文档视界 最新最全的文档下载
当前位置:文档视界 > 几种聚类算法在图像分割中的应用研究

几种聚类算法在图像分割中的应用研究

龙源期刊网 https://www.docsj.com/doc/9f5734052.html,

几种聚类算法在图像分割中的应用研究

作者:苗欣雨

来源:《科教导刊·电子版》2015年第19期

摘要本文具体介绍了图像分割中几种聚类算法的工作原理。通过对比,分析了几种算法的优缺点,总结了在实际工作中对算法的选择问题。

关键词聚类算法图像分割均值漂移 K均值聚类

中图分类号:TP391.41 文献标识码:A

通常在分析以及使用图像时,人们需要的不是整幅图像而仅仅是其中的某些目标。图像分割就是把需要的部分分割出来,再进一步分析处理图像。每个图像都有它独有的特点,对图像进行分割时要想达到预期的结果就必须选择合适的算法,由此可见对算法的研究是很关键也很必要的。目前常用的几种分割方法有k均值聚类算法、模糊c均值算法、均值漂移算法等。

1聚类算法

1.1均值漂移算法

均值漂移(Mean Shift)算法是一种有效的统计迭代算法。均值漂移的算法原理是,在样本中随机选择一圆心为o,半径为h的区域,得出这个区域中所有样本点的平均值,圆心处的样本密度必然比均值处的样本密度小或者相等,将均值定为新的圆心重复以上步骤,直到收敛到密度极大值点。

1.2 K均值聚类算法

k均值聚类由于其原理简单而使用很广泛。该算法的工作原理是,首先将n个样本分为k 个组,在每组中随机选择一个元素当作聚类中心。然后得到其他采样点到这个中心的欧氏距离,把采样点归类到与之欧氏距离最小的聚类中心所在的类中。计算新形成的聚类中采样点的平均值,得到新的聚类中心。重复上述过程,直到每个样本都分类正确为止。

1.3模糊C均值聚类算法

模糊C均值是为解决实际应用问题对K均值进行改进得来的。在实际应用中图像目标在类别属性方面没有那么严格的区分。所以想出利用隶属度来判断每个目标样本的所属,来更好的划分。模糊C均值聚类的具体工作原理是,算法将n个样本分为c个组,得到各个组的聚类中心,最终让非相似性指标的目标函数达到最小。算法给各个样本点赋予0~1之间的隶属度,通过隶属度的值来判断样本归属于各个分类的程度。同时有规定一个样本的隶属度加和后值为一。

相关文档
  • 图像分割算法的研究

  • 图像分割算法的比较

  • 图像分割方法研究

  • 图像分割研究综述

  • 基于谱聚类的图像分割

相关推荐: