文档视界 最新最全的文档下载
当前位置:文档视界 › 薄层色谱层析

薄层色谱层析

薄层色谱层析
薄层色谱层析

实验六薄层色谱层析

一、实验目的

1、学习薄层色谱法的原理和方法;

2、学会利用薄层色谱分离提纯有机化合物的规范操作;

2、掌握比移值的计算方法;

3、了解比移值的影响因素。

二、实验原理

层析的基本原理:所有的层析系统都由互不相溶的两相组成,一个是固定相,另一个是流动相。利用混合物中各组分物理化学性质上的差异(如吸附力、分子形状和大小、分子极性、分子亲合力、分配系数(是指在一定温度下达到平衡后溶质在两相中浓度的比值是一个常数)等),使各组分以不同程度分布在两相中,它们以不同的速度移动,最终彼此分开。

层析分类:柱色谱、纸色谱、薄层色谱、气相色谱、液相色谱

薄层色谱(thin layer chromatography)常用TLC表示,又称薄层层析,属于固-液吸附色谱。依其所采用的薄层材料性质和物理、化学原理的不同,可分为吸附薄层色谱、分配薄层色谱、离子交换薄层色谱和排阻薄层色谱等。

吸附薄层色谱采用硅胶、氧化铝等吸附剂铺成薄层,将样品以毛细管点在原点处,用移动的展开剂将溶质解吸,解吸出来的溶质随着展开剂向前移动,遇到新的吸附剂,溶质又会被吸附,新到的展开剂又会将其解吸,经过多次的解吸-吸附-解吸的过程,溶质就会随着展开剂移动。吸附力强的溶质随展开剂移动慢,吸附力弱的溶质随展开剂移动快,这样不同的组分在薄层板上就得以分离。

一个化合物在吸附剂上移动的距离与展开剂在吸附剂上移动的距离的比值称为该化合物比移值Rf

三、主要试剂和材料

蒽(A )、芴酮(B )、香草醛(C )及其混合物(D );薄层层析硅胶G ;薄玻璃板;环己烷:乙酸乙酯(5:1或6:1);0.5%羧甲基纤维钠(CMC-Na)水溶液;毛细管(内径小于1mm)

O

CHO

OCH 3

A 蒽

B 芴酮

C 香草醛

四、实验装置

薄层色谱示意图

五、实验步骤

制板(简易平铺法)

(1)二块7.5cm×2.5cm 玻片,洗净,控水。

取7.5cm×2.5cm 载玻片2块,用去污粉搽洗,再用水淋洗,最后浸入无水乙醇中,取出晾干。取用时手指只可接触载玻片的边缘,不能接触载玻片两面。 (2)调糊:3g 硅胶G 和8mL0.5%羧甲基纤维素钠水溶液在小烧杯中搅匀。 在50 mL 烧杯中,放入约3g 硅胶,加入0.5%羧甲基纤维素钠水溶液8mL ,调成糊状。

3)铺层:用牛角匙将此糊状物倾倒于上述玻璃片上,用食指和拇指拿住玻璃片,做前后、左右振摇摆动,反复数次,使流动的糊状物均匀地铺在载玻片上。每组铺二块。

(4)活化:将已涂好硅胶G的薄层板放置在水平的长玻璃片上,室温放置0.5 h后,移入烘箱,缓慢升温至110 ℃,恒温0.5 h。取出稍冷放入干燥器中备用。

点样:

(1)画线——起始线和前沿线

(2)毛细管点样——斑点大小和斑点间间距。用内径小于1mm的毛细管取样品溶液,在距离薄层板底端8~10mm处,垂直地轻轻接触薄层板,斑点直径要小于2mm,一块薄层板可点2个样品,注意保持一定的距离,但斑点不能太靠边。

展开:展开剂选择;展开方法——倾斜上行法。取一有盖的广口瓶作色谱器,加入展开剂(用环己烷︰乙酸乙酯=3~5︰1),展开剂高度不要超过5mm,以免淹没斑点,然后将已点好样品的薄层板放入色谱器中,盖紧,等展开剂上升到接近薄层板上沿时,打开盖子,迅速用铅笔或小针在前沿作一记号取出,晾干。

显色:直接观察并量取a、b值,计算比移值。先用肉眼观察有无可见的斑点,然后放在紫外线分析仪下观察荧光斑点,并用小针轻轻勾划斑点的轮廓,最后放入盛有碘片的瓶中进行显色。

六、实验结果

薄层色谱TLC(点板)的基本原理

薄层色谱(点板)的基本原理 ★★ 薄层色谱,或称薄层层析(thin—1ayer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。 (一)基本原理 薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。

物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

高效液相色谱( high performance liquid chromatography, HPLC

高效液相色谱(high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史: 1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。 1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法 (HPLC)正式建立。在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。 1960年代前,使用的填充粒大于100μm,提高柱效面临着困境,后来的研究人员便采用微粒固定相来突破着一瓶颈。科克兰、荷瓦斯制备成功薄壳型固定相,这种在固定相在玻璃微球表面具有多孔薄壳,实现了高速传质,为高效液相色谱技术的发展奠定了稳固的基础。随着填料粒径的降低,更高的柱效也得以实现。1960年代研制出气动放大泵、注射泵及低流量往复式柱塞泵,但后者的脉冲信

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱。正相柱大多以硅胶为柱,或是在硅胶表面键合 -CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱仪操作步骤

高效液相色谱仪操作步骤: 1).过滤流动相,根据需要选择不同的滤膜(0.45um)。 2).对抽滤后的流动相进行超声脱气10-20分钟。 3).打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4).进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5).有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6).调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7).设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8).进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9).关机时,先关计算机,再关液相色谱。 10).填写登记本,由负责人签字。 注意事项: 1).流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2).柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3).所有过柱子的液体均需严格的过滤。

柱效

液相色谱柱柱效的提高和测算 液相色谱柱柱效的提高和测算 摘要本文通过对如何提高液相色谱柱柱效的阐述,介绍了几种国际上流行的测量和计算柱效值的方法。 关键词液相色谱柱谱峰扩宽柱效值理论塔板数 一、提高液相色谱柱柱效的方法 我们知道色谱峰的扩宽与移动相在热力学的分配过程、移动相和固定相中传质阻力所引起的不平衡有关,谱峰扩宽(非平衡)的程度是流速对传质速率的直接函数。要提高液相色谱的效率可从以下几方面入手。 (1)降低移动相的流速,但会使分析时间延长。 (2)减少固定相的量,但色谱柱中样品的负载量也随之减小。 (3)减小固定相的颗粒度,但不能过分,过分后色谱柱的渗透率也会减小。 (4)选用低粘度的移动相,以利于快速传质,但却不利于多组份分析。 (5)适当提高柱温,可降低移动相的粘度,但柱效和分离度也随之降低。 (6)尽量减小停滞移动相的体积,但却加快了移动相的流速。 从以上介绍可看出,在色谱分析过程中,各种因素是互相联系和制约的。只有通过对柱效值的跟踪测算,对自己分析方法不断的研究和实践,才能找到最佳的工作条件。 二、对柱效值进行跟踪测算应注意的问题 我们也应记住柱效值即塔板数只表示该色谱柱装填的好坏,只用柱效值并不足以预测在所有条件下的柱性能,因为在这些条件下,柱性能主要表示动力学过程对色谱柱谱带加宽的量。其他一些影响峰宽的因素,如柱外效应和热力学因素(通常表现为峰拖尾),在理想情况下对于确定柱效值并不起重要作用。因为任何一个柱性能的定义都必然与用此色谱柱所做的分离相联系,所以依据一个单独的数字来评定柱性能是不切实际的。对大多数色谱工作者来说,柱性能指的是色谱柱用于特定分离的能力,而仅仅有高柱效并不能保证这种分离能力。 不管用什么特定的测试方法,都会有几个参数影响柱效的测定。这些参数包括:洗脱液的成分和粘度及其线流速,测定塔板数所用的溶质,温度,柱长,填料装填方式,颗粒度,还有所选用的测量和计算方法。尽管大多数柱效测算没有设法消除液相色谱仪器系统各部件对表观峰宽的影响,但只要仪器是正常使用的,这些影响是次要的。而测量和计算方法对柱效值的确定起着极大的作用。 三、几种测量和计算柱效值的方法 因为色谱峰是假定样品浓度在移动相和固定相中呈正态分布而得到的样品谱带分布,故常常把色谱峰型看作正态曲线来计算理论塔板数。因此计算柱效(以理论塔板数n为单位)的公式习惯上定义为: 式中tR为色谱峰的保留时间; σ2是以时间为单位测量色谱峰的偏差;a是和峰高(从测峰宽的基线量起)有关的常数, ωb是峰宽,表示由色谱峰顶点与色谱峰两侧拐点处做切线与峰底基线相交两点间的距离。图1所示为正态峰轮廓所测量峰宽处的峰高与7种可能的测定n的方法所对应的常数a值之间的关系。

薄层色谱法和有机化合物元素的定性分析

实验四 薄层色谱法和有机化合物元素的定性分析 (一)薄层色谱法 课时数:3学时 教学目标: 本项目是有机化学实验基本操作技能之一,通过本项目学习使学生了解薄层色谱法的原理,掌握层析板的制备技术,学习色谱分离鉴定方法,学会应用层析法来分离和鉴别有机化合物,鉴定有机化合物的纯度,为以后合成实验打下基础。 教学内容: 一、实验目的: 1、 解薄层色谱法的原理和方法,掌握层析板的制备技术; 2、 学会应用层析法来分离和鉴别有机化合物,鉴定有机化合物的纯度。 二、实验原理: 1、色谱法定义:是一种物理的分离方法,其原理是利用混合物中各组分的物理化学性质的 差别,使各成分在某一条件下流过吸附剂时,由于其物理性质的不同而得到分离。目前常用的色谱法有:薄层色谱法、柱色谱法、纸色谱法、气相色谱法、高效液相色谱法。 ⑴薄层色谱(TLC )属于固-液吸附色谱,固定相是吸附剂,流动相是展开剂。它是利用各种化合物的吸附能力不同,在薄层板上随展开剂上移时的解吸程度不同,从而达到分离的目的。 ⑵柱色谱是利用层析柱将混合物各组分分离开的操作过程。 ⑶纸色谱是以滤纸为载体,让样品溶液在纸上展开达到分离的目的。 ⑷气相色谱是以气体作为流动相的色谱法。 ⑸高效液相色谱是选用颗粒很细的高效固定相,采用高压泵输送流动相,分离、分析过程通过仪器完成。 2、比移值R f :是表示色谱图上斑点位置的一个数值,良好的分离R f 应在0.15-0.75之间。 R f = 影响R f 的因素: ⑴ 吸附剂的吸附能力:与其极性、粒度、活性有关。吸附能力越强,比移值越小。 ⑵ 展开剂的极性:展开剂极性越强,解吸能力越强,则比移值越大。 ⑶ 样品的极性、能否与吸附剂形成氢键:样品极性越强,与吸附剂表面基团形成氢键, 则吸附越强,比移值越小。 ⑷ 温度、薄板的厚度 在上述因素固定的情况下。比移值对每一种化合物来说是一个特定的数值。 三、实验流程图: 制作薄板 划底线 点样 展开 划前沿线 显色:紫外光,I 2 当样品本身无色时需显色 化合物样点移动的距离 展开剂前沿移动的距离 3ml 1%CMC +8ml H 2O +5g GF 254 ,晾干,105-110℃活化0.5h 距薄板底端约1cm 处,铅笔 直径1-2mm ,间距约1cm 液面不超过0.5cm ,先饱和数分钟 当展开剂上升到距薄板顶端约1cm

高效液相色谱柱

高效液相色谱柱 怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团(NH2,APS)和氰基团(CN,CPS)的键合相填料。由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料 聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC,氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用,新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行中。 怎样选择填料粒度 目前,商品化的色谱料粒度从1um到超过30um均有销售,而目前分析分离主要用3um、5um

薄层色谱的展开剂和显色剂

薄层色谱展开剂与显色剂 展开剂的选择: 一般常用溶剂按照极性从小到大的顺序排列大概为:石油迷<己烷<苯<乙醚<乙酸乙酯<丙酮<乙醇<甲醇使用单一溶剂,往往不能达到很好的分离效果,往往使用混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂,高极性的溶剂还有增加区分度的作用,常用的溶剂组合有:< p> Petroleumether/Ethylacetate,petroleumether/Acetone,Petroleumether/Eth er, Petroleumether/CH2Cl2, ethylacetate/MeOH,CHCl3/ethylacetate 展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。展开剂的选择条件:①对的所需成分有良好的溶解性;②可使成分间分开;③待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间;④不与待测组分或吸附剂发生化学反应;⑤沸点适中,黏度较小;⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。 一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入甲醇、乙醇,乙酸乙酯来调节溶剂系统的极性,以达到好的分离效果,适合于生物碱、黄酮、萜类等的分离;中等极性的溶剂体系由氯仿和水基本两相组成,由甲醇、乙醇,乙酸乙酯等来调节,适合于蒽醌、香豆素,以及一些极性较大的木脂素和萜类的分离;强极性溶剂,由正丁醇和水组成,也靠甲醇、乙醇,乙酸乙酯等来调节,适合于极性很大的生物碱类化合物的分离。很多时候,展开剂的选择要靠自己不断变换展开剂的组成来达到最佳效果。

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关;

1高效液相色谱仪系统

高效液相色谱仪使用中常见故障及解决方法 1 高效液相色谱仪系统 液相色谱仪主要由贮液瓶、泵、进样器、柱子、柱温箱、检测器、数据处理系统组成。对于整个系统而言,柱子、泵和检测器是核心部件同时也是易出问题的主要部位。 2 常见问题及解决方法 高效液相作为一种高精密仪器,如果在使用过程中不按照正确操作的话,就容易导致一些问题。其中最常见的就是柱压问题、漂移问题、峰型异常问题。 2.1 柱压问题柱压问题是使用高效液相色谱过程中需要密切注意的地方,柱压的稳定与色谱图峰形的好坏、柱效、分离效果及保留时间等密切相关。所谓柱压稳定并不是指压力值稳定于一个恒定值而是指压力波动范围在50PSI( 3.3 Bar)之间(在使用梯度洗脱时,柱压平稳缓慢的变化是允许的)。压力过高、过低都属于柱压问题。 2.1.1 压力过高这是高效液相在使用中最常见的问题,指的是压力突然升高,一般都是由于流路中有堵塞的原因。此时,我们应该分段进行检查。 (1).首先断开真空泵的入口处,此时PEEK管里充满液体,使PEEK管低于溶剂瓶,看液体是否自由滴下,如果液体不滴或缓慢滴下,则是溶剂过滤头堵塞。处理方法:用30%的硝酸浸泡半个小时,在用超纯水冲洗干净。如果液体自由滴下,溶剂过滤头正常,在检查;(2).打开Purge阀,使流动相不经过柱子,如果压力没有明显下降,则是过滤白头堵塞。处理方法:将过滤白头取出,用10%的异丙醇超声半个小时。如果压力降至100PSI (6.7 Bar)以下,过滤白头正常,在检查; (3).把色谱柱出口端取下,如果压力不下降,则是柱子堵塞。处理方法:如果是缓冲盐堵塞,则用95%的水冲至压力正常。如果是一些强保留的物质导致堵塞,则要用比现在流动相更强的流动相冲至压力正常。假如按上面的方法长时间冲洗压力都不下降,则可考虑将柱子的进出口反过来接在仪器上,用流动相冲洗柱子。这时,如果柱压仍不下降,只有换柱子入口筛板,但一旦操作不甚,很容易造成柱效下降,所以尽量少用。 2.1.1 压力过低压力过低的现象一般是由于系统泄漏,处理方法:寻找各个接口处,特别是色谱柱两端的接口,把泄漏的地方旋紧即可。当然还有一个原因就是泵里进了空气,但此时表现的往往是压力不稳,忽高忽低,更严重一点会导致泵无法吸上液体。处理方法:打开Purge阀,用3~5ml/min的流速冲洗,如果不行,则要用专用针筒在排空阀处借住外力将气泡吸出。 2.2.漂移问题主要包括基线漂移和保留时间漂移。 2.2.1基线漂移一般说来,机器刚起动时,基线容易漂移,大概要半个小时的平衡时间,如果你用了缓冲溶液或缓冲盐,还有就是在低波长下(220nm)平衡时间相对会比较长,但如果你在实验过程中发现基线漂移,则你要考虑下面的原因: 1、柱温波动。解决方法:控制好柱子和流动相的温度,检查是否有打开的窗户或空调对着柱温箱。 2、流通池被污染或有气体。解决方法:用甲醇或其他强极性溶剂冲洗流通池(最好断开柱子)。如有需要,可以用1N的硝酸(不要用盐酸)。 3、紫外灯能量不足。解决方法:更换新的紫外灯 4、流动相污染、变质或由低品质溶剂配成。解决方法:检查流动相的组成,使用高品质的化学试剂及HPLC级的溶剂。 5、样品中有强保留的物质(高K’值)以馒头峰样被洗脱出,从而表现出一个逐步升高的基线。解决方法:使用保护柱,如有必要,在进样之间。在分析过程中,定期用强溶剂冲洗柱子。 6、检测器没有设定在最大吸收波长处。解决方法:将波长调整至最大吸收波长处

高效液相色谱柱柱效测定及分离条件考察

高效液相色谱柱柱效测定及分离条件考察 一、实验目的 1.了解高效液相色谱仪的基本结构和工作原理 2.学习高效液相色谱仪的使用 3.学习、掌握液相色谱柱柱效测定方法 4.考察流动相配比对分离情况的影响 二、基本原理 高效液相色谱法是以液体作为流动相的一种色谱分析法,它亦是根据不同组分在流动相和固定相之间的分配系数的差异来对混合物进行分离的。气相色谱中评价色谱柱柱效的方法及计算理论塔板数的公式同样适合于高效液相色谱,即: 2 22/11654.5??? ??=???? ??=Y t Y t n R R 式中:t R 为组分的保留时间 Y 1/2为色谱峰的半峰宽度 Y 为色谱峰的峰底宽度 影响高效液相色谱分离的因素很多,其中,流动相的种类及配比是最重要的参数。 三、仪器和试剂 1.仪器:Agilent 1200 高效液相色谱仪(紫外检测器) 2.50μL 微量进样器 3.试剂:苯、萘、联苯、甲醇均为分析纯;纯水为重蒸的去离子水。 配制成含苯、萘、联苯各30μL/ml 的甲醇溶液。 四、实验条件 1.色谱柱 长15cm ,内径 4.6mm ,装填5μm 的C-18烷基键合固定相 2.流动相 组成1:甲醇:水(95:5);组成2:甲醇:水(85:15);流量均为0.8ml/min 3.紫外光度检测器 波长254nm 4.进样量 5μL 五、实验步骤 1.设定流动相为“组成1”的比例,按照标准操作步骤将仪器调节至进样状态,待仪器流路及电路系统达到平衡,且色谱基线达到平直时,开始进样。 2.吸取5μL 苯、萘、联苯的甲醇溶液进样,在此条件下用色谱工作站记录色谱数据。 3.改变流动相比例至“组成2”,待平衡后重复步骤2操作。 4.用色谱工作站之“数据处理”系统处理数据文件并记录所需数据。 六、数据记录及处理 1.记录实验条件。 (1)色谱柱与固定相 (2)流动相及其流量、柱前压 (3)检测器波长 (4)进样量 2.分别记录三个组分色谱峰的保留时间t R 和相应色谱峰的半峰宽Y 1/2。 3.分别计算苯、萘、联苯在两种流动相组成条件下的理论塔板数n ,并比较流动相组成改变前后色谱分离的差异。 七、思考题 1.由本实验计算出的各组分理论塔板数说明什么问题? 2.紫外光度检测器是否适用于检测所有有机化合物,为什么? 3. 试分析流动相条件改变后保留时间及分离度的差异,并阐明原因。

高效液相色谱仪的结构

四、高效液相色谱仪的结构 高效液相色谱仪由高压输液系统、进样系统、分离系统、检测系统、记录系统等五大部分组成(图3-1-2)。分析前,选择适当的色谱柱和流动相,开泵,冲洗柱子,待柱子达到平衡而且基线平直后,用微量注射器把样品注入进样口,流动相把试样带入色谱柱进行分离,分离后的组分依次流入检测器的流通池,最后和洗脱液一起排入流出物收集器。当有样品组分流过流通池时,检测器把组分浓度转变成电信号,经过放大,用记录器记录下来就得到色谱图。色谱图是定性、定量和评价柱效高低的依据。 图3-1-2 高效液相色谱仪的结构示意图 1.高压输液系统 高压输液系统由溶剂贮存器、高压泵、梯度洗脱装置和压力表等组成。 (1) 溶剂贮存器。溶剂贮存器一般由玻璃、不锈钢或氟塑料制成,容量为1~2L,用来贮存足够数量、符合要求的流动相。 (2) 高压输液泵。高压输液泵(图3-1-3)是高效液相色谱仪中关键部件之一,其功能是将溶剂贮存器中的流动相以高压形式连续不断地送入液路系统,使样品在色谱柱中完成分离过程。 由于液相色谱仪所用色谱柱径较细,所填固定相粒度很小,因此,对流动相的阻力较大,为了使流动相能较快地流过色谱柱,就需要高压泵注入流动相。对泵的要求:输出压力高、流量范围大、流量恒定、无脉动,流量精度和重复性为0.5%左右。此外,还应耐腐蚀,密封性好。高压输液泵,按其性质可分为恒压泵和恒流泵两大类。恒流泵是能给出恒定流量的泵,其流量与流动相粘度和柱渗透无关。恒压泵是保持输出压力恒定,而流量随外界阻力变化而变化,如果系统阻力不发生变化,恒压泵就能提供恒定的流量。

图3-1-3 恒流柱塞泵 (3) 梯度洗脱装置。梯度洗脱就是在分离过程中使两种或两种以上不同极性的溶剂按一定程序连续改变它们之间的比例,从而使流动相的强度、极性、pH值或离子强度相应地变化,达到提高分离效果,缩短分析时间的目的。梯度洗脱装置分为两类: 一类是外梯度装置(又称低压梯度),流动相在常温常压下混合,用高压泵压至柱系统,仅需一台泵即可。 另一类是内梯度装置(又称高压梯度),将两种溶剂分别用泵增压后,按电器部件设置的程序,注入梯度混合室混合,再输至柱系统。 梯度洗脱的实质是通过不断地变化流动相的强度,来调整混合样品中各组分的k值,使所有谱带都以最佳平均k值通过色谱柱。它在液相色谱中所起的作用相当于气相色谱中的程序升温,所不同的是,在梯度洗脱中溶质k值的变化是通过溶质的极性、pH值和离子强度来实现的,而不是借改变温度(温度程序)来达到。 2.进样系统 进样系统包括进样口、注射器和进样阀等,它的作用是把分析试样有效地送入色谱柱上进行分离。六通进样阀是最理想的进样器,其结构如图3-1-4。 图3-1-4 六通进样阀装置 3.分离系统 分离系统包括色谱柱、恒温器和连接管等部件。色谱柱一般用内部抛光的不锈钢制成,如图3-1-5。其内径为2 ~ 6mm,柱长为10 ~50cm,柱形多为直形,内部充满微粒固定相,柱温一般为室温或接近室温。 图3-1-5 常见色谱柱外形

常见液相色谱柱性能比较

常见液相色谱柱性能比较 一、高性能色谱柱特点:柱效高,价格高,通用性好,使用寿命长,pH范围宽 1、Waters公司Xbridge 2005年waters公司推出,杂化颗粒柱。 优点:pH 1-12,在高pH状态下,没有能与此色谱柱匹敌的,目前市场的宽pH色谱柱在高pH的状态下(9-12)普遍寿命很短,如Gemini,资生堂公司Capcell,YMCPro-C18,包括waters 的第一代杂化柱Xterra都是寿命不长,Zorbax Extend更是不堪。柱效与一流的硅胶柱相当,甚至有过之无不及,杂化颗粒柱和聚合物色谱柱的问题在于柱效,Xterra和常见的PSDVB的色谱柱都有不错的pH范围,但是柱效低的问题无法解决,这是聚合物填料一般比较软且不耐压的原因造成。在如此宽的pH范围,最大的好处是可以在化合物的保留平台区去开发方法 (pH1-3,pH9-12),这样能得到更稳定更容易重现的方法,对酸性,中性,尤其是碱性化合物都能得到理想的峰形。 注:Waters UPLC色谱柱与Xbridge采用同类型填料,只是颗粒度是1.7um,所以不再重复。缺点:价格高,平均每支¥7000多的,不是大多数中国客户可以接受的。 2、MerckChromolith整体化色谱柱 Merck公司2001年推出。 优点:高流速、低压力,可以快速分析样品,因为压力低,所以可以串联色谱柱以获得更高的柱效而不用担心色谱柱耐压问题,低压力是因为硅胶棒的大量中孔的存在,中孔的存在也让这支色谱柱不怕堵,在处理比较脏的样品的时候会优势很大(如中药),实际的寿命也因此延长。这个色谱柱最大的特点是柱效高出峰时间快,特别适合之前分析时间超长的实验条件,目前很好的例子就是人参的指纹图谱,因为成分复杂,之前出峰要2个小时,现在用整体化色谱柱30min 就可以分析完了(已有报导),且不影响柱效,类似于UPLC,但不像UPLC那么容易堵。 缺点:规格单一,单价比较高,单价¥7000左右,所以通过串联获得更高柱效的方式显得比较奢侈。 3、Phenomenex公司Gemini ,采用硅胶球聚合物包被技术。pH范围1-12。 优点:因为聚合物涂层抑制了碱性溶液水解硅胶,所以可以承受一定的碱性条件,由于是硅胶球颗粒,所以柱效不错,比Xterra或者PSDVB这类色谱柱柱效好。单价比较低,¥3000以内。 缺点:聚合物涂层稳定性比较差,所以当涂层损失时,色谱柱会很坏被碱性溶液溶解,这也是其寿命远不及Xbridge的原因。另外涂层损失也会影响结果重现性。 4、资生堂Capcell ,采用硅胶球聚合物包被技术。pH范围1-10。 类似于Gemini同样的技术,只是参数指标比phenomenex低调。 单价偏高,¥5000以内。 5、Agilent ZorbaxExtend,采用双配位键和相技术。pH2-10 优点:不详 缺点:在使用高pH时,基本上都会介绍Extend,但是实测数据说明该款色谱柱的耐高pH 能力较差。 二、高纯硅胶柱特点:柱效高,峰形好,适用广泛,价格合适,为各色谱柱公司目前主流色谱柱 1、Merck的Purosphere STAR ,为Merck公司1999年推出,pH 1.5-10.5,通用性好,柱效高;缺点:市场推广较差,知名度比较低, 2、Phenomenex的Luna ,Phenomenex公司的主打色谱柱,pH1.5-10,通用性好,在进口色谱柱市场上占有一定份额;缺点:装填相对松散,柱头填料容易塌陷

0512高效液相色谱法

0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基硅烷键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2~8之间。烷基硅烷带有立体侧链保护、或残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

(完整版)色谱柱的使用及维护

前言 液相色谱的分离原理是,在色谱柱流动相中样品的不同组分与固定相发生吸附、分配、离子吸引、排阻、亲和等作用,由于作用力的大小、强弱不同,各种组分在固定相中滞留的时间也不同,因而先后从以 固定相中流出而得到分离。因此液相色谱分离的关键之一是色谱柱中的固定相。柱效的好坏直接影响目标化合物的分析和检测。但在液相色谱运行过程中,色谱柱极易发生问题,因此掌握正确使用和维护 色谱柱的知识非常必要。色谱柱使用过程中容易发生柱堵塞引起系统压力过高;柱效低引起峰拖尾、变宽;柱污染、损坏导致鬼峰等问题。引起这些问题的内在原因有: (1) 硅羟基的死吸附。色谱柱的基材硅胶粒子表面存在硅胶羟基。任何物质在色谱柱中都存在双分配效应,即在流动相与固定相之间进行分配,又在流动相与硅羟基之间进行分配。被分析物质被硅羟基吸附称为非特异性吸附,或称死吸附。当硅羟基对被分析物质的吸附趋近于饱和状态时,色谱柱柱效下降,峰形出现拖尾、变宽。 (2) 重金属。色谱柱的基材硅胶粒子无论纯度多高,无论怎样处理,都会有不少于5 ×10- 6 的重金属以金属氧化物的形式残存在硅胶粒子的表面,这些金属氧化物很容易与其它化合物形成螯合物,使其被氧化,产生不对称峰或拖尾峰。例如儿茶素和大多数中药,因含有多酚结构,极易被金属氧化物氧化,影响其分离效果。 (3) 碳流失。固定相经长期使用,会有部分碳链被流动相洗脱下来,随流动相一起流出色谱柱外, 造成碳流失。 (4) 缓冲液中盐的析出。在做色谱分析时,有时流动相中会含有缓冲盐溶液。分析结束后,如果没有先用含一定配比的水相流动相冲洗,而直接用纯有机相冲洗,瞬间柱子中的微环境是高有机相、低水相。这时流动相中的缓冲盐溶液极易析出盐,将柱子堵塞,使柱压升高,柱效下降。 (5) 色谱柱变干。如果对色谱柱保存不当,使色谱柱中的保存液全部挥发,柱子内部变干,造成色谱柱的损伤,影响分离效果。 2 色谱柱的使用 新柱使用前应先检查产品包装、外观是否完好。认真阅读说明书及性能测试报告,了解新柱子的最佳性能指标,如某色谱条件下的柱压、柱效等。有时分析用的流动相与柱子的保存试剂不同,故在分析样品之前,应使用合适的试剂将柱子中的保存试剂清洗出来。要注意清洗用的流动相与保存溶剂的相溶性。反相C18 柱通过出厂测试后多保存在乙腈中,可用10~20 倍柱体积的甲醇或乙腈来平衡色谱柱。流速要缓慢提高,如开始0. 3~0. 5mL/ min , 10~15min 后可慢慢加快。 硅胶柱和极性色谱柱通过出厂测试后一般保存在正庚烷中。如果分析时需要使用含水的流动相,则使用前须用乙醇或异丙醇冲洗,流速0. 1~0. 3mL/ min ,将正庚烷冲洗干净后,再用流动相平衡。 实验过程中可以记录色谱柱的一些性能指标,如柱效、柱压等,供今后参考。每次分析样品前,要用流动相对色谱柱进行平衡,待基线平稳后再进样分析。梯度洗脱用初始流动相平衡。一次样品分离完成后,要有足够的时间使系统恢复平衡,再进行下一次分析。一般流动相平衡时间为30min ,若系统中有盐或水,平衡时间应延长。 3 色谱柱的清洗与保存 色谱柱清洗是日常的重要维护工作。如果样品分子残留在柱子、接头、流通池中,会污染系统,影响对其它样品的分析,降低柱效。因此分析工作结束后,要用适当的溶剂清洗系统中残留的样品。在反相系统中, 若流动相中无酸、碱、盐类物质, 可用90 %甲醇冲洗30~60min ,若含酸、碱、盐类物质,则要先用10 %甲醇或乙腈,或用与分析用流动相相同的

相关文档