文档视界 最新最全的文档下载
当前位置:文档视界 › 化工原理习题

化工原理习题

化工原理习题
化工原理习题

例1-1 静力学方程应用

如图所示,三个容器A 、B 、C 内均装有水,容器C 敞口。密闭容器A 、B 间的液面高度差为z 1=1m ,容器B 、C 间的液面高度差为z 2=2m ,两U 形管下部液体均为水银,其密度ρ0=13600kg/m 3,高度差分别为R =0.2m ,H =0.1m ,试求容器A 、B 上方压力表读数p A 、p B 的大小。 解 如图所示,选取面1-1'、2-2',显然面1-1'、

2-2'均为等压面,即2211p p p p '='=,。

再根据静力学原理,得:

()gH p H z g p a B 02ρρ+=++ 于是 ()

()1.0281.910001.081.91360020+?-??=+-=-H z g gH p p a B ρρ

=–7259Pa

由此可知,容器B 上方真空表读数为7259Pa 。 同理,根据p 1=p 1'及静力学原理,得:

gR gz p gR p B A 01)()(ρρρ++=+表表

所以

gR R z g p p B A 01)(()()ρρ+-+=表表

()2.081.9136002.0181.910007259??+-?+-= =2.727?104Pa

例1-2 当被测压差较小时,为使压差计读数较大,以减小测量中人为因素造成的相对误差,也常采用倾斜式压差计,其结构如图所示。试求若被测流体压力p 1=1.014?105Pa (绝压),

p 2端通大气,大气压为 1.013?105

Pa ,管的倾斜角α=10?,指示液为酒精溶液,其密度ρ0=810kg/m 3,则读数R '为多少cm ?

若将右管垂直放置,读数又为多少cm ? 解 (1)由静力学原理可知:

αρρs i n 0021R g gR p p '==- 将p 1=1.014?105Pa , p 2=1.013?105Pa ,

ρ0=810kg/m 3,α=10?代入得: 05

502110sin 81.981010013.110014.1sin ???-?=

-='αρg p p R =0.

073m=7.3cm

(2)若管垂直放置,则读数 05

502190sin 81.981010013.110014.1sin ???-?=

-='αρg p p R =0.013m=1.3cm

可见,倾斜角为10?时,读数放大了7.3/1.3=5.6倍。

例1-3 一车间要求将20?C 水以32kg/s 的流量送入某设备中,若选取平均流速为1.1m/s ,试计算所需管子的尺寸。 若在原水管上再接出一根φ159?4.5的支管,如图所示,以便将水流量的一半改送至另

一车间,求当总水流量不变时,此支管内水流速度。

解 质量流量 2d u uA m πρρ?==

例1-1附图

p 2

例1-2图 倾斜式压差计

例1-3附图

式中u =1.1m/s ,m =32kg/s ,查得20?C 水的密度ρ=998kg/m 3, 代入上式,得:

=

???=

14.31.199832

4d 0.193m=193mm

对照附录,可选取φ219?6mm 的无缝钢管,其中219mm 代表管外径,6mm 代表管壁厚度。于是管内实际平均流速为:

95.0106221999832446

22=??-??==-ππρd m u m/s

若在原水管上再接出一根φ159?4.5的支管,使支管内质量流量m 1=m /2,则:

22211ud d u = 将d 1=159-2?4.5=150mm=0.15m ,d =219-2?6=207mm=0.207m ,u =0.95m/s 代入得:

9.015.0207.095.021212

2

11=???

????=???? ??=d d u u m/s

例1-4 20℃水以0.1m/s 的平均速度流过内径d =0.01m 的圆管,试求1m 长的管子壁上所受到的流体摩擦力大小。 解 首先确定流型。 查附录得20℃水的物性为:ρ=998.2kg/m 3,μ=1.005cP=1.005×10-3Pa ?s ,于是

20002.99310005.12.9981.001.0Re 3

<=???==-μρdu

可见属层流流动。由式1-88得: 0804

.001.01.010005.18843-=???-=-=-=-d u R u w μμτN/m 2

1m 长管子所受的总的摩擦力

0025.0101.00804.0=???=-=ππτdL F w N

例1-5

关于能头转化

如附图1所示,一高位槽中液面高度为H ,高位槽下接一管路。在管路上2、3、4处

各接两个垂直细管,一个是直的,用来测静压;一个有弯头,用来测动压头与静压头之和,因为流体流到弯头前时,速度变为零,动能全部转化为静压能,使得静压头增大为(p/ρg +u 2/2g )。假设流体是理想的,高位槽液面高度一直保持不变,2点处直的细管内液柱高度如图所示;2、3处为等径管。试定性画出其余各细管内的液柱高度。 解 如图1-25所示,选取控制面1-1面、2-2面、3-3面和4-4面。对1-1面和2-2面间的控制体而言,根据理想流体的柏努利方程得:

g p g u z g p g u H ρρ2

2

2212122++=++

例1-5附图1

式中u 1=0,p 1=0(表压),z 2=0(取为基准面),于是,上式变为:

g p g u H ρ2

222+= (1) 这就是2点处有弯头的细管中的液柱高度,见附图2,其中比左边垂直管高出的部分代表动压头大小。

同理,对1-1面和3-3面间的控制体有:

g p

g u z H ρ3

2

332++= (2) 可见,3点处有弯头的细管中的液柱高度也与槽中液面等高,又因为2、3处等径,故u 2= u 3,而z 3>z 2=0,故由式1、式2对比可知,p 3/ρg < p 2/ρg ,静压头高度见图1-26。 在1-1面和4-4面间列柏努利方程有:

g p

g u z H ρ4

2

442++= (3) 可见,4点处有弯头的细管中的液柱高度也与槽中液面等高。又z 3= z 4,u 4> u 3,对比式

3、式2可见: g p g p ρρ3

4

<

例1-6 轴功的计算 如图所示,用泵将河水打入洗涤塔中经喷嘴喷出,喷淋下来后流入废水池。已知管道尺寸为φ114?4mm ,流量为85m 3/h ,水在管路中流动时的总摩擦损失为10J/kg (不包括出口阻力损失),喷头处压力较塔内压力高20kPa ,水从塔中流入下水道的摩擦损失可忽略不计。求泵的有效轴功率。 解 取河面为1-1面,喷嘴上方管截面为2-2面,洗涤塔底部水面为3-3面,废水池水面为4-4截面。 河水经整个输送系统流至废水池的过程中并不是都连续的,在2-2面和3-3面之间是间断的,因此,机械能衡算方程只能在1-2、3-4之间成立。 在1-1面和2-2面间列机械能衡算方程:

f

e w p

u gz w p u gz +++=+++ρρ22

22121122

例1-6附图

2

例1-5附图2

取河面为基准面,则z 1=0,z 2=7m ,又u 1≈0(河面较管道截面大得多,可近似认为其流

速为零),422d V

u π=()68.2410421143600856

2=??-=-πm/s ,p 1=0(表),w f =10J/kg 。将以上各

值代入上式,得:

ρρ)

(26.8210)(268.281.972

22表表p p w e +=+++?= 式中p 2由3-3面与4-4面间的机械能衡算求取。因流体在3、4面间的流动损失不计,

故有:

ρρ)(2)(24

2

443233表表p u gz p u gz ++=++ 取4-4面为基准面,则z 3=1.2m ,z 4=0,又u 3≈u 4≈ 0,p 4(表)=0代入上式解之得:

77.1181.92.133

-=?-=-=g z p ρ(表)J/kg

而 23

.81000102077.111020)

()

(3

3

32=?+-=?+

=

ρ

ρ

ρ

表表p p J/kg

于是

49.9023.826.82=+=e w J/kg 故泵的有效轴功率为:360049.90851000??==e e Vw mw ρ=2137W ≈2.14kW

例1-7 如图所示,将敞口高位槽中密度870kg/m 3、粘度0.8?10-3Pa ?s 的溶液送入某一设备B 中。设B 中压力为10kPa (表压),输送管道为φ38?2.5无缝钢管,其直管段部分总长为10m ,管路上有一个90?标准弯头、一个球心阀(全开)。为使溶液能以4m 3/h 的流量流入设备中,问高位槽应高出设备多少米即z 为多少米? 解 选取高位槽液面为1-1面、管出口内侧截面为2-2面,并取2-2面为位能基准面。在1-1面与2-2面间列机械能衡算式:

f

w p u p gz +++=++ρρ)

(20)

(02221表表

式中:4

21100.1)(0)(?==表,表p p Pa ,ρ=870kg/m 3,

30.14033.03600442

22=?==ππd V

u m/s

4

3

10665.4108.0870

30.1033.0Re ?=???=

=

ρ

du ,可

见属湍流流动,查表1-1并取管壁绝对粗糙度

ε=0.3mm ,则ε/d =0.00909,查图1-30得λ=0.038(或按式1-117计算得)。 查表1-2得有关的各管件局部阻力系数分

别为:

突然缩小 :ζ1=0.5; 90?标准弯头 :ζ2=0.75;

球心阀(全开):ζ3=6.4。

于是

65.74.675.05.0=++=∑ζ

例1-7附图

kg

J 19.16230

.165.7033.010038.02

2

2

2

=???? ??+?=?

?? ??∑+=u d l w f ζλ

将以上各数据代入机械能衡算式中,得:

91

.281.919

.1681.9230.181.9870100.12)(242

22=+?+??=++=g w g u g p z f ρ表m

本题也可将2-2面取在管出口外侧,此时,u 2=0,而w f 中则要多一项突然扩大局部损失项,其值恰好为u 22/2,故管出口截面的两种取法,其计算结果完全相同。

例1-8 设计型问题 已知一自来水总管内水压为2?105Pa (表压),现需从该处引出一支管将自来水以3m 3/h 的流量送至1000m 远的用户(常压),管路上有90?标准弯头10个,球心阀(半开)2个,试计算该支管的直径。已知水温20?C ,由于输送距离较长,位差可忽略不计。 解 从支管引出处至用户之间列机械能衡算方程,得:

22

2

1u

d l w p p f ??? ??∑+==-ζλρ (1)

式中 ,p 1=2?105Pa ,p 2=0,ρ=1000kg/m 3,μ=1.005?10-3

Pa ?s ,l =1000m ,查表1-2得,90?标准弯头10个:ζ1=0.75?10=7.5;球心阀(半开)2个:ζ2=9.5?2=19 所以 ∑ζ=ζ1+ζ2=26.5

2

32210062.14360034d d d V

u -?===ππ

代入式(1)得: 5410547.310265.0?=??? ??+d d λ

(2) 因λ与d 有复杂的函数关系,故由式(2)求d 需用试差法。λ变化较小,试差时可选用λ作为试差变量。试差过程如下:

首先假设流动处在完全湍流区,取ε=0.3mm ,则:0077

.003876.0103.03=?=-d ε

查图1-30,得λ=0.035,由式(2)得:04.0=d m

4

3310

64.210056.110005.136003100044Re ?=?=????===-d d d V du ππμρμρ

属湍流。再由ε/d =0.0077及Re 查图1-30或由式1-117计算得:037.0=λ

与λ初值相差不大,试差结束。最后结果为:40=d mm 。根据管子标准规格(见附录)圆整,可选用φ48?3.5mm 的镀锌水管。此时管内流速为:

63.0041.036003442

2=??==ππd V

u m/s

可见,u 处在经济流速范围内。

例1-9 操作型问题分析

如图所示,通过一高位槽将液体沿等径管输送

至某一车间,高位槽内液面保持恒定。现将阀门开度减小,试定性分析以下各流动参数:管内流量、阀门前后压力表读数p A 、p B 如何变化?

解 (1) 管内流量变化分析

2

2

例1-9附图

取管出口截面2-2面为位能基准面,在高位槽液面1-1面和2-2面间列机械能衡算方程:

f

w u p p gz ++=+22

2

2

11ρρ

22

2

u d l w f ??? ??∑+=ζλ 于是

212

2

2

11

u d l p p g z ??? ??+∑+=-+ζλρ 将阀门开度减小后,上式等号左边各项均不变,而右边括号内各项除∑ζ增大外其余量均不变(λ一般变化很小,可近似认为是常数),故由此可推断,u 2必减小,即管内流量减小。 (2) 阀门前后压力表读数p A 、p B 变化分析 取压力表p A 所在管截面为A-A 面,由1-1面、A-A 面间的机械能衡算可得:

212

11

1A

A A u d l p gz p -??? ??+∑+-+=ζλρρ 当阀门关小时,上式等号右边各项除u A 减小外,其余量均不变,故p A 必增大。 p

B 的变化可由B-B 面、2-2面间的机械能衡算分析得到:

212

2

22

u d l p p B B

-??? ??+∑++=ζλρρ

当阀门关小时,上式等号右边各项除u 2减小外,其余量均不变,故p B 必减小。 讨论:由本题可引出如下结论:简单管路中局部阻力系数的变大,如阀门关小,将导致管内流量减小,阀门上游压力上升,下游压力下降。这个规律具有普遍性。

例1-10 操作型问题计算

用水塔给水槽供水,如图所示,水塔和水槽

均为敞口。已知水塔水面高出管出口12m ,输水管为φ114?4mm ,管路总长100m (包括所有局部损失的当量长度在内),管的绝对粗糙度

ε=0.3mm ,水温20?C 。试求管路的输水量V 。

解 因管出口局部摩擦损失已计入总损失

中,故管出口截面取外侧,为面2-2,此时u 2=0。在水塔水面1-1面与2-2面间列机械能衡算方程,

得: 22

1u d l l gz e ∑+=λ

将z 1=12m ,l +∑l e =100m ,d =114-2?4=106mm=0.106m 代入并化简得:

例1-10附图

25.02

=u λ 由此式求u 需试差。

假设流动进入阻力平方区,由ε/d =0.3/106=0.0028查图得λ=0.026,代入上式得:

1.3=u m/s

从附录查得20?C 水ρ=1000kg/m 3,μ=1?10-3Pa ?s ,于是

5

3

1029.310110001.3106.0Re ?=???==-μρdu

由Re 数和ε/d =0.0028重新查图得:λ=0.026,与假设值相同,试差结束。

流量

0273

.01.3106.04

4

22=??=

=

π

π

u d V m 3/s = 98.4m 3/h

例1-11 设计型问题 某一贮罐内贮有40?C 、密度为710kg/m 3的某液体,液面维持恒定。现要求用泵将液体分别送到设备一及设备二中,有关部位的高度和压力见图。送往设备一的最大流量为10800kg/h ,送往设备二的最大流量为6400kg/h 。已知1、2间管段长l 12=8m ,管子尺寸为φ108?4mm ;通向设备一的支管段长l 23=50m ,管子尺寸为φ76?3mm ;通向设备二的支管段长l 24=40m ,管子尺寸为φ76?3mm 。以上管长均包括了局部损失的当量长度在内,且阀门均处在全开状态。流体流动的摩擦因数λ均可取为0.038。求所需泵的有效功率N e 。 解 这是一个分支管路设计型问题。将贮罐内液体以不同流量分别送至不同的两设备,所需的外加功率不一定相等,设计时应按所需功率最大的支路进行计算,为此,先不计动能项(长距离输送时动能项常可忽略不计),并以地面作为位能基准面,则3、4点的机械能为:

4

.433710100.53781.9)

(4

333=?+?=+

表p gz Et J/kg

9

.392710100.73081.9)

(4

444=?+?=+

=ρ表p gz Et J/kg

可见,Et 3>Et 4,又通向设备一的支路比通向设备二的支路长,所以有可能设备一所需的外加功率大。故下面先按支路23进行设计。

在2、3间列机械能衡算方程:

22

23

232333232u d l Et w Et Et f λ

+=+=- 将Et 3=433.4J/kg ,λ=0.038,l 23=50m ,d 23=0.07m ,()2

2

23232307.071036001080044???==ππρd m u 1.1=m/s 代入得:

8

.44921.107.050038.04.4332

2=??+=Et J/kg

再在2、4间列机械能衡算方程:

22

24

242442u d l Et Et λ

+= 将有关数据代入得:29.224=u m/s , 25

.64242

2424==

u d m ρπ

kg/s=22514kg/h >6400kg/h

可见,当通向设备一的支路满足流量要求时,另一支路的流量便比要求的大,这个问题可通过将该支路上的阀门关小来解决。所以,按支路23进行设计的设想是正确的。 下面求所需外加有效功率。在1、2间列机械能衡算方程:

22

12

121222

121

1u d l Et w Et w p gz f e λ

ρ

+=+=++

-

将 z 1=5m ,p 1=5.0?104Pa ,Et 2=449.8J/kg ,λ=0.038,l 12=8m ,d 12=0.1m , 421212d m u πρ=

()()86.041.071036006400108002=??+=

πm/s 代入得:

5.331710100.5581.928

6.01.08038.08.44942=????

???+?-??+=e w J/kg

泵的有效功率 : ()158436005.331640010800=?+==e e mw N W ≈1.58kW

例1-12 操作型问题分析

如图1-41所示为配有并联支路的管路输送系统,假设总管直径均相同,现将支路1上的阀门k 1关小,则下列流动参数将如何变化? (1)总管流量V 及支管1、2、3的流量V 1、V 2、V 3;

(2)压力表读数p A 、p B 。

解 (1)总管及各支管流量分析 取管出口外侧截面为2-2面,沿支路1在1-1面与2-2面间列机械能衡算方程(参

见式1-133):

21121fB B fA A f w w w Et Et +++= (1)

式中

2

1215

22

1182V B V d l l u d l l w A A e A e A

f =??? ??∑+=??? ??∑+=λπλ

2

112115

22

11182V B V d l l u d l l w B A e B A e B fA =??? ??∑+=??? ??∑+=λπλ

2

2225

22

122

82V B V d l l u d l l w B B e B e fB =??? ??∑+=??? ??∑+=λπλ

25

2215211521888B e B B A e A e A d l l B d l l B d l l B ???? ??∑+=???? ??∑+=???? ??∑+=

λπλπλπ,,其中

B 1A 、B 1、B B2分别代表总管段1A 、支路1、总管段B2的阻力特性,由其表达式可见,其值与摩擦因数、管长、局部阻力当量长度及管径大小有关,也就是说,与管路状况有关。

于是,式(1)可改写成:2

22112121V B V B V B Et Et B A +++= (2)

同理,分别沿支路2、3在1-1面与2-2面间列机械能衡算方程得:

222222121V B V B V B Et Et B A +++= (3)

222332121V B V B V B Et Et B A +++=

(4)

式中 ,B 1A 、B B2表达式同上,

B A e B A e d l l B d l l B 35

23252288???? ??∑+=???? ??∑+=λπλπ, 再由并联管路的特点可知: 321V V V V ++= (5)

由式(2)、(3)、(4)分别导出V 1、V 2、V 3的表达式,然后代入式(5),得:

()(

)

321221211

11

B B B V B B Et Et V B A +++--=

2 2

3

例1-12附图

即 (

)

()2

212

3

2121111V B B B B B Et Et B A ?????

?++++=--

(6)

当阀门k 1关小时,1支路的局部阻力系数增大,使B 1增大,而式(6)中Et 1、Et 2、B 2、B 3、B 1A 、B B2均不变(λ变化很小,可视为常数),故由式(6)可判断出总管流量V 减小。

根据V 减小及式(3)、式(4)可推知,支路2、3的流量V 2、V 3均增大,而由式(5)可知V 1减小。

(2)压力表读数p A 、p B 的变化分析

由1-1面与A 之间的机械能衡算Et 1= Et A +w f 1A 可知,当阀门k 1关小时,u 减小,w f 1A

减小,故Et A 增大,而Et A 中位能不变、动能减小,故压力能必增大,即p A 增大。

而由B 与2-2面间的机械能衡算,得:

()22

2

2u

d l p g z z p B B ??? ??++-=λρρ (7)

当阀门k 1关小时,式中z 2、z B 、p 2、λ、l 和d 均不变,而u 减小,故p B 减小。

讨论:本例表明,并联管路上的任一支管局部阻力系数变大,必然导致该支管和总管内流量减小,该支管上游压力增大,下游压力减小,而其它并联支管流量增大。这一规律与简单管路在同样变化条件下所遵循的规律一致(见例1-9)。 注意:以上规律适用于并联支路摩擦损失与总管摩擦损失相当的情形,若总管摩擦损失很小可忽略,则任一支管的局部阻力的变化对其它支管就几乎没有影响。 例1-13 操作型问题计算

高位槽中水经总管流入两支管1、2,然后排入大气,测得当阀门k 、k 1处在全开状态而k 2处在1/4开度状态时,支管1内流量为0.5m 3/h ,求支管2中流量。 若将阀门k 2全开,则支管1中是否有水流出?

已知管内径均为30mm ,支管1比支管2高

10m , MN 段直管长为70m ,N1段直管长为16m ,

N2段直管长为5m ,当管路上所有阀门均处在全开状态时,总管、支管1、2的局部阻力当量长度

分别为∑l e =11m ,∑l e 1=12m ,∑l e 2=10m 。管内摩擦因数λ可取为0.025。 解 (1)支管2中流量

在0-0面与1-1面间列机械能衡算方程: 2221112

10u d l l u d l l gz gz e e ∑++∑++=λλ

将z 0-z 1=20 -10=10m ,λ=0.025,l +∑l e =70+11=81m ,d =0.03m ,l 1+∑l e1 =16+12=28m ,2.0403.036005.042

211=?==ππd V u m/s 代入得: u =1.7m/s

总管流量

0012

.07.103.04

4

22=??=

=

π

π

u d V m 3/s=4.3m 3/h

故 8.35.03.412=-=-=V V V m 3/h (2) 阀门k 2全开时 支管2上的阀门k 2全开后,管路系统总阻力下降,因而总管内流量V 将增大。在0-0截面与N 处应用机械能衡算式不难得知N 处的压力下降,所以支管1内流量V 1将减小,甚至有可能导致V 1=0。 假设支管1中无水流出,于是,由0-0与2-2间的机械能衡算可知:

例1-13附图

()()22

220u d l l l l gz e e ∑++∑+=λ

203.010********.02081.92

u ?

+++?=? u =2.21m/s 再由N 处与2-2截面间的机械能衡算可知:

5

.30221.203.0105025.0202

2222

2=?+?=∑++=+=u d l l w Et Et e fN N λJ/kg

1.981081.911=?==gz Et J/kg 可见,Et N < Et 1,支管1中无水流出的假设是正确的。若Et N > Et 1,则支管1中有水流出,原假设错误,此时需按分支管路重新进行计算

【例1-1】 已知硫酸与水的密度分别为1830kg/m 3与998kg/m 3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。 解:根据式1-4

998

4.018306.01+=m ρ

=(3.28+4.01)10-4=7.29×10-4

ρm =1372kg/m 3

【例1-2】 已知干空气的组成为:O 221%、N 278%和Ar1%(均为体积%),试求干空气在压力为9.81×104Pa 及温度为100℃时的密度。 解:首先将摄氏度换算成开尔文

100℃=273+100=373K 再求干空气的平均摩尔质量

M m =32×0.21+28×0.78+39.9×0.01 =28.96kg/m 3

根据式1-3a 气体的平均密度为:

3k g /m

916.0373314.896.281081.9=???=m ρ

【例1-3 】 本题附图所示的开口容器内盛有油和水。油层高度h 1=0.7m 、密度ρ1=800kg/m 3,水层高度h 2=0.6m 、密度ρ2=1000kg/m 3。

(1)判断下列两关系是否成立,即 p A =p'A p B =p'B (2)计算水在玻璃管内的高度h 。

解:(1)判断题给两关系式是否成立 p A =p'A 的关系成立。因A 与A '两点在静止的连通着的同一流体内,并在同一水平面上。所以截面A-A'称为等压面。

p B =p'B 的关系不能成立。因B 及B '两点虽在静止流体

的同一水平面上,但不是连通着的同一种流体,即截面B-B '不是等压面。

(2)计算玻璃管内水的高度h 由上面讨论知,p A =p'A ,而p A =p'A 都可以用流体静力学基本方程式计算,即

p A =p a +ρ1gh 1+ρ2gh 2

p A'=p a+ρ2gh

于是p a+ρ1gh1+ρ2gh2=p a+ρ2gh

简化上式并将已知值代入,得

800×0.7+1000×0.6=1000h

解得h=1.16m

【例1-4】如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U管压差计,压差计读数R=200mm。试求两截面间的压强差。

解:因为倒置U管,所以其指示液应为水。设空气和水的密度分别为ρg与ρ,根据流体静力学基本原理,截面a-a'为等压面,则

p a=p a'

又由流体静力学基本方程式可得

p a=p1-ρgM

p a'=p2-ρg(M-R)-ρg gR

联立上三式,并整理得

p1-p2=(ρ-ρg)gR

由于ρg《ρ,上式可简化为

p1-p2≈ρgR

所以p1-p2≈1000×9.81×0.2=1962Pa

【例1-5】如本题附图所示,蒸汽锅炉上装置一复式U形水银测压计,截面2、4间充满水。已知对某基准面而言各点的标高为z0=2.1m,z2=0.9m,z4=2.0m,z6=0.7m,z7=2.5m。

试求锅炉内水面上的蒸汽压强。

解:按静力学原理,同一种静止流体的连通器

内、同一水平面上的压强相等,故有

p1=p2,p3=p4,p5=p6

对水平面1-2而言,p2=p1,即

p2=p a+ρi g(z0-z1)

对水平面3-4而言,

p3=p4= p2-ρg(z4-z2)

对水平面5-6有

p6=p4+ρi g(z4-z5)

锅炉蒸汽压强p=p6-ρg(z7-z6)

p=p a+ρi g(z0-z1)+ρi g(z4-z5)-ρg(z4-z2)-ρg(z7-z6)

则蒸汽的表压为

p-p a=ρi g(z0-z1+ z4-z5)-ρg(z4-z2+z7-z6)

=13600×9.81×(2.1-0.9+2.0-0.7)-1000×9.81×

(2.0-0.9+2.5-0.7)

=3.05×105Pa=305kPa

【例1-6】某厂要求安装一根输水量为30m3/h的管路,试选择合适的管径。

解:根据式1-20计算管径

d =u V s π4

式中 V s =3600

30m 3/s

参考表1-1选取水的流速u=1.8m/s mm 77m 077.08

.1785.0360030==?=

d 查附录二十二中管子规格,确定选用φ89×4(外径89mm ,壁厚4mm )的管子,其内径为:

d =89-(4×2)=81mm=0.081m 因此,水在输送管内的实际流速为:

()m /s 621081078503600302

...u =?=

【例1-7】 在稳定流动系统中,水连续从粗管流入细管。粗管内径d 1=10cm ,细管内径d 2=5cm ,当流量为4×10-

3m 3/s 时,求粗管内和细管内水的流速?

解:根据式1-20

()m /s 51.01.04

1042

3

11

=??==-πA V u S 根据不可压缩流体的连续性方程 u 1A 1=u 2A 2 由此

倍45102

2

2112=??

? ??=???? ??=d d u u u 2=4u 1=4×0.51=2.04m/s

【例1-8】 将高位槽内料液向塔内加料。高位槽和塔内的压力均为大气压。要求料液在管内以0.5m/s 的速度流动。设料液在管内压头损失为1.2m (不包括出口压头损失),试求高位槽的液面应该比塔入口处高出多少米?

解:取管出口高度的0-0为基准面,高位槽的液面为1-1截面,因要求计算高位槽的液面比塔入口处高出多少米,所以把1-1截面选在此就可以直接算出所求的高度x ,同时在此液面处的u 1及p 1均为已知值。2-2截面选在管出口处。在1-1及2-2截面间列柏努利方程:

f h u p gZ u p gZ ∑ρρ+++=++2

22

2

22211

1

式中p 1=0(表压)高位槽截面与管截面相差很大,故高位槽截面的流速与管内流速相比,其值很小,即u 1≈0

Z 1=x ,p 2=0(表压),u 2=0.5m/s ,Z 2=0,f h ∑/g =1.2m

将上述各项数值代入,则

9.81x =()2

5.02

+1.2×9.81

x =1.2m

计算结果表明,动能项数值很小,流体位能的降低主要用于克服管路阻力。

【例1-9】20℃的空气在直径为80mm 的水平管流过。现于管路中接一文丘里管,如本题附图所示。文丘里管的上游接一水银U 管压差计,在直径为20mm 的喉颈处接一细管,其下部插入水槽中。空气流过文丘里管的能量损失可忽略不计。当U 管压差计读数R =25mm 、h =0.5m 时,试求此时空气的流量为若干m 3/h 。当地大气压强为101.33×103Pa 。 解:文丘里管上游测压口处的压强为

p 1=ρ

Hg gR =13600×9.81×0.025

=3335Pa(表压) 喉颈处的压强为

p 2=-ρgh =-1000×9.81×0.5=-4905Pa (表压) 空气流经截面1-1'与2-2'的压强变化为

()()%20%9.7079.03335

10133049051013303335101330121<==+--+=-p p p 故可按不可压缩流体来处理。 两截面间的空气平均密度为

()300 1.20k g /m 101330

29349053335211013302734.22294.22=????

???-+?

===Tp p T M m m ρρ 在截面1-1'与2-2'之间列柏努利方程式,以管道中心线作基准水平面。两截面间无外功加入,即W e =0;能量损失可忽略,即f h ∑=0。据此,柏努利方程式可写为

ρ

ρ2222121122p

u gZ p u gZ ++=++

式中 Z 1=Z 2=0

所以 2

.14905

22.1333522

221-

=+u u 简化得 13733212

2=-u u (a )

据连续性方程 u 1A 1=u 2A 2

得 2

12

211211202.008.0??? ??=???

? ??==u d d u A A u u u 2=16u 1 (b )

以式(b )代入式(a ),即(16u 1)2-21u =13733 解得 u 1

=7.34m/s

空气的流量为 /h m 8.13234.708.04

36004

360032121=???

=?

=ππu d Vs

【例1-10】水在本题附图所示的虹吸管内作定态流动,管路直径没有变化,水流经管路的能量损失可以忽略不计,试计算管内截面2-2'、3-3'、4-4'和5-5'处的压强。大气压强为1.0133×105Pa 。图中所标注的尺寸均以mm 计。

解:为计算管内各截面的压强,应首先计算管内水的流速。先在贮槽水面1-1'及管子出口内侧截面6-6'间列柏努利方程式,并以截面6-6'为基准水平面。由于管路的能量损失忽略不计,

即f h ∑=0,故柏努利方程式可写为

ρ

ρ22

22121122p u gZ p u gZ ++=++

式中 Z 1=1m Z 6=0 p 1=0(表压) p 6=0(表压) u 1≈0

将上列数值代入上式,并简化得

2

181.92

6

u =?

解得 u 6=4.43m/s

由于管路直径无变化,则管路各截面积相等。根据连续性方程式知V s =Au =常数,故管内各截面的流速不变,即

u 2=u 3=u 4=u 5=u 6=4.43m/s

则 J/kg 81.92

2222262524

2322=====u u u u u

因流动系统的能量损失可忽略不计,故水可视为理想流体,则系统内各截面上流体的总机械能E 相等,即

常数=++=ρ

p u gZ E 22

总机械能可以用系统内任何截面去计算,但根据本题条件,以贮槽水面1-1'处的总机械能计算较为简便。现取截面2-2'为基准水平面,则上式中Z =2m ,p =101330Pa ,u ≈0,所以总机械能为

J/kg 8.1301000

101330381.9=+?=E

计算各截面的压强时,亦应以截面2-2'为基准水平面,则Z 2=0,Z 3=3m ,Z 4=3.5m ,Z 5=3m 。 (1)截面2-2'的压强

()Pa 120990100081.98.130222

2

2=?-=???

? ??--=ρgZ u E p (2)截面3-3'的压强

()Pa 915601000381.981.98.130232

3

3=??--=???

? ??--=ρgZ u E p (3)截面4-4'的压强

()Pa 8666010005.381.981.98.130242

4

4=??--=???

? ??--=ρgZ u E p (4)截面5-5'的压强

()Pa 915601000381.981.98.130252

5

5=??--=???

? ??--=ρgZ u E p 从以上结果可以看出,压强不断变化,这是位能与静压强反复转换的结果。

【例1-11】 用泵将贮槽中密度为1200kg/m 3的溶液送到蒸发器内,贮槽内液面维持恒定,

其上方压强为101.33×103Pa ,蒸发器上部的蒸发室内操作压强为26670Pa (真空度),蒸发器进料口高于贮槽内液面15m ,进料量为20m 3/h ,溶液流经全部管路的能量损失为120J/kg ,求泵的有效功率。管路直径为60mm 。

解:取贮槽液面为1―1截面,管路出口内侧为2―2截面,并以1―1截面为基准水平面,在两截面间列柏努利方程。

f e h p

u gZ W p u gZ ∑+++=+++ρ

ρ22

22121122

式中 Z 1=0 Z 2=15m p 1=0(表压) p 2=-26670Pa (表压) u 1=0

()

m /s 97.106.0785.03600202

2=?=u f h ∑=120J/kg 将上述各项数值代入,则

()J /k g 9.2461200

26670

1202

97.181.9152

=-

++

?=e

W

泵的有效功率N e 为: N e =W e ·w s 式中

k g /s

67.63600120020=?=?=ρs s V w N e =246.9×6.67=1647W =1.65kW

实际上泵所作的功并不是全部有效的,故要考虑泵的效率η,实际上泵所消耗的功率(称轴功率)N 为 η

e N N =

设本题泵的效率为0.65,则泵的轴功率为: kW 54.265

.065.1==N

【例1-12】 试推导下面两种形状截面的当量直径的计算式。

(1) 管道截面为长方形,长和宽分别为a 、b ;

(2) 套管换热器的环形截面,外管内径为d 1,内管外径为d 2。 解:(1)长方形截面的当量直径 ∏A d e 4=

式中 A=ab ∏=2(a+b )

()()

b a ab b a ab d e +=

+=

224

(2)套管换热器的环隙形截面的当量直径

()22

2122214

4

4

d d d d A -=-=πππ ()2121d d d d +=+=πππ∏ 故

()()

212122

21

4

4d d d d d d

d e -=+-?

=ππ

【例1-13】 料液自高位槽流入精馏塔,如附图所示。塔内压强为1.96×104Pa (表压),输送管道为φ36×2mm 无缝钢管,管长8m 。管路中装有90°标准弯头两个,180°回弯头一个,球心阀(全开)一个。为使料液以3m 3/h 的流量流入塔中,问高位槽应安置多高?(即位差Z 应为多少米)。料液在操作温度下的物性:密度ρ=861kg/m 3;粘度μ=0.643×10-

3Pa ·s 。

解:取管出口处的水平面作为基准面。在高位槽液面1-1与管出口截面2-2间列柏努利方程

f h u p gZ u p gZ ∑ρρ+++=++

2

22

222211

1 式中 Z 1=Z Z 2=0 p 1=0(表压) u 1≈0 p 2=1.96×104Pa

()m /s 04.1032.0785.036003

4

2

22===d V u s π 阻力损失

2

2

u d l h f ??? ??+=ζλ∑ 取管壁绝对粗糙度ε=0.3mm ,则:

00938

.032

3.0==d

ε ()湍流43

104641064308610410320?=???==-....du Re μρ 由图1-23查得λ=0.039

局部阻力系数由表1-4查得为 进口突然缩小(入管口) ζ=0.5 90°标准弯头 ζ=0.75 180°回弯头 ζ=1.5 球心阀(全开) ζ

=6.4

()204.14.65.175.025.0032.08039.02

???

? ??++?++?

=f h ∑ =10.6J/kg

所求位差

()m 46.381

.96.1081.9204.181.98611096.12242

212=+?+??=++-=g h g u g p p Z f ∑ρ

截面2-2也可取在管出口外端,此时料液流入塔内,速度u 2为零。但局部阻力应计入突然扩大(流入大容器的出口)损失ζ=1,故两种计算方法结果相同。

【例1-14】 通过一个不包含u 的数群来解决管路操作型的计算问题。

已知输出管径为Φ89×3.5mm ,管长为138m ,管子相对粗糙度ε/d =0.0001,管路总阻力损失为50J/kg ,求水的流量为若干。水的密度为1000kg/m 3,粘度为1×10-

3Pa ·s 。

解:由式1-47可得 2

2lu

dh f =λ 又 2

2

???

? ??=μρdu Re 将上两式相乘得到与u 无关的无因次数群 2

2322μρλl h d Re f = (1-53)

因λ是Re 及ε/d 的函数,故λRe 2也是ε/d 及Re 的函数。图1-29上的曲线即为不同相对粗糙度下Re 与λRe 2的关系曲线。计算u 时,可先将已知数据代入式1-53,算出λRe 2,再根据λRe 2、ε/d 从图1-29中确定相应的Re ,再反算出u 及V s 。

将题中数据代入式1-53,得 82

3232

232

104)

101(13850

)1000()082.0(22?=?????==

-μρλl h d Re f

根据λRe 2及ε/d 值,由图1-29a 查得Re =1.5×105

m/s 83.11000

082.010105.13

5=???==-ρμd Re u

水的流量为: /h 34.8m /s m 1066.983.1)082.0(785.04

33322=?=??==-u d V s π

【例1-15】 计算并联管路的流量

在图1-30所示的输水管路中,已知水的总流量为3m 3/s ,水温为20℃,各支管总长度分别为l 1=1200m ,l 2=1500m ,l 3=800m ;管径d 1=600mm ,d 2=500mm ,d 3=800mm ;求AB

间的阻力损失及各管的流量。已知输水管为铸铁管,ε=0.3mm 。

解:各支管的流量可由式1-58和式1-54联立求解得出。但因λ1、λ2、λ3均未知,须用试差法求解。

设各支管的流动皆进入阻力平方区,由

0005.06003.011==d ε 0006.05003.022==d ε

000375.0800

3

.03

3==

d ε 从图1-23分别查得摩擦系数为: λ1=0.017;λ2=0.0177;λ3=0.0156 由式1-58

()()()800

0156.08.0:

15000177.05.0:1200017.06.0::5

55321???=

s s s V V V =0.0617∶0.0343∶0.162 又

V s 1+ V s 2 +V s 3 =3m 3/s 故

()

/s m 72.0162.00343.00617.03

0617.031=++?=s V

()

/s m 40.0162.00343.00617.03

0343.032=++?=

s V

()

/s m 88.1162.00343.00617.03

162.033=++?=s V

校核λ值:

d

V d V d du Re s s πμρπμρμρ44

2=?==

已知 μ=1×10-

3Pa ·s ρ=1000kg/m 3

d

V

d V R

e s s 53

1027.11010004?=???=-π 故

6611052.16

.072

.01027.1?=?

?=Re 6621002.15.04

.01027.1?=?

?=Re 6631098.28

.088

.11027.1?=??=Re

由Re 1、Re 2、Re 3从图1-23可以看出,各支管进入或十分接近阻力平方区,故假设成立,以上计算正确。

A 、

B 间的阻力损失h f 可由式1-56求出

()()

J /k g 1106.072.01200017.0885225122

111=???==ππλd V l h s f

【例1-16】 用泵输送密度为710kg/m 3的油品,如附图所示,从贮槽经泵出口后分为两路:一路送到A 塔顶部,最大流量为10800kg/h ,塔内表压强为98.07×104Pa 。另一路送到B 塔中部,最大流量为6400kg/h ,塔内表压强为118×104Pa 。贮槽C 内液面维持恒定,液面上方的表压强为49×103Pa 。

现已估算出当管路上的阀门全开,且流量达到规定的最大值时油品流经各段管路的阻力损失是:由截面1―1至2―2为201J/kg ;由截面2―2至3-3为60J/kg ;由截面2-2至4―4为50J/kg 。油品在管内流动时的动能很小,可以忽略。各截面离地面的垂直距离见本题附图。

已知泵的效率为60%,求此情况下泵的轴功率。 解:在1―1与2―2截面间列柏努利方程,以地面为基准水平面。

2122

22211

12

2-+++=+++f e h u p gZ W u p gZ ∑ρρ

式中 Z 1=5m p 1=49×103Pa u 1≈0

Z 2、p 2、u 2均未知,Σh f 1-2=20J/kg

设E 为任一截面上三项机械能之和,则截面2―2上的E 2=gZ 2+p 2/ρ+u 22/2代入柏努利方程得

06.98710

104981.9520232-=?-?-+=E E W e (a )

由上式可知,需找出分支2―2处的E 2,才能求出W e 。根据分支管路的流动规律E 2可由E 3或E 4算出。但每千克油品从截面2―2到截面3-3与自截面2-2到截面4-4所需的能量不一定相等。为了保证同时完成两支管的输送任务,泵所提供的能量应同时满足两支管所需的能量。因此,应分别计算出两支管所需能量,选取能量要求较大的支管来决定E 2的值。

仍以地面为基准水平面,各截面的压强均以表压计,且忽略动能,列截面2-2与3-3的柏努利方程,求E 2。

60710

1007.9881.9374

3

23

32+?+?=++

=-f h p gZ E ρ

=1804J/kg

列截面2-2与4-4之间的柏努利方程求E 2 50710

1011881.9304

4

24

42+?+?=++

=-f h p gZ E ρ

=2006J/kg

(完整版)化工原理复习题及习题答案

化工原理(上)复习题及答案 一、填空题 1.在阻力平方区内,摩擦系数λ与(相对粗糙度)有关。 2.转子流量计的主要特点是(恒流速、恒压差)。 3.正常情况下,离心泵的最大允许安装高度随泵的流量增大而(减少)。 4.气体在等径圆管内作定态流动时,管内各截面上的(质量流速相等)相等。 5.在静止流体内部各点的静压强相等的必要条件是(在同一种水平面上、同一种连续的流 体) 6.离心泵的效率η和流量Q的关系为(Q增大,η先增大后减小) 7.从流体静力学基本方程了解到U型管压力计测量其压强差与(指示液密度、液面高 度)有关。 8.离心泵开动以前必须充满液体是为了防止发生(气缚)现象。 9.离心泵在一定的管路系统工作,如被输送液体的密度发生变化(液体其余性质不变),则 扬程(不变)。 10.已知列管换热器内外侧对流传热系数分别为αi和αo且αi>>αo,则要提高总传热系数, 关键是(增大αo)。 11.现场真空表的读数为8×104 Pa,该处绝对压力为(2×104 Pa )(当时当地大气压为 1×105 Pa)。 12.为防止泵发生汽蚀,则要求装置的汽蚀余量(大于)泵的必需汽蚀余量。(大于、 小于、等于) 13.某流体于内径为50mm的圆形直管中作稳定的层流流动。其管中心处流速为3m/s,则 该流体的流量为(10.60 )m3/h,管壁处的流速为(0 )m/s。 14.在稳态流动系统中,水连续地从粗管流入细管。粗管内径为细管的两倍,则细管内水的 流速是粗管内的(4 )倍。 15.离心泵的工作点是指(泵)特性曲线和(管路)特性曲线的交点。 16.离心泵的泵壳做成蜗壳状,其作用是(汇集液体)和(转换能量)。 17.除阻力平方区外,摩擦系数随流体流速的增加而(减小);阻力损失随流体流速的 增加而(增大)。 18.两流体通过间壁换热,冷流体从20℃被加热到50℃,热流体从100℃被冷却到70℃, 则并流时的Δt m= (43.5 )℃。 19.A、B两种流体在管壳式换热器中进行换热,A为腐蚀性介质,而B无腐蚀性。(A腐 蚀性介质)流体应走管内。

化工原理试题库3

化工原理试题库3 试题1 一:填充题(20分) 1、直接水蒸汽加热的精馏塔适用于_________________,与间接蒸汽相比, 相同要求下,所需理论塔板数将____________。 2、平衡线表示塔的任一截面上气、液两相的___________________,操作线表示了_______________________________ 3、溶液中各组分之挥发度可用它在___________________和与之平衡的液相___________之比来表示,若是理想溶液,则__________________。 4、对拉乌尔定律产生正偏差是由于_______________________________。 5、对拉乌尔定律产生负偏差是由于_______________________________。 6、在板式塔的设计中,为了减少雾沫夹带,我们可以适当地_________塔径 以_______空塔气速,也可以适当地___________板间距。, 7、实验室用水吸收空气中的20C ,基本属于_________控制,其气膜中的浓度梯度________液膜中的浓度梯度,气膜阻力______液膜阻力。 8、在吸收操作时,若解吸因素L mV 增加,而气、液进料组成不变,则 溶质 的回收率将_________。 9、组分A 、B 的分配糸数之比值1 β,能否________萃取分离。 10、理论干燥过程是指 ____________________________________________. 11、 总压为0.1Mpa 的空气温度小于C 0100时,空气中水蒸汽分压的最大值应为_________________________________________. 12、 单级萃取操作中,料液为F ,若溶剂用量愈大,则混合物的点愈_______ S 点,当达到__________,溶液变为均一相。 二:问答题(30分) 1、何谓理论板?为什么说一个三角形梯级代表一块理论块? 2、何谓塔的漏液现象?如何防止? 3、填料可分为哪几类?对填料有何要求? 4、写出任意一种求温度的方法? 5、叙述多级逆流萃取操作是如何求理论级数的? 三:计算题(50分) 1、用一精馏塔分离二元理想混合物,已知3=α,进料浓度为3.0=F x ,进 料量为h Kmol 2000 ,泡点进料。要求塔 顶浓度为0.9,塔釜浓度为

化工原理练习习题及答案

CHAPTER1流体流动 一、概念题 1.某封闭容器内盛有水,水面上方压强为p 0,如图所示器壁上分别装有两个水银压强计和一个水银压差计,其读数分别为R 1、R 2和R 3,试判断: 1)R 1 R 2(>,<,=); 2)R 3 0(>,<,=); 3)若水面压强p 0增大,则R 1 R 2 R 3 有何变化(变大、变小,不变) 答:1)小于,根据静力学方程可知。 2)等于 · 3)变大,变大,不变 2.如图所示,水从内径为d 1的管段流向内径为d 2管段,已知122d d =,d 1管段流体流动的速度头为0.8m ,m h 7.01=,忽略流经AB 段的能量损失,则=2h _____m ,=3h m 。 答案:m h 3.12=,m h 5.13= g u h g u h 222 2 2211+ =+

122d d =, 2)2 1 ()( 12122112u u d d u u === 421 22u u =∴,m g u g u 2.024122122== m h 3.12=∴ 、 m g u h h 5.122 2 23=+= 3.如图所示,管中水的流向为A →B ,流经AB 段的能量损失可忽略,则p 1与p 2的关系为 。 21)p p A > m p p B 5.0)21+> m p p C 5.0)21-> 21)p p D < 答:C 据伯努利方程 2 212 2 2 p u gz p u gz B B A A ++ =++ ρρρρ ) (2 )(2221A B A B u u z z g p p -+ -+=ρ ρ , ) (2 5.02 221A B u u g p p -+ -=ρ ρ ,A B u u <,g p p ρ5.021-<∴ 4.圆形直管内,Vs 一定,设计时若将d 增加一倍,则层流时h f 是原值的 倍,高度湍流时,h f 是原值的 倍(忽略管壁相对粗糙度的影响)。

化工原理课后答案

3.在大气压力为101.3kPa 的地区,一操作中的吸收塔内表压为130 kPa 。若在大气压力为75 kPa 的高原地区操作吸收塔,仍使该塔塔顶在相同的绝压下操作,则此时表压的读数应为多少? 解:KPa .1563753.231KPa 3.2311303.101=-=-==+=+=a a p p p p p p 绝表表绝 1-6 为测得某容器内的压力,采用如图所示的U 形压差计,指示液为水银。已知该液体密度为900kg/m 3,h=0.8m,R=0.45m 。试计算容器中液面上方的表压。 解: kPa Pa gm ρgR ρp gh ρgh ρp 53529742.70632.600378 .081.990045.081.9106.133 00==-=??-???=-==+ 1-10.硫酸流经由大小管组成的串联管路,其尺寸分别为φ76×4mm 和φ57×3.5mm 。已知硫酸的密度为1831 kg/m 3,体积流量为9m 3/h,试分别计算硫酸在大管和小管中的(1)质量流量;(2)平均流速;(3)质量流速。 解: (1) 大管: mm 476?φ (2) 小管: mm 5.357?φ 质量流量不变 h kg m s /164792= 或: s m d d u u /27.1)50 68 (69.0)( 222112=== 1-11. 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。现要求料液以1m/s 的流速在管内流动,设料液在管内流动时的能量损失为20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。 解: 以高位槽液面为1-1’面,管出口内侧为2-2’面,在1-1’~

化工原理试题

流体输送 1.离心泵的能量损失不包括() A. 容积损失 B. 水利损失 C. 压头损失 D.机械损失 2. 用离心泵将水池中的水送至水塔中,维持两液面恒定,离心泵在正常范围操作,开大出口阀门后,则:()。 A. 送水量增加,泵的压头下降 B. 送水量增加,泵的压头增加 C. 送水量增加,泵的轴功率不变 D. 送水量增加,泵的轴功率下降 3. 离心泵铭牌上标明的扬程是指()。 A. 流量最大时的扬程 B. 效率最高时的扬程 C. 平均流量下的扬程 D. 泵的最大扬程 4. 由离心泵和某一管路组成的输送系统,其工作点()。 A. 由泵铭牌上的流量和扬程所决定 B. 即泵的最大效率所对应的点 C. 由泵的特性曲线所决定 D. 是泵的特性曲线与管路特性曲线的交点 5. 在一输送系统中,改变离心泵出口阀门开度,不会影响( )。 A. 管路特件曲线 B. 管路所需压头 C. 泵的特性曲线 D. 泵的工作点

6. 某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空表指示真空度很高。他对故障原因做出了正确判断,排除了故障。你认为以下可能的原因中,真正的原因是()。 A. 水温太高 B. 真空表坏了 C. 吸入管路堵塞 D. 排出管路堵塞 7. 用一台离心泵从低位液槽向常压吸收塔输送吸收液,设泵在高效区工作。若输送管路较长,且输送管路布置不变的情况下,再并联一台同型号的离心泵,则( )。 A. 两泵均在高效区工作 B. 仅新装泵在高效区工作 C. 仅原泵在高效区工作 D. 两泵均不在高效区工作 8. 当管路特性曲线为L= A+BQ2时()说法正确。 A. A只包括流体需增加的位能 B. A包括流体需增加的位能和静压能之和 C. BQ2代表管路系统的局部阻力损失 D. Q2代表流体增加的动能 9. 离心泵启动时应全关出口阀;往复泵启动时应全开出口阀,则( ) 。 A. 两种说法都不对 B. 第一种说法不对 C. 两种说法都对 D. 第二种说法不对 10. 下列不属于正位移泵的是( )。 A. 往复泵 B. 旋涡泵 C. 螺杆泵 D. 齿轮泵 11. 往复泵适用于(),而离心泵适用于()。

化工原理例题与习题

化工原理例题与习题标准化管理部编码-[99968T-6889628-J68568-1689N]

第一章流体流动 【例1-1】已知硫酸与水的密度分别为1830kg/m3与998kg/m3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。 解:根据式1-4 =(+)10-4=×10-4 ρ m =1372kg/m3 【例1-2】已知干空气的组成为:O 221%、N 2 78%和Ar1%(均为体积%),试求干空气在 压力为×104Pa及温度为100℃时的密度。 解:首先将摄氏度换算成开尔文 100℃=273+100=373K 再求干空气的平均摩尔质量 M m =32×+28×+× =m3 根据式1-3a气体的平均密度为: 【例1-3 】本题附图所示的开口容器内盛有油和水。油层高度h1=、密度ρ 1 =800kg/m3,水层高度h2=、密度ρ2=1000kg/m3。 (1)判断下列两关系是否成立,即p A=p'A p B=p'B (2)计算水在玻璃管内的高度h。 解:(1)判断题给两关系式是否成立p A=p'A的关系成立。因A与A'两点在静止的连通着的同一流体内,并在同一水平面上。所以截面A-A'称为等压面。 p B =p' B 的关系不能成立。因B及B'两点虽在静止流体的同一水平面上,但不是连通 着的同一种流体,即截面B-B'不是等压面。 (2)计算玻璃管内水的高度h由上面讨论 知,p A=p'A,而p A=p'A都可以用流体静力学基本方程式计算,即 p A =p a +ρ 1 gh 1 +ρ 2 gh 2 p A '=p a +ρ 2 gh 于是p a+ρ1gh1+ρ2gh2=p a+ρ2gh 简化上式并将已知值代入,得 800×+1000×=1000h 解得h= 【例1-4】如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U管压差计,压差计读数R=200mm。试求两截面间的压强差。 解:因为倒置U管,所以其指示液应为水。设空气和水的密度分别为ρg与ρ,根据流体静力学基本原理,截面a-a'为等压面,则 p a =p a ' 又由流体静力学基本方程式可得 p a =p 1 -ρgM

化工原理考试习题有答案

化工原理(上)考试复习题及答案一、选择题(将正确答案字母填入括号内、四选一) 1.遵循流体动力学规律的单元操作是( A )。 A、沉降 B、蒸发 C、冷冻 D、干燥 2.U型管液柱压力计两管的液柱差稳定时,在管中任意一个截面上左右两端所受压力( A )。 A、相等 B、不相等 C、有变化 D、无法确定 3.以下有关全回流的说法正确的是( A )。 A、精馏段操作线与提馏段操作线对角线重合 B、此时所需理论塔板数量多 C、塔顶产品产出量多 D、此时所用回流比最小 4.吸收操作是利用气体混合物中各种组分( B )的不同而进行分离的。 A、相对挥发度 B、溶解度 C、气化速度 D、电离度 5.压力表在刻度盘上有红线是表示( C )。 A、设计压力、 B、公称压力 C、最高工作压力 D、最低工作压力 6.某车间测得一精馏塔得真空度为540mmHg,绝对压强为100mm/Hg,则当地大气压为( C )mmHg。 A、440 B、540 C、640 D、760 7. 用水吸收混合气体中的二氧化碳时,( A )下吸收效果最好。 A.低温高压B.高温高压 C.高温低压D.低温低压 8. 表压值是从压强表上读得的,它表示的是( A )。 A.比大气压强高出的部分 B.设备的真实压力 C.比大气压强低的部分 D.大气压强 9. 离心泵在停泵时,应先关闭出口阀,再停电机,这是为了防止( C )。 A.汽蚀现象 B.电流过大 C.高压流体倒流 D.气缚现象 10. 吸收操作的作用是分离( A )。 A.气体混合物 B.液体均相混合物 C.互不溶液体混合物 D.气液混合物 11.当液体内部任一点的压强有变化时,将使液体内部其它各点的压强( B )。 A.发生变化 B.发生同样大小的变化 C.不变化 D.发生不同情况的变化 12. 气体压送机械的出口压强与进口压强之比在4以上的是( B )。 A.鼓风机 B.压缩机 C.通风机 D.真空泵 13.某气相混合物由甲.乙两组分组成,甲组分占体积70%,乙组分占体积30%,那么( B )。 A.甲组分摩尔分率是0.3 B.乙组分压力分率是0.3 C.乙组分质量分率是0.7 D.甲组分质量分率是0.7 14.下列四个定律中哪个是导热的基本定律。(C) A.牛顿冷却定律 B.斯蒂芬-波尔茨曼定律 C.傅里叶定律 D.克希霍夫定律 15.三层不同材料组成的平壁稳定热传导,若各层温度差分布 t1> t2> t3,则热阻最大的是( A )。 A.第一层 B.第二层 C.第三层 D.无法确定 16.在列管换热器中,用水将80℃某有机溶剂冷却至35℃,冷却水进口温度为30℃,出口温度不低于35℃,两流体应(B)操作。 A.并流B.逆流C.都可以D.无法确定 17.当压力不变时,气体溶解度随着温度升高的情况是( B )。 A、增大 B、减小 C、不变 D、不一定 18.一定量的理想气体,在等温过程中体积增加一倍,则该气体的压力的变化情况是( A )。 A、减少一半 B、没有变化 C、增加一倍 D、无规律可循 19.流体在流动过程中损失能量的根本原因是( D )。 A、管子太长 B、管件太多 C、管壁太粗糙 D、流体有粘性 20.泵的特性曲线是以水作实验介质测定的,当泵输送的液体沸点低于水的沸点时,则泵的安装高度应该( B )。 A、加大 B、减小 C、不变 D、不一定 21.若将泵的转速增加一倍,则该泵的轴功率将为原来的( C )倍。 A、4 B、2 C、8 D、16 22.将泵的转速增加一倍,则泵的流量将为原流量的( C )倍。 A、1 B、2 C、4 D、8 23.将泵的转速增加一倍,则泵的扬程将增加( B )倍。 A、2 B、4 C、8 D、10 24.含有泥砂的水静置一段时间后,泥砂沉积到容器底部,这个过程称为( B )。 A、泥砂凝聚过程 B、重力沉降过程 C、泥砂析出过程 D、泥砂结块过程 25.工业上常将待分离的悬浮液称为( B )。 A、滤液 B、滤浆 C、过滤介质 D、滤饼 26.在一定操作压力下,过滤速率将随着操作的进行而( B )。 A、逐渐增大 B、逐渐降低 C、没有变化 D、无法确定 27.热量传递是由于物体之间( B )不同。 A、热量 B、温度 C、比热 D、位置 28.炉膛内烟气对炉管之间的传热方式是( B )传热。 A、对流 B、辐射 C、导热 D、对流、辐射和导热 29.平壁导热过程中,传热推动力是( B )。 A、物质的导热系数 B、平壁两侧温 C、导热速率 D、平壁两侧热量差 30.能够全部吸收辐射能的物体称为( B )。 A、白体 B、黑体 C、热透体 D、导热体 31.工业上常采用带翅片的暖气管代替圆管,其目的是( B )。 A、增加热阻,减少热损失 B、增加传热面积,提高传热效果 C、节省钢材 D、增加观赏性

化工原理课后答案

3.在大气压力为的地区,一操作中的吸收塔内表压为130 kPa 。若在大气压力为75 kPa 的高原地区操作吸收塔,仍使该塔塔顶在相同的绝压下操作,则此时表压的读数应为多少 解:KPa .1563753.231KPa 3.2311303.101=-=-==+=+=a a p p p p p p 绝表表绝 1-6 为测得某容器内的压力,采用如图所示的U 形压差计,指示液为水银。已知该液体密度为900kg/m 3,h=,R=。试计算容器中液面上方的表压。 解: kPa Pa gm ρgR ρp gh ρgh ρp 53529742.70632.600378.081.990045.081.9106.133 00==-=??-???=-==+ 1-10.硫酸流经由大小管组成的串联管路,其尺寸分别为φ76×4mm 和φ57×。已知硫酸的密度为1831 kg/m 3,体积流量为9m 3/h,试分别计算硫酸在大管和小管中的(1)质量流量;(2)平均流速;(3)质量流速。 解: (1) 大管: mm 476?φ (2) 小管: mm 5.357?φ 质量流量不变 h kg m s /164792= 或: s m d d u u /27.1)50 68 (69.0)( 222112=== 1-11. 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。现要求料液以1m/s 的流速在管内流动,设料液在管内流动时的能量损失为20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。 解: 以高位槽液面为1-1’面,管出口内侧为2-2’面,在1-1’~

化工原理典型习题解答

化工原理典型习题解答 王国庆陈兰英 广东工业大学化工原理教研室 2003

上 册 一、选择题 1、 某液体在一等径直管中稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则 (1) 层流时,流动阻力变为原来的 C 。 A .4倍 B .8倍 C .16倍 D .32倍 (2) 完全湍流(阻力平方区)时,流动阻力变为原来的 D 。 A .4倍 B .8倍 C .16倍 D .32倍 解:(1) 由 2 22322642d lu u d l du u d l h f ρμμ ρλ= ??=??= 得 1624 4 212 212 212212121 2==??? ? ??=???? ??????? ??==d d d d d d d u d u h h f f (2) 由 2222u d l d f u d l h f ? ??? ? ??=??=ελ 得 322 55 2121421 2211221 2==??? ? ??=????? ??==d d d d d d d u d u h h f f 2. 水由高位槽流入贮水池,若水管总长(包括局部阻力的当量长度在内)缩 短25%,而高位槽水面与贮水池水面的位差保持不变,假定流体完全湍流流动(即流动在阻力平方区)不变,则水的流量变为原来的 A 。 A .1.155倍 B .1.165倍 C .1.175倍 D .1.185倍 解:由 f h u p gz u p gz ∑+++=++2 22 2 22211 1ρρ 得 21f f h h ∑=∑ 所以 ()()2 222222 11 1u d l l u d l l e e ?+?=?+? λλ 又由完全湍流流动 得 ?? ? ??=d f ελ

化工原理习题答案

100kg/m 3 ° 0.05 x X ecu 1000 0 05 . 18 (1)甲醇的饱和蒸气压 p o A 24 25 浓缩液量为 100/0.5 200kg 200kg 浓缩液中,水的含量为 200 X0.48=96kg ,故水的蒸发量为 800-96=704kg 浓缩液中 NaCl 的含量为 200X0.02=4kg ,故分离的 NaCl 量为100-4=96kg 1574.99 几 16.9kPa 25 238.86 【0-1】1m 3 水中溶解0.05kmol CO 2, 试求溶液中C02的摩尔分数, 水的密度为 解水 1000 kg/ m 3 葺 kmol/ m 3 18 【0-2】在压力为 101325 Pa 、温度为25 C 条件下,甲醇在空气中达到饱和状态。 试求: (1)甲醇的饱和蒸气压 质量浓度 P A ; (2)空气中甲醇的组成,以摩尔分数 y A 、质量分数 A 、浓度 A 表示。 摩尔分数 y A 质量分数 浓度C A P A RT 质量浓度 【0-3 】1000kg 169 0.167 101.325 0.167 32 0.181 0.167 32 (1 0.167) 29 16.9 3 3 6.82 10 kmol/ m 8.314 298 3 3 C A M A = 6.82 10 32 0.218 kg / m 的电解液中含 NaOH 质量分数10%、NaCl 的质量分数 10%、H 2O 的质量 分数80%,用真空蒸发器浓缩,食盐结晶分离后的浓缩液中 含 NaOH 50%、NaCI 2%、 H 2O 48%,均为质量分数。试求: (1)水分蒸发量; (2)分离的食盐量;(3)食盐分离后的浓缩 解电 [解液 1000kg 浓缩液中 NaOH 1000 xc.l=100kg NaOH =0.5 (质量分数) NaOH 1000X0.l=100kg NaCl =0.02 (质量分数) HaO 1000X 0.8=800kg H 2O =0.48 (质量分数) NaOH 量保持一定。 100kg 在全过程中,溶液中 NaOHt 保持一定,为 C02的摩尔分数 8.99 10 lg p o A 7.19736 液量。在全过程中,溶液中的

化工原理试题及答案

中南大学考试试卷(A) 2013 ~ 2014 学年2 学期时间110分钟化工原理课程48 学时 3 学分考试形式: 闭卷 专业年级:化工?制药?应化11级总分100分,占总评成绩70 % 一、选择填空(35分) 1?(2分) 某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa,则泵入口处的绝对压强为( )? A. 74.3kPa; B. 101kPa; C. 127.6kPa? 2?(2分) 水在圆形直管中作滞流流动,流速不变,若管子直径增大一倍,则阻力损失为原来的( )? A. 1/4; B. 1/2; C. 2倍? 3?(4分) 当地大气压为750mmHg时,测得某体系的表压为100mmHg,则该体系的绝对压强为Pa,真空度为Pa? 4?(2分) 一球形石英颗粒,分别在空气和水中按斯托克斯定律沉降,若系统温度升高,则其在水中的沉降速度将,在空气中的沉降速度将? 5?(5分) 套管由Φ57×2.5mm和Φ25×2.5mm的钢管组成,则环隙的流通截面积等于,润湿周边等于,当量直径等于? 6?(2分) 板框压滤机中,最终的过滤速率是洗涤速率的( )? A.一倍 B.一半 C.四倍 D.四分之一

7?(4分) 冷热水通过间壁换热器换热,热水进口温度为90o C,出口温度为50o C,冷水进口温度为15o C,出口温度为53o C,冷热水的流量相同,且假定冷热水的物性为相同,则热损失占传热量的( )? A?5%; B?6%; C?7%; D?8%; 8?(2分) 为了减少室外设备的热损失,保温层外所包的一层金属皮应该是( ) A?表面光滑,颜色较浅; B?表面粗糙,颜色较深; C?表面粗糙,颜色较浅; D?表面光滑,颜色较深; 9?(4分) 黑体的表面温度从300℃升至600℃,其辐射能力增大到原来的倍?10?(1分) 采用多效蒸发的目的是为了提高( )? A. 完成液的浓度; B. 加热蒸汽经济程度; C. 生产能力 11、(1分) 多效蒸发中,蒸汽消耗量的减少是通过增加( )而换取的? A. 传热面积; B. 加热蒸汽压力; C. 传热系数 12?(1分) ( )加料的多效蒸发流程的缺点是料液粘度沿流动方向逐效增大,致使后效的传热系数降低? A. 并流; B. 逆流; C. 平流 13?(1分) 离心泵的调节阀( ) , A.只能安在进口管路; B.只能安在出口管路上; C.安装在进口管路和出口管路上均可; D.只能安在旁路上 14?(1分) 泵的工作点( )? A 由泵铭牌上的流量和扬程所决定; B 即泵的最大效率所对应的点; C 由泵的特性曲线所决定; D 是泵的特性曲线与管路特性曲线的交点?15?(3分) 在旋风分离器中,某球形颗粒的旋转半径为0.4 m,切向速度为15 m/s ?当颗粒与流体的相对运动属层流时,其分离因数K c为?

化工原理习题

一流体流动 流体密度计算 1.1在讨论流体物性时,工程制中常使用重度这个物理量,而在SI制中却常用密度这个物理量,如水的重度为1000[kgf/m3],则其密度为多少[kg/m3]? 1.2燃烧重油所得的燃烧气,经分析测知,其中含8.5%CO2,7.5%O2,76%N2,8%水蒸气(体积%),试求温度为500℃,压强为1atm时该混合气的密度。 1.3已知汽油、轻油、柴油的密度分别为700[kg/m3]、760[kg/m3]和900[kg/m3] 。试根据以下条件分别计算此三种油类混合物的密度(假设在混合过程中,总体积等于各组分体积之和)。 (1)汽油、轻油、柴油的质量百分数分别是20%、30%和50%; (2)汽油、轻油、柴油的体积百分数分别是20%、30%和50%。 绝压、表压、真空度的计算 1.4在大气压力为760[mmHg]的地区,某设备真空度为738[mmHg],若在大气压为655[mmHg]的地区使塔内绝对压力维持相同的数值, 则真空表读数应为多少? 静力学方程的应用 1.5如图为垂直相距1.5m的两个容器,两容器中所盛液体为水,连接两容器的U型压差计读数R为500[mmHg],试求两容器的压差为多少?ρ水银=13.6×103[kg/m3] 1.6容器A.B分别盛有水和密度为900[kg/m3]的酒精,水银压差计读数R为15mm,若将指示液换成四氯化碳(体积与水银相同),压差计读数为若干? ρ水银=13.6×103[kg/m3] 四氯化碳密度ρccl4=1.594×103 [kg/m3] 习题 5 附图习题 6 附图 1.7用复式U管压差计测定容器中的压强,U管指示液为水银,两U管间的连接管内充满水。已知图中h1= 2.3m,h2=1.2m,h3=2.5m,h4=1.4m,h5=3m。大气压强P0=745[mmHg],试求容器中液面上方压强P C=? 1.8如图所示,水从倾斜管中流过,在断面A和B间接一空气压差计,其读数R=10mm,两测压点垂直距离 a=0.3m,试求A,B两点的压差等于多少? 流量、流速计算 1.9密度ρ=892Kg/m3的原油流过图示的管线,进入管段1的流量为V=1.4×10-3 [m3/s]。计算: (1)管段1和3中的质量流量; (2)管段1和3中的平均流速; (3)管段1中的质量流速。 1.10某厂用Φ125×4mm的钢管输送压强P=20at(绝压)、温度t=20℃的空气,已知流量为6300[Nm3/h] (标准状况下体积流量)。试求此空气在管道中的流速、质量流量和质量流速。 (注:at为工程大气压,atm为物理大气压)。 1.11压强为1atm的某气体在Φ76×3mm的管内流动,当气体压强变为5atm时,若要求气体以同样的温度、流速、质量流量在管内流动,问此时管内径应为若干?

化工原理题目答案

1 .高位槽内的水面高于地面8m ,水从φ108×4mm 的管道中流出,管路 出口高于地面2m 。在本题特定条件下,水流经系统的能量损失可按Σhf = u 2 计算,其中u 为水在管道的流速。试计算: ⑴ A —A ' 截面处水的流速; ⑵ 水的流量,以m 3 /h 计。 解:设水在水管中的流速为u ,在如图所示的 1—1, ,2—2, 处列柏努力方程 Z 1g + 0 + P1/ρ= Z 2g+ u2/2 + P2/ρ + Σh (Z 1 - Z 2)g = u 2 /2 + 代入数据 (8-2)× = 7u 2 , u = s 换算成体积流量 V S = uA= ×π/4 × × 3600 = 82 m 3 /h 10.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定,各部分相对位置如本题附图所示。管路的直径均为Ф76×,在操作条件下,泵入口处真空表的读数为×103a,水流经吸入管与排处管(不包括喷头)的能量损失可分别按Σh f,1 =2u2,入或排出管的流速m/s 。排水管与喷头连接处的压强为×103a (表压)。试 求泵的有效功率。解:总能量损失Σhf=Σhf+,1Σhf ,2 u 1=u 2=u=2u 2 +10u212u2 在截面与真空表处取截面作方程: z 0g+u 02 /2+P 0/ρ=z 1g+u 2 /2+P 1/ρ+Σhf ,1 ( P 0-P 1)/ρ= z 1g+u 2 /2 +Σhf ,1 ∴u=2m/s ∴ w s =uA ρ=s 在真空表与排水管-喷头连接处取截面 z 1g+u 2 /2+P 1/ρ+W e =z 2g+u 2 /2+P 2/ρ+Σhf ,2 ∴W e = z 2g+u 2 /2+P 2/ρ+Σhf ,2—( z 1g+u 2/2+P 1/ρ) =×+(+)/×10310×22=kg N e = W e w s =×= 12.本题附图所示为冷冻盐水循环系统,盐水的密度为1100kg /m3,循环量为36m 。3管路的直径相同,盐水由A 流经两个换热器而至B 的能量损失为/kg ,由B 流至A 的能量损失为49J /kg ,试求:(1)若泵的效率为70%时,泵的抽功率为若干kw (2)若A 处的压强表读数为×103a 时,B 处的压强表读数为若干Pa 解:(1)由A 到B 截面处作柏努利方程 0+u A 22+P A /ρ1=Z B g+u B 2/2+P B /ρ+ 管径相同得u A =u B ∴(P A -P B )/ρ=Z B g+ 由B 到A 段,在截面处作柏努力方程Z B g+u B 2/2+P B /ρ+W e =0+u A 2P A /ρ+49 ∴W e =(P A -P B )/ρ- Z B g+49=+49=kg ∴W S =V S ρ=36/3600×1100=11kg/s N e = W e ×W S =×11= 泵的抽功率N= N e /76%== (2)由第一个方程得(P A -P B )/ρ=Z B g+得 P B =P A -ρ(Z B g+) =×1031100×(7×+ =×104 Pa

化工原理(第三版)典型习题解答

上 册 一、选择题 1、 某液体在一等径直管中稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则 (1) 层流时,流动阻力变为原来的 C 。 A .4倍 B .8倍 C .16倍 D .32倍 (2) 完全湍流(阻力平方区)时,流动阻力变为原来的 D 。 A .4倍 B .8倍 C .16倍 D .32倍 解:(1) 由 2 22322642d lu u d l du u d l h f ρμμ ρλ=??=??= 得 1624 4 212 212 212212121 2==??? ? ??=???? ??????? ??==d d d d d d d u d u h h f f (2) 由 2 222u d l d f u d l h f ? ???? ??=??=ελ 得 322 5 5 212142122112 21 2==??? ? ??=????? ??==d d d d d d d u d u h h f f 2. 水由高位槽流入贮水池,若水管总长(包括局部阻力的当量长度在内)缩短 25%,而高位槽水面与贮水池水面的位差保持不变,假定流体完全湍流流动(即流动在阻力平方区)不变,则水的流量变为原来的 A 。 A .1.155倍 B .1.165倍 C .1.175倍 D .1.185倍 解:由 f h u p gz u p gz ∑+++=++2 222 22211 1ρρ 得 21f f h h ∑=∑ 所以 ()()2 222222 11 1u d l l u d l l e e ?+?=?+? λλ 又由完全湍流流动 得 ?? ? ??=d f ελ 所以 ()()2 22211u l l u l l e e ?+=?+

化工原理试题库(含答案)

化工原理试题库 试题一 一:填空题(18分) 1、 某设备上,真空度的读数为80mmHg ,其绝压=________02mH =__________Pa. 该地区的大气压为 720mmHg 。 2、 常温下水的密度为1000 3m Kg ,粘度为1cp ,在mm d 100=内的管内以s m 3 速度流动,其流动类 型为 ______________。 3、 流体在管内作湍流流动时,从中心到壁可以__________.___________._ _________________. 4、 气体的粘度随温度的升高而_________,水的粘度随温度的升高_______。 5、 水在管路中流动时,常用流速范围为_______________s m ,低压气体在管路中流动时,常用流速范 围为_______________________s m 。 6、 离心泵与往复泵的启动与调节的不同之处是:离心泵_________________. __________________.往复泵___________________.__________________. 7、在非均相物糸中,处于____________状态的物质,称为分散物质,处于 __________状态的物质,称为分散介质。 8、 间竭过滤操作包括______._______.________._________.__________。 9、 传热的基本方式为___________.______________.__________________。 10、工业上的换热方法有_________.__________.__________.____________。 11、α称为_______________,其物理意义为____________________________. __________________________,提高管内α值的有效方法____________. 提高管外α值的有效方法______________________________________。 12、 蒸汽冷凝有二种方式,即_____________和________________ 。其中, 由于_________________________________________,其传热效果好。 K Kg Kj C C .187.4==冷水热水 试题一答案: 一、 填充题 1、8.7m 02H ,pa 41053.8?. 2、53 10310.11000.3.1.0?== = -μ ρ du R e 湍流。 1、 层流、过渡流和湍流。 2、 增加、降低。 3、 3-8s m 、8-15s m 。 4、 启动前应灌满液体,关出口阀门、用调节阀调节流量;往复泵启动前不需灌液,开旁路阀、用旁 路阀来调节流量的。 5、 分散、连续。 6、 过滤、洗涤、卸渣、清洗滤布、重整。 7、 热传导、对流传热、热辐射。 10、间壁式、混合式、蓄热式、热管。 11、称为对流传热膜糸数。当流体与壁面温度差为1K 时,通过单位面积单位时间内所传递热量的多少。增加流程、加拆流挡板。 12、滴状冷凝和膜状冷凝。滴状冷凝成小液滴沿壁面直接落下。 试题二

化工原理计算题例题

三 计算题 1 (15分)在如图所示的输水系统中,已知 管路总长度(包括所有当量长度,下同)为 100m ,其中压力表之后的管路长度为80m , 管路摩擦系数为0.03,管路内径为0.05m , 水的密度为1000Kg/m 3,泵的效率为0.85, 输水量为15m 3/h 。求: (1)整个管路的阻力损失,J/Kg ; (2)泵轴功率,Kw ; (3)压力表的读数,Pa 。 解:(1)整个管路的阻力损失,J/kg ; 由题意知, s m A V u s /12.2) 4 05.03600(15 2 =??==π 则kg J u d l h f /1.1352 12.205.010003.022 2=??=??=∑λ (2)泵轴功率,kw ; 在贮槽液面0-0′与高位槽液面1-1′间列柏努利方程,以贮槽液面为基准水平面,有: ∑-+++=+++10,1 21020022f e h p u gH W p u gH ρ ρ 其中, ∑=kg J h f /1.135, u 0= u 1=0, p 1= p 0=0(表压), H 0=0, H=20m 代入方程得: kg J h gH W f e /3.3311.1352081.9=+?=+=∑ 又 s kg V W s s /17.410003600 15 =?= =ρ 故 w W W N e s e 5.1381=?=, η=80%, kw w N N e 727.11727===η 2 (15分)如图所示,用泵将水从贮槽送至敞口高位槽,两槽液面均恒定 不变,输送管路尺寸为φ83×3.5mm ,泵的进出口管道上分别安装有真空表和压力表,真空表安装位置离贮槽的水面高度H 1为4.8m ,压力表安装位置离贮槽的水面高度H 2为5m 。当输水量为36m 3/h 时,进水管道全部阻力损失为1.96J/kg ,出水管道全部阻力损失为4.9J/kg ,压力表读数为2.452×

化工原理习题 含答案

·流体 流动部分 1.某储油罐中盛有密度为960 kg/m 3 的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。在罐侧壁的下部有一直径为760 mm 的孔,其中心距罐底1000 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作压力为39.5×106 Pa ,问至少需要几个螺钉(大气压力为101.3×103 Pa )? 解:由流体静力学方程,距罐底1000 mm 处的流体压力为 作用在孔盖上的总力为 每个螺钉所受力为 因此 2.如本题附图所示,流化床反应器上装有两个U 管压差计。读数分别为R 1=500 mm ,R 2=80 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右 侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=100 mm 。试求A 、B 两点的表压力。 习题2附图 习题1附图

解:(1)A点的压力 (2)B点的压力 3、如本题附图所示,水在管道内流动。为测量流体压力,在管道某截面处连接U管压差计,指示液为水银,读数R=100毫米,h=800mm。为防止水银扩散至空气中,在水银液面上方充入少量水,其高度可忽略不计。已知当地大气压为101.3KPa试求管路中心处流体的压力。 解:设管路中心处流体的压力为p P A =P A P + ρ 水gh + ρ 汞 gR = P P=p 0- ρ 水 gh - ρ 汞 gR =(101.3×103-1000×9.8x0.8 - 13600×9.8×0.1) P=80.132kpa 4、如本题附图所示,高位槽内的水位高于地面7 m,水从φ108 mm×4 mm的管道中流出,管路出口高于地面1.5 m。已知水流经系统的能量损失可按∑h f=5.5u2计算,其中u为水在管内的平均流速(m/s)。设流动为稳态,试计算(1)A-A'截面处水的平均流速;(2)水的流量(m3/h)。

《化工原理试题库》大全

化工原理试题库多套及答案 一:填空题(18分) 1、 某设备上,真空度的读数为80mmHg ,其绝压=___8.7m 02H , _____pa 41053.8?__. 该地区的大气压为720mmHg 。 2、 常温下水的密度为10003m Kg ,粘度为1cp ,在mm d 100=内的管内以s m 3 速度 流动,其流动类型为 ______________。 3、 流体在管内作湍流流动时,从中心到壁可以__________.___________._ _________________. 4、 气体的粘度随温度的升高而_________,水的粘度随温度的升高_______。 5、 水在管路中流动时,常用流速范围为_______________s m ,低压气体在管路中流动时,常用流速范围为_______________________s m 。 6、 离心泵与往复泵的启动与调节的不同之处是:离心泵_________________. __________________.往复泵___________________.__________________. 7、在非均相物糸中,处于____________状态的物质,称为分散物质,处于 __________状态的物质,称为分散介质。 8、 间竭过滤操作包括______._______.________._________.__________。 9、 传热的基本方式为___________.______________.__________________。 10、工业上的换热方法有_________.__________.__________.____________。 11、α称为_______________,其物理意义为____________________________. __________________________,提高管内α值的有效方法____________. 提高管外α值的有效方法______________________________________。 12、 蒸汽冷凝有二种方式,即_____________和________________ 。其中, 由于_________________________________________,其传热效果好。 二:问答题(36分) 1、 一定量的流体在圆形直管内作层流流动,若将其管径增加一倍,问能量损 失变为原来的多少倍? 2、 何谓气缚现象?如何防止? 3、何谓沉降?沉降可分为哪几类?何谓重力沉降速度? 4、在列管式换热器中,用饱和蒸汽加热空气,问: (1) 传热管的壁温接近于哪一种流体的温度? (2) 传热糸数K 接近于哪一种流体的对流传热膜糸数? (3) 那一种流体走管程?那一种流体走管外?为什么? 5、换热器的设计中为何常常采用逆流操作? 6、单效减压蒸发操作有何优点? 三:计算题(46分) 1、 如图所示,水在管内作稳定流动,设管路中所有直管管路的阻力糸数 为03.0=λ,现发现压力表上的读数为052mH ,若管径为100mm,求流体 的流量及阀的局部阻力糸数? 2、 在一 列管式换热器中,用冷却 将C 0100的热水冷却到C 050,热水

相关文档