学可以报读。 下面附有2009年华南理工大学科学与工程学院硕士招生目录及初复试科目材料高分子材料与工程专业考研学校选择 作者:admin 更新时间:2009-3-9 20:25:14 高分子化学与物理专业设置如下研究方向 01 高分子物理、02高分子合成与高分子化学、03 功能高分子、04高分子结构与性能、05天然高分子与生物医用高分子、06环境友好高分子 09年初试科目:①101政治② 201英语③629物理化学(一) ④865有机化学复试:复试笔试科目:979高分子化学与物理 材料物理与化学专业设置如下研究方向: 01 、高分子光电材料与器件物理、02 金属材料表面物理化学、03 生态环境材料、04功能材料制备、结构与性能、05纳米材料与纳米技术、06纳米材料与新型能源材料、07非线性

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

纳米技术在高分子材料中的应用

2013年11月(下) [摘要]当材料尺寸无限减小,达到纳米级别时材料将显现出有独特的效应如:小尺寸效应、量子尺寸效应和表面效应等,这些效应与聚合 物密度小,耐腐蚀、易加工等优良特性有机结合,便形成了一类新型功能高分子材料。本文综述了纳米技术在塑料、橡胶、纤维三类高分子材料中的典型应用。 [关键词]纳米高分子材料;纳米塑料;纳米橡胶 纳米技术在高分子材料中的应用 丰艳兰 曾小飞 (华东交通大学理工学院,江西南昌330010) 纳米技术一词从提出到发展只有二十几年的时间,它的提出掀起了科技届的研究浪潮,有专家预言它必将引领新时代的科技变革,于是世界各国、地区都积极制定计划,加强投入,力争占领科技至高点。近年来,随着纳米技术的成熟与改善,国内外对于聚合物基纳米复合材料的研究已显现成效。高分子基纳米复合材料是各种纳米结构单元与有机高分子材料复合形成的一种新型材料,常见的纳米高分子基复合材料有:纳米复合塑料、纳米复合橡胶、纳米复合纤维。 1纳米复合塑料 纳米复合塑料是指塑料中分散了纳米级尺寸的超微细分散相,分散相为聚合物时,称为聚合物分子纳米复合塑料;分散相为无机填料时,称为无机填料纳米复合塑料,研究较多的是无机填料作为分散相。众所周知,塑料作为一种用途广泛的材料有着自身的缺点:如强度较差、不耐老化、透气性差等。发展纳米复合塑料可以很好地改善这些方面的性能。 1)无机纳米材料复合塑料能够很好地改善塑料的强度,起到增强增韧的效果。比如在尼龙塑料当中增加少量的纳米粘土生产的纳米复合塑料,既保持了产品的塑性,又提高了它的刚性和强度,更提高了它的抗弯能力,可以作为车体材料进行使用。 2)使用纳米添加剂改善的塑料制品可以大大提高抗老化能力,塑料的老化主要原因是光老化,将纳米TiO 2等粒子填充到塑料基体当中,纳米TiO 2可以很好地吸收紫外线,降低紫外线对塑料的破坏,提高塑料制品的抗老化能力。比如用添加0.1%~0.5%的纳米TiO 2制成的透明塑料包装材料包装食品,可以减少紫外线对食品营养成分的损失,保持食品的营养价值。 3)可以赋予塑料一些新的功能。比如在农膜的使用当中,有一种纳米转光膜,它就是利用纳米技术,在农膜塑料生产过程中添加纳米黏土,这种农膜被称为纳米转光膜,由于纳米黏土的存在,它能够很好地强化、放大有利于农作物生产的特征光,而过滤掉不利于农作物生长的光,从而大大促进农作物的光合作用,使农作物果实更大更有营养。 2纳米复合橡胶 纳米橡胶是指尺寸在1~100的纳米无机粒子分散在连续相橡胶基体中构成的复合材料。利用纳米粒子作为补强材料填充到橡胶中,可以很好地发挥纳米粉体的小尺寸效应、量子效应等表面效应,提高粉体与橡胶大分子间作用力的,弥补界面区化学作用力的缺乏,从而增强对橡胶的补强效果。赋予橡胶制品更高的性能,延长橡胶制品的使用寿命。现有研究表明,纳米黏土复合橡胶能够很好地提高材料的模量、硬度和强度,提高橡胶的气体阻隔性、耐油、阻燃性能。Si 3N 4陶瓷粉体分散在橡胶中,能很好地发挥Si 3N 4的高化学稳定性、优良的机械性能和介电性能。 3纳米复合纤维 纳米纤维有广义和狭义之分,狭义的纳米纤维指纤维直径为纳米量级的超细纤维,广义的纳米纤维还包括将纳米颗粒填充到普通纤维中对其进行改性的纤维。目前国内外开发的热点是后者;所采用纳米颗粒的性能不同,可开发各种不同的功能性纤维。 1)可用于开发抗菌纤维产品,将具有抗菌作用的成分:银离子、铜离子、锌离子等微粒离子及其化合物通过物理吸附离子交换等方法制成抗菌剂,填充至纤维材料中,金属离子在低浓度下可以破坏细菌的细胞膜或细胞原生质活性酶的活性,从而起到抗菌作用。这种抗菌纤维常用来制作手术服、护士服、手术巾等医疗用品,还可制造衣物、鞋袜等生活用品。 2)可用于开发紫外线防护纤维,将ZnO 、SiO 2等纳米粉体利用共混纺丝法或后整理法制得防紫外线纤维或织物。纳米材料可做紫外线屏蔽剂,主要是因为纳米粒子的尺寸比紫外线相当或更小,小尺寸效应导致其对紫外线的吸收更强。通过以上方法制得的紫外线防护纤维可广泛用于制造遮阳伞、遮阳冒、泳衣、防晒服等。 3)可用于开发远红外纤维。研究表明,将具有较高远红外发射率的陶瓷微粉加入到高分子聚合物中,经纺丝加工可制成远红外纳米纤维,其中的纳米粒子可以有效地吸收材料本身释放的远红外射线,从而达到促进血液循环,调节新陈代谢的保温保健功能。同样,由于纳米粒子可以很好地吸收电磁波,这种纤维材料还可以用于制作军用服装。 4)可用于开发超双疏织物。对织物进行纳米表面处理,使之形成纳米尺寸的凹凸结构,利用纳米结构的表面效应可以实现既疏水又疏油的超双疏性。 纳米技术作为一项高新技术在材料领域有着非常广阔的应用前景,而高分子材料作为发展最快、品种多样、应用广泛、价廉性优的一类材料,加强两者结合的有机结合,可实现开发高性能高分子材料的现实意义。 作者简介:丰艳兰,1982年生,女,江西丰城人,华东交通大学理工学院助教,本科学历,研究方向为新材料应用研究;曾小飞,1983年生,男,江西丰城人,华东交通大学理工学院助教,研究生学历,研究方向为材料科学的发展及应用。 [参考文献] [1]肖亚航.纳米塑料的性能及应用前景[J].黑龙江科技信息,2010. [2]施利毅.纳米材料在高性能橡胶开发中的应用进展[J].中国橡胶,2007.[3]白鸟世明.高功能纳米复合纤维[J].产业用纺织品,2009. 112

高分子材料科学基础B卷答案

【高分子材料科学基础】课程试题(B卷)【半开卷】 姓名____________ 学号 _______________专业及班级_______________________ 本试卷共有五道大题, 一?填空题(每空1分,共30分) 1.材料按化学组成分类,可分为金属材料、无机材料和高分子材料三类。 2.高分子材料按大分子主链结构可分为碳链高分子材料、杂链高分子材料和元素______ 材料 3.20世纪70年代人们把能源、信息和材料归纳为现代物质文明的三大支柱。 4.原子的排列可分为三个等级,第一种是无序排列,第二种是短程有序而长程无序,第三种是长程有序。 5.从几何学的角度,结构缺陷可分为点缺陷、线缺陷、面缺陷及体缺陷。 6.由低分子单体合成聚合物的反应称为聚合反应。 7.由于单体单元排列方式的不同,可构成不同类型的共聚物,可分为四种类型无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物。 8.高强度、耐高温、耐老化的高分子材料是当前高分子材料的重要研究课题。 9.大分子链形态的基本类型包括:伸直链、折叠链、螺旋形链、无规线团。 10.聚合物晶态结构的基本模型有两种:一种是缨状胶束模型,另一种是折叠链模型。 11在室温下,塑料处于玻璃态,玻璃化温度是非晶态塑料使用的上线温度二点则是结晶聚合物使用的上线温度,对于橡胶,玻璃化温度是其使用的下限温度。 12橡胶制品的主要原料是生胶、再生胶以及配合剂。 13.酚醛树脂是由苯酚和甲醛两种物质合成的。

'、NiMi 10 1 04 5 1(第2页 5 10 =40000 10 5 14.丁苯橡胶是由丁二烯和苯乙烯两种原料合成的。 15?聚酰胺类的习惯名称为尼龙。 16.聚对苯二甲酸乙二酯的商品名为涤纶。 17.聚丙烯腈的商品名为腈纶。 二?名词解释(共10小题,每题2分,共20分) 1.引发剂:引发剂是容易分解成自由基的化合物,分子结构上具有弱键,在热能或辐射能的作用下,沿弱键均裂成自由基。 2.笼蔽效应:引发剂分解成初始自由基后,必须扩散出溶剂所形成的“笼子”才能引发单体聚合,这时会有部分初始自由基在扩散出“笼子”之前因相互复合而失去引发单体聚合的能力,这就成为笼蔽效应。 3.诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。 4.热固性塑料:是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再恢复到可塑状态。 5.连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 6.体形缩聚:在缩聚反应中,单体分子多于两个官能团时,则能形成支化或交联等非线型结构的产物,此类反应称体型缩聚反应。 7.凝胶点:体形缩聚初期为线型产物,当达到一定程度时,体系粘度突然增大,出现不溶不熔且具有弹性的凝胶一一体型产物(即凝胶化现象或凝胶化作用),这时的P称凝胶点Pc。 8.自动加速现象:随着聚合反应进行,聚合速率不但没有降低,反而迅速增加,这种反常的动力学行为称为自动加速现象。 9.应力松弛:在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象称为应力松弛。 10.乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 四?计算题(共5小题,1,2, 3题每题5分,4题10分共25分) 1.设一聚合物样品,其中分子量为104的分子有10 mol,分子量为105的分子有5 mol,求分子 Mn

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

浙江大学高分子科学与工程学(系)第十一期SRTP结题汇总

浙江大学高分子科学与工程学 (系)第十一期SRTP结题汇总表 1.学生参加SRTP总评成绩按优秀、良好、中等、合格、不合格等级评定。 2.成果形式:按论文(设计)、产品(开发)、专利(推广)、研究报告、调研报告等类别。 3.由学院(系)本科教学管理填写,并存档。

浙江大学高分子科学与工程学 (系)第十一期SRTP结题汇总表 1.学生参加SRTP总评成绩按优秀、良好、中等、合格、不合格等级评定。 2.成果形式:按论文(设计)、产品(开发)、专利(推广)、研究报告、调研报告等类别。 3.由学院(系)本科教学管理填写,并存档。

浙江大学高分子科学与工程学 (系)第十一期SRTP结题汇总表 2.成果形式:按论文(设计)、产品(开发)、专利(推广)、研究报告、调研报告等类别。 3.由学院(系)本科教学管理填写,并存档。

浙江大学高分子科学与工程学 (系)第十一期SRTP结题汇总表 1.学生参加SRTP总评成绩按优秀、良好、中等、合格、不合格等级评定。 2.成果形式:按论文(设计)、产品(开发)、专利(推广)、研究报告、调研报告等类别。 3.由学院(系)本科教学管理填写,并存档。

浙江大学高分子科学与工程学 (系)第十一期SRTP成果发表登记汇总表 1.此表作为每期SRTP成果已在公开杂志发表登记,请学院(系)本科教学管理科负责收集汇总填写,并复印论文全文、封面和目录一份,及时上报学业指导中心,学院(系)组织正式发表 优秀成果(论文)汇编。 2.立项负责人(教师或学生)作为第一作者和项目组成员(学生或教师),分别填在教师或学生栏目。 3.备注栏应写明论文发表的级别(如SCI、核心、一级、二级等)。

高分子纳米材料及其应用

高分子纳米材料(论文)题目:高分子纳米材料及其应用 化工学院学院高分子材料与工程专业 学号0502110202 学生姓名 指导教师 二〇〇一四年十一月

高分子纳米材料及其应用 摘要:高分子纳米材料是一门新兴并且发展迅速的一门科学。其具有很多独特 的性质,应用前景非常广阔。本文主要介绍了高分子材料的性质,同时介绍了高分子纳米复合材料常见的制备方法及其在各个领域的应用。 关键词:性质;纳米复合材料;制备方法;应用 Abstract: Polymer nano-materials is an emerging and rapidly developing research direction. It has many unique properties and broad application. This paper describes the properties of polymer materials, and also introduced preparation method of the polymer nano-composite materials .The paper also introduces its application in various fields. Key words:Properties; Nano-composite materials; Preparation method; Application 1 引言 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独 特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学 反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所 以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。[1, 2] 纳米作为一个材料的衡量尺度,其大小为1 nm (纳米) =10~9 m (米),即十亿分之一米, 大约是10个原子的尺度。最初定义的纳米材料仅仅是指1~100 nm 尺度范围的纳米颗粒及 由他们构成的纳米固体和薄膜。目前,在广义上定义的纳米材料是指三维空间尺度里至少有 一维是纳米尺寸或者由它们作为结构基本单元的材料;根据定义按照空间维度可以将纳米材 料分为三类:(1) 维度为零的纳米材料,是指纳米颗粒、原子团簇等三维空间尺度均在纳米 尺寸的材料;(2) 维度为一的纳米材料,是指纳米线、纳米管等三维空间尺度中有两维是纳 米尺度的材料;(3) 维度为二的纳米材料,是指纳米膜、超晶格等三维空间尺度中仅有一维 是纳米级的材料;[3] 2 纳米材料的性质[4, 5] 物质的尺寸一旦与原子尺寸在同一量级时,其表面电子结构和晶体结构就会发生变化, 导致纳米材料会具备一些表面效应、小尺寸效应等优异特性。 (1)量子尺寸效应。量子尺寸效应又称量子限域效应,当粒子尺寸下降到一定程度时,金属 费米能级附近的电子能级由准连续能级变为离散能级,以及能隙变宽现象均为量子尺寸 效应。材料或物质的物理性质在很多方面都是由材料的电子结构决定的,当材料尺寸小

微纳制造技术作业

问题:1、微机械制造材料大致分为几类而常用的制造微机电产品的材料有哪些,MEMS装置为何大多选用硅材料制造 2、纳米材料与常规的材料相比,有哪些优点 答:1、(1)微机械制造材料大致分为结构材料、功能材料和智能材料三大类。 (2)常用的制造微机电产品的材料有: a,结构材料:是以力学性能为基础,具有一定强度,对物理或化学性能也有一定要求,一般用于构造微机械器件结构机体的材料,如硅晶体。 b,功能材料:指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。如压电材料、光敏材料等。 c,智能材料:一般具备传感、致动和控制3个基本要素。如形状记忆合金、磁/电致伸缩材料、导电聚合物、电流变/磁流变材料等。 (3)由于硅材料具有众多优点,所以MEMS装置大多选用硅材料制造。 其优点如下:?? ①优异的机械特性:在集成电路和微电子器件生产中,主要利用硅的电学特性;在微机械结构中,则 是利用其机械特性。或者同时利用其机?械特性和电学特性,即具有机电合一的特性,便于实现机电器件的集?成化。? ②储量丰富,成本低。硅是地壳中含量最多的元素之一,自然界的硅元素通常以氧化物如石英(sio2) 的形式存在,使用时要提纯处理,通?常加工成为单晶形式(立方晶体,各向异性材料)? ③便于批量生产微机械结构和微机电元件。硅材料的制造工艺与基层电路工艺有很好的兼容性,便于 微型化、集成化和批量生产。硅的微细?加工技术比较成熟,且加工精度高,容易生成绝缘薄膜。? ④具有多种传感特性,如压电阻效应、霍尔效应。? ⑤纯净的单晶硅呈浅灰色,略具有金属性质。可以抛光加工,属于硬脆材料,热传导率较大,对温度 敏感。 2、纳米材料内部粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。对纳米体 材料,可以用“更轻、更高、更强”这六个字来概括。 ①“更轻”是指借助于纳米材料和技术,可以制备体积更小性能不变甚至更好的器件,减小器件的体

高分子材料与工程专业排名一览表

一、工科:偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学;偏加工和应用的:四川大学、华南理工、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:南京大学、复旦大学、北京大学 5-10年这个行业发展都会不错。 二、高分子材料与工程就业前景分析高分子材料与工程专业排名一览表 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学 【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学 【福建省】福建师范大学 【江西省】南昌大学、华东交通大学 【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学六 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖北科技大学

高分子材料与工程

高分子材料与工程 高分子材料与工程行业调研 ? 报告简介 ? 调研目的 ? 行业介绍 ? 报告内容 ? 报告分析 报告人:3337宿舍张文皓秦冰洋翟金晓宋建平 3338宿舍刘增辉张元帅孟涛马保刚 1报告简介: 主要内容:高分子材料与工程专业 __ 2调研目的:

通过调查,了解高分子材料与工程专业现状和前景,就业方向, 岗位要求等情况。 3行业简介 培养目标 高分子材料与工程专业”:是培养具备高分子材料与工程等方面 的知识,能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才的学科。 专业特色 的计算机应用能力和语言表达能力;身心健康并富有创新精神的 高素质研究应用型专门人才。 4报告内容 ⑴从业领域

可到石油化工、电子电器、建材、汽车、包装、航空航天、军工、轻纺及医药等系统的科研(设计)院所、企业从事塑料、橡胶、化纤、涂料、粘合剂、复合材料的合成、加工、应用、生产技术管理和市场开发等工作,以及为高新技术领域研究开发高性能材料、功能材料、生物医用材料、光电材料、精细高分子材料和其它特种高分子材料,也可到高等院校从事教学、科研工作。⑵ __ ①截止到 xx年12月24日,324030位高分子材料与工程专业毕业生的平均薪资为4994元,其中应届毕业生工资3568元,0-2年工资4242元,10年以上工资1000元,3-5年工资5331元,6-7年工资6818元,8-10年工资7685元。 高分子材料与工程专业招聘要求 针对高分子材料与工程专业,招聘企业给出的工资面议最多,占比75%;不限工作经验要求的最多,占比62%;大专学历要求的最多,占比25%。 高分子材料与工程专业就业方向 高分子材料与工程专业学生毕业后可在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

10080011-高分子材料与工程专业实验

高分子材料与工程专业实验教学大纲 Experiments of Po1ymer Science & Engineering 课程编号:10080011 课程性质:专业核心课 适用专业:高分子材料与工程专业 先修课:高分子化学、高分子物理、高聚物成型加工原理 后续课:毕业论文 总学分:2.5学分 教学目的和基本要求:本课程是高分子材料专业和复合材料专业的专业实验课程,通过对一些典型的高分子的合成及材料性能的测试的训练,掌握本体聚合、溶液聚合、悬浮聚合、乳液聚合的基本原理和特点,掌握高分子材料热、力学基本性能的测试方法和原理,以及测试设备的基本结构和使用步骤。熟悉通用高分子的基本性能,并能够在此基础上进一步设计对不同高分子材料基本性能的方法。 实验名称与学时安排 实验一、甲基丙烯酸甲酯的本体浇注聚合 实验性质:综合性实验 实验内容:通过本体聚合的方法制得聚甲基丙烯酸甲酯。 实验目的与要求: 1.过本实验了解本体聚合的基本原理和特点,并着重了解聚合温度对产品质量的影响。 2.掌握有机玻璃制造的技术。要求所制得的产品透明、无气泡、平整。 实验二、丙烯酰胺的溶液聚合及其水处理实验 实验性质:综合性实验 实验内容:用溶液聚合的方法制得聚丙烯酰胺,并进行水处理实验。 实验目的与要求: 1.通过本实验了解溶液聚合的原理及优缺点。 2.了解产物的分子量与引发剂用量、分子量调节剂及温度的关系。 3.了解用高分子絮凝剂进行水处理的基本原理和方法。

实验三、苯乙烯悬浮聚合 实验性质:综合性实验 实验内容:用悬浮聚合的方法制得珠状聚苯乙烯。 实验目的与要求: 通过本实验了解和掌握有关悬浮聚合的特点及操作方法。要求制得颗粒大小较均匀的无色透明珠状聚合物。 实验四、醋酸乙烯乳液聚合 实验性质:综合性实验 实验内容:制备聚醋酸乙烯乳液。 实验目的与要求: 1.掌握聚醋酸乙烯乳液的制备方法及反应原理。 2.了解聚醋酸乙烯乳液聚合“实际体系”与典型的乳液聚合体系的差别。 实验五、环氧树酯的合成和应用 实验性质:综合性实验 实验内容:通过环氧氯丙烷与双酚A缩聚制取环氧树酯,了解环氧树脂的使用方法和性能。 实验目的与要求: 1.制备低分子量的环氧树脂。 2.环氧树脂的浇铸实验。 3.环氧树脂的粘接实验。 实验六、酚醛树脂的制备 实验性质:综合性实验 实验内容:制备热固性酚醛树脂。 实验目的与要求: 熟悉和掌握热固性酚醛树脂的合成方法和固化过程。 实验七、聚合物的差热分析 实验性质:设计性实验 实验内容:用DTA、DSC测定聚合物的T g,T c,T m,X0。 实验目的与要求: 1.掌握DTA、DSC的基本原理。 2.学会用DTA、DSC测定聚合物的T g,T c,T m,X0。 实验八、聚合物的热重分析 实验性质:设计性实验 实验内容:用TGA测定聚合物的T d。 实验目的与要求: 1.掌握热重分析的实验技术。 2.从热谱图求出聚合物的热分解温度T d。 实验九、塑料耐热性实验 实验性质:设计性实验 实验内容:用维卡软化点测定仪测定高聚物热变形温度及软化点。 实验目的与要求: 1.掌握高聚物热变形温度及软化点测定方法。 2.了解热变形试验机的使用方法。 实验十、粘度法测定聚合物的分子量

纳米科学与微纳制造》复习材料.docx

《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结 构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和 微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的 源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的 学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大 的好奇心和探索欲望。 5、纳米材料有哪 4 种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒

高分子材料与工程专业就业前景

高分子材料与工程专业就业前景 - - - - 高分子材料与工程专业就业前景 目前的形式看来高分子很好就业,我们班想找工作的都找到了不错的工作,如果是女孩子的话我觉得还是别学理工科了,不管是理工科什么专业找工作女孩子总体上是比不过男孩子的,我们就业的去向很多,就我们03级高分子的给你举一下例子吧,我在LG化学,从事ABS树脂的生产技术,我室友去了广本研究汽车上的高分子了,还有去海尔生产电器高分子研究,有去比亚迪做电池的,还有去其它一些大型汽车公司的,还有在大连膜研究分司的,去日本NOK公司研究密封设备的,总是高分子是塑料,橡胶,纤维,涂料(油漆,颜料等)几大领域,应用非常广泛,跟日常生活关每次极大,就业面非常广,当然化工类的在刚工作时是不会得到IT业那么高的工资的,但经验多了,工资就不是问题了,IT正好相反,当老了就没有人要了(大连理工) 关于这个专业在开始找工作时的情况:我在2006年11月份,已经找到了三个公司美的、格力漆包线、金川公司等。我自己感觉这个专业最近几年找到工作不是问题,关键是待遇好坏,我同学他们刚签工作时的薪水最高3000,可能和其他专业差了很多。工作中:我只能拿我在金川公司工作的情况和你说说,在这个公司我干的是电线电缆生产的行业,现在在各个车间实习,最后从技术到管理。这个专业污染方面可能和我们主公司的重工业没法相提并论,但也存在着污染。如果在将来能够将技术和管理做好的话待遇方面也应该是可观的。考研方面:可能在社会上各种企业最终看中的都是个人的能力,但在我们企业中可以明显地看出区别。本科生2500/月,四人两室两厅,半年后助理工程师;硕士生3500/月,两人两室两厅,三个月后工程师;博士生10万以上/年,配车,一人三室两厅,处级待遇。看到这些应该可想而知了吧。有时候会想毕业后想工作几年然后再考研,但是在工作中一方面是时间问题,公司不会因你要考研而施舍给你时间让你有充裕的时间复习,另一方面人在企业中可能受环境的影响不自主地产生一种惰性,有了这种惰性考研的理想就更远了一步. (哈理工) 高分子简单来说分三类:塑料、橡胶、纤维。我们这一届就业形势还不错的,汽车公司啊,化工的都可以。当然了,如果是女生,我还是建议不要学这个,学学经济、会计、英语就可以了,男生嘛,计算机学的好的话工资会很高,自动化比较好就业(南昌大学) 高分子材料还是有很多应用方向的单单是在我们学校的这些兄弟们,就遍布了祖国各地,而且从事的行业也都不尽相同高分子材料的主要方向有塑料、橡胶、合成纤维、粘合剂以及涂料,在交叉领域中还有复合材料。 高分子材料科学主要就是研究这些,当然,这些都是相对比较泛泛的因为想学好一个都是很深入的,何况是5个方向不过学的再深入,到了工作单位,也依然要从新学起,因为方向太多,生产工艺太多,尽管产品可能一样,但是生产过程却

高分子材料工程技术专业

高分子材料工程技术专业(中德技术学院)人才培养方案 一、专业代码、名称 530602,高分子材料工程技术(专科) 二、培养目标 培养具有良好的思想道德品质和强烈的社会责任感,具备国际视野、科学素养和人文素养,掌握高分子材料工程技术专业的基础知识和专业知识、橡塑材料加工与测试的基本技能,能在橡胶工业、塑料工业及高分子复合材料、功能智能高分子材料等各部门从事橡塑制品及复合材料等结构设计、配方设计、加工成型、模具设计及产品制造、工艺管理的工程技术人才。 三、培养要求 本专业要求学生掌握自然科学、工程基础知识和专业知识,掌握高分子材料领域的基本理论与基本技能,提高学生分析和解决工程实践问题的能力。 本专业的毕业生应达到以下知识与能力的培养要求: 1.具有科学素养、社会责任感和工程职业道德; 2.掌握高分子化学、高分子物理和橡塑加工的基本原理和基本理论; 3.掌握橡塑原材料、加工工艺、成型模具及设备等方面的基本知识; 4.掌握橡塑制品结构以及模具的设计方法及计算机辅助设计技能; 5.具有对新产品、新工艺和新技术进行实验研究和应用开发的初步能力; 6.掌握高分子功能材料和智能材料等领域前沿发展趋势,具有终身学习能力。 四、主干学科 材料科学与工程、化学 五、核心知识领域 高分子化学、高分子材料合成原理、橡塑材料的结构与性能、橡塑材料的加工工艺、橡塑制品的结构设计、橡塑制品的加工设备与成型模具等。 六、核心课程 材料科学基础、高分子化学、高分子物理、高分子材料分析测试方法、橡胶工艺学、塑料成型工艺学、橡塑制品设计等。 七、主要实践性环节 认识实习、橡塑制品课程设计、毕业实习与毕业设计(论文)。 八、修业年限及最低学分要求 基本修业年限3年。毕业最低学分要求105学分。其中,必修课76学分,专业选修课6学分,通识选修课4学分,实践教学环节19学分。实践教学(含实验、上机及独立实践教学环节)学分占总学分数比例为30.2%。 九、教学计划进程及课程学分(学时)分配表

微光刻与微纳米加工技术

万方数据

万方数据

万方数据

万方数据

陈宝钦:微光刻与微/纳米加工技术 源的选择),选择相应的分辨率增强技术,以及分析相关的数据并对已有模型进行校准等工作。光刻模型主要包括光刻胶模型、()PC模型以及成像模型等。随着光刻设备的升级换代、RET的广泛应用,精确的模型需要充实。如超高数值孔径的浸没式光刻中的光学极化效应等。DFM可理解为,以快速提升芯片成品率及降低生产成本为目的,统一描述芯片设计中的规则、工具和方法,从而更好地控制设计电路向物理芯片的复制。是一种可预测制造过程中工艺可变性的设计,使得从设计到芯片制造的整个过程达最优化。DFM包括参数成品率、系统成品率和随机成品率的设计,以及可靠性、测试和诊断的设计,而相关EDA算法工具的开发应用是解决问题的关键所在。 1.3浸没透镜与两次曝光光刻技术 提高光刻分辨率有三种途径。一是缩短曝光光源波长,需要价格高昂的原理性设备换代;二是改善工艺因子K,。其代价是缩小了制造工艺窗口,同时还需要改变集成电路版图的设计规则、改善光刻胶的工艺和分辨率增强技术。对于目前主流的193nm光源的光刻技术来说,还难以满足45nm节点生产的需求;第三种途径就是在改善光学系统数值孔径上继续做文章。由于目前曝光镜头数值孔径已经接近1,再要提高光学透镜的数值孔径就需要设计更大口径、更复杂的镜头,这已经不太现实了。因此光刻专家们根据高倍油浸显微镜提高分辨率的原理,设法在曝光镜头的最后一个镜片与硅片之间增加高折射率的液体(如水)作为介质,以达到提高分辨率的目的。因为提高该介质的折射率町以加大光线的折射程度,等效地加大镜头口径尺寸与数值孔径,同时可以显著提高焦深(DOF)和曝光工艺的宽容度(El。)。浸没光刻技术莺点需要解决的问题是水迹、气泡和污染等缺陷困扰。目前采用193nm光源的浸没光刻(Immersion,193i)技术已经成为65nm和45nm光刻的主流技术。要想把193i技术进一步推进到32nm和22nm的技术节点,光刻专家还在寻找新技术,在没有更好的新光刻技术出现前。两次曝光技术(或叫两次成型技术,DPT)成为人们关注的热点。DPT的原理很简单,就是把原来一次光刻难以分辨的掩模图形交替式地分成两块掩模,每块掩模上图形的分辨率可以减少一半,减少了曝光设备分辨率的压力,同时还可以利用第二块掩模版对第一次曝光的图形进行修整。两次曝光有效地拓展了,现有曝光设备干法光刻的应用,不必等待更高的分辨率和更高数值孔径系统的出现就可以投入下一个节点产品的生产。两次曝光技术在使用中。很像移相掩模技术中的位相冲突问题,需要重点解决分色冲突问题。为此还有可能需要三次曝光光刻(TPT)。两次曝光技术可以是两次曝光两次刻蚀方式(1itho—etch—litho—etch);也可以是第一次曝光显影后进行抗蚀剂固化处理后再涂胶进行第二次曝光显影,最后一起刻蚀的方式(1itho-process—litho—etchalterna-tives)。此外。过去经常使用的牺牲体结构侧墙技术的自对准两次成型技术(self—aligned(spacer)doublepatterning)也可以归入两次曝光技术中。当然,两次曝光技术也有问题,如对套刻精度要求更苛刻和生产效率降低等问题。 (未完待续) 作者简介: 陈宝钦(1942一)男,福建人.中国 科学院微电子研究所研究员,博士生导师。 主要从事光掩模、电子束光刻、微光刻与 微纳米加工与技术的研究。 -??..-?-卜_?-..-—卜-?卜-—卜-?..。+-?卜-?卜??..-?..-—..-—-.-。+。+‘+*?卜-?—卜-—..-?卜-?..。+-—..?—-卜-?..。+-—.-?—-..-?.. 下期部分目次预告 高压I.DM()s两层金属场板的优化设计 高方块电阻发射区单晶硅太阳电池的性能优化 AlGaN/GaNHEMT器件工艺的研究进展 大孔Ti02一ZnO复合纳米材料的制备及其光催化性能一种适用于高灵敏微磁传感器的I,M()膜制备与分析 2011年1月聚苯胺纳米材料的合成与应用 基于MEMS的新型高场不对称波形离子迁移谱 纳米磁性液体合成装置的研制及其应用 基于光诱导介电泳的微粒自动化操作方法研究 MEMS集成宽町调范围滤波器的设计与制作 微纳电子枝术948卷第1期 5 万方数据

相关文档