文档视界 最新最全的文档下载
当前位置:文档视界 › 东南大学电路实验实验报告

东南大学电路实验实验报告

东南大学电路实验实验报告
东南大学电路实验实验报告

电路实验

实验报告

第二次实验

实验名称:弱电实验

院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日

实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理

一、仿真实验

1.电容伏安特性

实验电路:

图1-1 电容伏安特性实验电路

波形图:

图1-2 电容电压电流波形图

思考题:

请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π,

()mV wt wt U R sin 10002cos 1000=??? ?

?

-=π,us T 500=;

()mA wt R U I I R R C sin 213.0==

=∴,ππ40002==T

w ; 而()mA wt dt

du C

C

sin 206.0= dt

du C

I C

C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性

实验电路:

图1-3 电感伏安特性实验电路

波形图:

图1-4 电感电压电流波形图

思考题:

1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。

2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。

解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ?

?

-=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ

40002==T

w ;

而()mV wt dt

di L

L

cos 7.2= dt

di L

U L

L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验

1.恒压源特性验证

表1-1 不同电阻负载时电压源输出电压

电阻()Ωk 0.1 1 10 100 1000 电源电压(V )

4.92

4.98

4.99

4.99

4.99

2.电容的伏安特性测量

图1-5 电容电压电流波形图3.电感的伏安特性测量

图1-6 电感电压电流波形图

4.基尔霍夫定律验证

表1-2 基尔霍夫验证电路

待测值 I1 I2 I3 B V

计算值 0.366mA 0.978mA 1.344mA 1.34V 测量值 0.364mA 0.975mA 1.35mA 1.35V 相对误差)10(3

-? 5.46

3.07

4.46

7.46

思考题:

1.根据实验数据,选定节点,验证KCL 的正确性。

对于B 点,)(339.1975.0364.021A I I =+=+

213I I I +=近似满足,验证的KCL 的正确性。

2.验证KVL

表1-3 验证KVL

节点 9 8 计算值 2.32V 0.77V 测量值 2.32V 0.77V 相对误差

对于节点5、9、8、0构成的回路:

)(67.232.299.459V U =-=,)(55.177.032.298V U =-=,)(77.0077.080V U =-= )(99.4099.450V U =-= 80985950U U U U ++=∴

即验证了KVL 的正确性。

实验二:电路定律的验证和受控源仿真

预习题:

1.根据实验一中电阻的伏安特性测量方法,请自行设计实验方法,绘制二极管的伏安特性曲线,了解其工作性能。

图2-1 二极管伏安特性曲线

2.请运用戴维宁定理,计算图 2-14 电路的 Rload,Req 和 Veq,填入表 2-3。

3.(补充)采用 PocketLab 的 math 功能,直接获得二极管的伏安特性曲线。

图2-2 二极管伏安特性曲线

硬件实验一:叠加定理验证

表2-1 验证叠加定理

实验内容 测量项目

()mA I 1

()mA I 2

()mA I 3

()V V B

1V 单独作用

1.14 -0.103 1.03 1.03 2V 单独作用 -0.155 0.468 0.31 0.31 1V 、2V 共同作用

0.98

0.365

1.34

1.34

表2-2 验证叠加定理(二极管)

实验内容 测量项目

()mA I 1

()mA I 2

()mA I 3

()V V B

1V 单独作用 2.794 -0.254 2.54 2.54 2V 单独作用 0 0.46 0.46 0.46 1V 、2V 共同作用

2.307

0.243

2.55

2.55

思考题:

1.根据实验数据,验证线性电路的叠加性。

纯电阻电路为线性电路。由表2-1,可以看出,每纵列的数据,第一行的数加上第二行的数等于第三行的数,即1V 、2V 共同作用的效果和1V ,2V 单独作用效果的叠加结果一样,即验证了线性电路的叠加性。

2.通过实验步骤5及分析表格中数据你能得出什么结论?

将5R 换成二极管后,得到表2-2实验结果,分析表2-2数据发现不再有表2-1数据的规律,即不满足叠加性,因此判断,二极管不是线性元件,此电路不是线性电路。

硬件实验二:戴维宁定理验证

表2-3 测试等效电路的eq V 和SC I

)(mA I SC

)(V V eq

()Ωeq R

()ΩRload

计算值 N.C 3.58 5/6k 1k 测量值

4.25

3.55

0.83k

0.99k

表2-4 验证戴维宁定理

)(2mA I R

)(V V eq

原始电路 0.94 1.88 等效电路

0.93

1.86

思考题:

请自行选定除开路电压、短路电流法之外的一种测有源二端网络开路电压及等效内阻的方法,设计实验过程对上面的电路测定,给出实验方法和测试结果。

答:用电压源代替内阻2R ,改变电压源电压大小,测多组端口电压和电流的数据,做出伏安特性曲线图。则0=I 时的电压值即为开路电压,直线斜率的倒数即为等效内阻。

硬件实验三:采用运放测试电压控制电流源(VCCS )特性

1.测试VCCS 的转移特性()12U f i =

表2-6 VCCS 的转移特性数据

V U /1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 mA I /2

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

00.05

0.10.150.2

0.250

0.5

1

1.5

2

2.5

VCCS转移特性曲线

U1/V

I 2/A

系列1

图2-3 VCCS 转移特性曲线

转移参量=

Ω=k U I 101

2

2.测试VCCS 的负载特性()L R f i =2

表2-7 VCCS 的负载特性数据

k R L /

47 20 10 4.7 3 2 1 0.2 0.1 mA I /2

0.07

0.139

0.207

0.209

0.2

0.2

0.2

0.2

0.2

00.05

0.10.150.2

0.250

10

20

304050

VCVS负载特性曲线

RL/千欧

I 2/m A

系列1

图2-4 VCCS 负载特性曲线

实验三:一阶电路的时域分析

一、仿真实验

1.电容特性

实验任务1

图3-1 电容电阻电压波形图

解释:

电阻的电压电流关系为:iR u =,所以电阻的电压波形仍为方波;

电容的电压电流关系为:()()()?+=t

t C C dt t i C t u t u 0

10,所以

()()V ms

t ms

t t t u C ??

?><<=10,10100,1000 实验任务2

电容中的能量()ms t W C 12=:

()()

J CU ms t W C 5262105101012

1

2112--?=??===

电流源提供的能量()ms W I 12~0:

()()()J dt t U U I IU ms W R C I 401

.00

3

1015100010112~0--?=+??=+==?

请解释C W 和I W 之间为什么会存在差异:

答:I W 包含了C W 和R W 两部分,电阻以热量形式消耗电流源的能量,而电容储存能量,即

R C I W W W +=。

实验任务3

图3-2 电容电阻电压波形图(2)

波形变化:电容电压变化率变为原来的二分之一,10ms 时达到的稳定值也是原来的一半。 解释:两个相同的电容并联,等效阻抗变为原来两倍,则电压变化率和电压的值均变为原来一半。

2.电感特性

实验任务1

图3-3 电感中电流波形图

解释:

电感的电流电压关系为:()()()?+

=t

t L L L dt t u L

t i t i 010,所以 ()()A ms t ms

t t t i L ?

?

?><<=15,1.0150,10 电感中的能量Wc (t=15ms ):

()()

J LI ms t W L 42

33210510100101002

1

2115---?=????==

=

电压源提供的能量Wv (0~15ms ):

()J dt t ms W V 401

.00

10510115~0-?=?=?

实验任务2

图3-4 电感中电流波形图(2)

注:图中流过两电感的电流相等,因此两曲线重合,其和为干路电流。

波形变化:电感电流变化率变为原来的两倍,15ms时达到的稳定值也是原来的两倍。

解释:两个相同的电感并联,等效阻抗变为原来一半,则电流变化率和电流的值均变为原来两倍。

实验任务3

图3-5 电感电流及节点2电压波形

计算得到的电感电流的响应:

()()()()(

)()(

)

()()()

t

t e e s t I A

I e s t I e s t I A

I A I I 10011110011.001.01.011.001.011.001.001.0000-----+-?=≥=∞'-?==-?=≤≤=∞==

即()

(

)

()A t e

e t e

I t

t

?????>-≤≤-=---01.0,11.001.00,11.010011100 二、硬件实验

1.硬件实验一

实验任务1

示波器截图(100Hz ):

图3-6 电容上电压(100Hz)实验任务2

示波器截图(1kHz):

图3-7 电容上电压(1kHz)

示波器截图(5kHz):

图3-8 电容上电压(5kHz)

思考:在输入方波频率一定的时候,输出响应的幅度与电路时间常数的关系如何?若要作为积分器使用,如图所示电路的RC时间常数需要满足什么条件?

答:时间常数越大,输出响应的幅度越小,电容充电来不及完成就开始放电;时间常数越小,输出响应的幅度越大,但不超过峰峰值。

若要作为积分器使用,需:1.保证电压变化周期与时间常数的适当比例,105较为合适,使得电容上的电压有较大变化;2.电路的RC时间常数应远大于5ms(即方波的半个周期长度)。

2.硬件实验二

实验任务1

图3-9 电阻上电压波形图(100nF)

功能:微分器

解释:在一个周期中,经过一个高电平后,电路进入零输入响应状态,此时,由电容放电。电阻上电压变化情况与电路中电流变化情况相同,即电路中电流以指数形式衰减。

实验任务2

示波器截图(C1=10nF):

图3-10 电阻上电压波形图(10nF)

功能:微分器,将方波信号转变为尖脉冲信号。

思考:在输入方波频率和边沿时间一定的时候,若输出响应只需要提取输入信号的边沿信息,则输出幅度与电路RC时间常数的关系如何?

答:电路RC常数越大,输出幅度越大。

实验任务3

图3-11 电阻上电压波形图(10uF)功能:输出的波形与输入的相同,即耦合。

实验四:RLC电路的频率响应

一、仿真实验

1.RLC串联电路

实验任务1

东南大学高等数学数学实验报告上

Image Image 高等数学数学实验报告 实验人员:院(系) ___________学号_________姓名____________实验地点:计算机中心机房 实验一 1、 实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n =e 2、 实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式 (1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够

Image Image 大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。三、计算公式:y=sin cx 四、程序设计五、程序运行结果 六、结果的讨论和分析 c的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

东南大学微机第四次实验报告

东南大学 《微机实验及课程设计》 实验报告 实验四双列点阵发光二极管显示实验 姓名:董元学号:22011207 专业:测控技术与仪器实验室:计算机硬件技术实验时间:2013年05月15 日报告时间:2013年05月18日评定成绩:审阅教师:

一. 实验目的与内容(概述) 实验目的: 1)进一步掌握TPC实验装置的基本原理和组成结构; 2)了解双色点阵LED显示器的基本原理 3)掌握PC机控制双色点阵LED显示程序的设计方法 实验内容: 4-1、在双色点阵发光二极管上显示一个黄色或红色的“年”字。 4-2、在双色点阵发光二极管上显示你的姓的汉字或拼音的第一个字母。要求该字符红色和黄色相间。 要求: 1、正确设置退出条件:可以按任意键退出,或者显示一定的次数退出 2、注意尽量清晰地显示字符,消除重影问题 4-3、利用双色点阵发光二极管任意设计一款霓虹灯动态图案,要求二极管阵列可以间或发两种颜色的光,并能看清动态变换的效果。 二. 基本实验原理(或基本原理) 点阵LED显示器是将许多LED类似矩阵一样排列在一起组成的显示器件,双色点阵LED是在每一个点阵的位置上有红绿或红黄或红白两种不同颜色的发光二极管。当微机输出的控制信号使得点阵中有些LED 发光,有些不发光,即可显示出特定的信息,包括汉字、图形等。车站广场由微机控制的点阵LED大屏幕广告宣传牌随处可见。 实验仪上设有一个共阳极8×8点阵的红黄两色LED显示器,其点阵结构如图所示。该点阵对外引出24条线,其中8条行线,8条红色列线,8条黄色列线。若使某一种颜色、某一个LED发光,只要将与其相连的行线加高电平,列线加低电平即可。 1、硬件连接: (1)行代码、红色列代码、黄色列代码各用一片74LS273锁存。 (2)行代码输出的数据通过行驱动器7407加至点阵的8条行线上, (3)红和黄列代码的输出数据通过驱动器DS75452反相后分别加至红和黄的列线上。 (4)行锁存器片选信号为CS1,红色列锁存器片选信号为CS2,黄色列锁存器片选信号为CS3。 2、流程图:

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

东南大学信息学院微机实验报告九

实验九 一、实验目的 1.熟悉系统功能调用INT 21H的有关功能 2.编写时钟程序 二、实验任务 1.执行时钟程序时,屏幕上显示提示符“:”,由键盘输入当前时、分、秒值,即XX:XX:XX,随即显示时间并不停地计时。 2.当有键盘按下时,立即停止计时,返回DOS。 三、源程序 DATA SEGMENT BUFFER DB 11 DB ? DB 10 DUP(?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA OUTCLK: MOV AX,DATA MOV DS,AX MOV DL,':' MOV AH,2 INT 21H MOV DX,OFFSET BUFFER MOV AH,0AH ;输入字符串 INT 21H MOV BX,OFFSET BUFFER+2 MOV AL,[BX] ; 时针,ASCII码转非压缩BCD CMP AL, 03AH JAE ERROR1 CMP AL, 02FH JBE ERROR1 AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL INC BX INC BX MOV AL,[BX] ; 分针

AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL INC BX INC BX MOV AL,[BX] ;秒针 AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL MOV BX,OFFSET BUFFER+2 CALL TOBCD ; 时针,两位非压缩BCD转换成两位压缩BCD MOV CH, AL ADD BX,3 CALL TOBCD MOV DH, AL ; 分针,两位非压缩BCD转换成两位压缩BCD MOV DH,AL ADD BX,3 CALL TOBCD ; 秒针,两位非压缩BCD转换成两位压缩BCD MOV DL,AL CMP CH, 24H JAE ERROR CMP DH, 60H JA ERROR CMP DL, 60H JA ERROR ERROR1: MOV AH,4CH INT 21H AGAIN: CALL DELAY MOV AL,DL ; 秒针加1 ADD AL,1 DAA MOV DL,AL CMP AL,60H JA ERROR JNE DISPY

电机实验报告东南大学自动化

东南大学 电机实验报告 姓名:学号: 专业:自动化 组员: 时间:2014年6月

实验一、二电器控制(一、二) 一、实验目的 1、了解接触器、按扭等元件的功能特点,掌握其工作原理及接线方法; 2、学会使用接触器、按钮组合控制风扇开关。 二、实验原理 1. 接触器型号划分 在电工学上。接触器是一种用来接通或断开带负载的交直流主电路或大容量控制电路的自动化切换器,主要控制对象是电动机,此外也用于其他电力负载,如电热器,电焊机,照明设备,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用/。接触器控制容量大。适用于频繁操作和远距离控制。是自动控制系统 中的重要元件之一。通用接触器可大致分以下两类。 (1)交流接触器。主要由电磁机构、触头系统、灭弧装置等组成。常用的是CJ10、CJ12、CJ12B等系列。 (2)直流接触器。一般用于控制直流电器设备,线圈中通以直流电,直流接触器的动作原理和结构基本上与交流接触器是相同的。 但现在接触器的型号都重新划分了。都是AC系列的了。 AC-1类接触器是用来控制无感或微感电路的。 AC--2类接触器是用来控制绕线式异步电动机的启动和分断的。 AC-3和AC--4接触器可用于频繁控制异步电动机的启动和分断。 2. 交流接触器(CJX1-12) 实验室所用的是交流接触器(CJX1-12)如下图所示

铭牌如下 工作原理 当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 使用接法 1、一般三相接触器一共有8个点,三路输入,三路输出,还有是控制点两个。输出和输入是对应的,很容易能看出来。如果要加自锁的话,则还需要从输出点的一个端子将线接到控制点上面。 2、首先应该知道交流接触器的原理。他是用外界电源来加在线圈上,产生电磁场。加电吸合,断电后接触点就断开。知道原理后,外加电源的接点,也就是线圈的两个接点,一般在接触器的下部,并且各在一边。其他的几路输入和输出一般在上部。还要注意外加电源的电压是多少(220V或380V),一般都标得有。并且注意接触点是常闭还是常开。

东南大学高数a下实验报告

高数实验报告 学号: 姓名: 数学实验一 一、实验题目:(实验习题7-3) 观察二次曲面族kxy y x z ++=22的图形。特别注意确定k 的这样一些值,当k 经过这些值时,曲面从一种类型变成了另一种类型。 二、实验目的和意义 1. 学会利用Mathematica 软件绘制三维图形来观察空间曲线和空间曲线图形的特点。 2. 学会通过表达式辨别不同类型的曲线。 三、程序设计 这里为了更好地分辨出曲线的类型,我们采用题目中曲线的参数方程来画图,即t t kr r z sin cos 22+= 输入代码: ParametricPlot3D [{r*Cos[t],r*Sin[t],r^2+ k*r^2*Cos[t]*Sin[t]}, {t, 0, 2*Pi}, {r, 0, 1},PlotPoints -> 30] 式中k 选择不同的值:-4到4的整数带入。 四、程序运行结果

k=4: k=3: k=2:

k=1: k=0:

k=-1: k=-2:

k=-3: k=-4: 五、结果的讨论和分析 k取不同值,得到不同的图形。我们发现,当|k|<2时,曲面为椭圆抛物面;当|k|=2时,曲面为抛物柱面;当|k|>2时,曲面为双曲抛物面。

数学实验二 一、实验题目 一种合金在某种添加剂的不同浓度下进行实验,得到如下数据: 2 + y+ = cx a bx 法确定系数a,b,c,并求出拟合曲线 二、实验目的和意义 1.练习使用mathematic进行最小二乘法的计算 2.使用计算机模拟,进行函数的逼近 三、程序设计 x={,,,,}; y={,,,,}; xy=Table[{x[[i]],y[[i]]},{i,1,5}]; q[a_,b_,c_]:=Sum[(a+b*x[[i]]+c*x[[i]]*x[[i]]-y[[i]])^2,{i,1 ,5}]; Solve[{D[q[a,b,c],a]?0,D[q[a,b,c],b]?0,D[q[a,b,c],c]?0},{a, b,c}] A={a,b,c}/.%; a=A[[1,1]]; b=A[[1,2]];

高等数学下实验报告

高等数学实验报告 实验人员:院(系)化学化工学院 学号19013302 姓名 黄天宇 实验地点:计算机中心机房 实验七:空间曲线与曲面的绘制 一、 实验目的 1、利用数学软件Mathematica 绘制三维图形来观察空间曲线和空 间曲面图形的特点,以加强几何的直观性。 2、学会用Mathematica 绘制空间立体图形。 二、实验题目 利用参数方程作图,做出由下列曲面所围成的立体图形: (1) x y x y x z =+--=2 222,1及xOy 平面; (2) 01,=-+=y x xy z 及.0=z 三、实验原理 空间曲面的绘制 作参数方程],[],,[,),(),() ,(max min max min v v v u u v u z z v u y y v u x x ∈∈? ?? ??===所确定的曲面图形的 Mathematica 命令为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax}, {v,vmin,vmax},选项] 四、程序设计及运行 (1)

(2)

六、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空 间中的曲面和立体图形。 2、可以通过mathematica 软件作出多重积分的积分区域,使积分能够较直观的被观察。 3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。 4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是xy z =,下底面的方程是z=0,右边的平面是01=-+y x 。 实验八 无穷级数与函数逼近 一、 实验目的 (1) 用Mathematica 显示级数部分和的变化趋势; (2) 展示Fourier 级数对周期函数的逼近情况; (3) 学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。 二、实验题目 (1)、观察级数 ∑ ∞ =1 ! n n n n 的部分和序列的变化趋势,并求和。 (2)、改变例2中m 及x 0的数值来求函数的幂级数及观察其幂级数逼近函数的情况 (3)、观察函数? ? ?<≤<≤--=ππx x x x f 0,10 ,)(展成的Fourier 级数

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

自动检测技术实验一

东南大学自动化学院 实验报告课程名称:检测技术 第1 次实验

实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 :学号: 实验室:实验组别: 同组人员:实验时间:2013 年11月16日 评定成绩:审阅教师: 实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零

拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验 在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。实验结果填入表2-1,画出实验曲线。 表2-1 重量(g) 20 40 60 80 100 120 140 160 180 200 电压(mv) 15.2 30.5 45.9 61.5 77.0 92.4 108.0 132.8 148.3 163.9 拟合方程为:0.834 4.1933 U W =?- 重量20 40 60 80 100 120 140 160 180 200

东南大学微机实验报告一

微机实验报告 实验一指令与汇编语言基础 姓名:学号: 专业:测控技术与仪器实验室: 时间:2013年04月23号报告时间:2013年04 月23号评定成绩:审阅教师:

一、实验目的 1)了解命令行操作基本方式和基本命令,掌握PC环境下命令行方式的特点; 2)掌握汇编语言程序指令编辑、宏汇编、连接、运行基本概念;3)熟练掌握动态调试程序TD的常用命令和窗口功能,学会用TD调试程序,修改环境; 4)学会利用DEBUG或TD检查认识指令功能的正确方法。 二、实验内容 (一)必做实验 1-1、要求计算两个多字节十六进制数之差: 3B74AC60F8-20D59E36C1=? 式中被减数和减数为5个字节,存放在DATA1和DATA2的内存区,低位在前,高位在后。试编写减法的程序段,要求相减的结果存放在首址为DATA3的内存区。 1-2、以BUFFER为首地址的内存区存放了10个十六位带符号数,编写程序比较它们的大小,找出其中最小的带符号数,存入MIN和MIN+1单元。 三实验源程序和流程图 1、十六进制相减 A、实验要求: 计算两个多字节十六进制数之差:

3B74AC60F8-20D59E36C1=? 式中被减数和减数为5个字节,存放在DATA1和DATA2的内存区,低位在前,高位在后。试编写减法的程序段,要求相减的结果存放在首址为DATA3的内存区。 B、实验源代码和流程图 DATA SEGMENT DATA1 DB 0F8H,60H,0ACH,74H,3BH DATA2 DB 0C1H,36H,9EH,0D5H,20H DATA3 DB 5 DUP(?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV CX,5 MOV DI,0 CLD LOOPER: MOV AL,DATA1[DI] SBB AL,DATA2[DI] MOV DATA3[DI],AL INC DI DEC CX JNZ LOOPER MOV AH,4CH INT 21H CODE ENDS END START C、实验过程及实验结果

高等数学(下册)数学实验报告

高等数学A(下册)实验报告 院(系): 学号:姓名: 实验一 利用参数方程作图,作出由下列曲面所围成的立体: (1) 2 2 1Y X Z- - = , X Y X= +2 2 及 xOy 面 ·程序设计: -1, 1},Axe s2=ParametricPlot3D[{1/2*Cos[u]+1/2,1/2*Sin[u],v},{u,- s3=ParametricPlot3D[{u,v,0},{u,-1,1},{v,- DisplayFunction 程序运行结果: 实验二 实验名称:无穷级数与函数逼近 实验目的:观察的部分和序列的变化趋势,并求和

实验内容: (1)利用级数观察图形的敛散性 当n 从1~400时,输入语句如下: 运行后见下图,可以看出级数收敛,级数和大约为1.87985 (2先输入: 输出: 输出和输入相同,此时应该用近似值法。输入: 输出: 1.87985 结论:级数大约收敛于1.87985 实验三: 1. 改变例2中m 的值及的数值来求函数的幂级数及观察其幂级数逼近函数的情况

·程序设计: m 5; f x_:1 x^m;x0 1; g n_,x0_ :D f x, x, n .x x0; s n_,x_: Sum g k,x0/k x x0 ^k, k, 0, t Table s n, x, n, 20; p1 Plot Evaluate t ,x,1,2,3 2; p2 Plot 1 x ^m , x,1 2,3 2, PlotStyle RGBColor 0,0,1; Show p1,p2 ·程序运行结果 实验四 实验名称:最小二乘法 实验目的:测定某种刀具的磨损速度与时间的关系实验内容:

东南大学系统实验报告

实验八:抽样定理实验(PAM ) 一. 实验目的: 1. 掌握抽样定理的概念 2. 掌握模拟信号抽样与还原的原理和实现方法。 3. 了解模拟信号抽样过程的频谱 二. 实验内容: 1. 采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。 2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三. 实验步骤: 1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。 2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。 3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。 4. 实验连线 5. 不同频率方波抽样 6. 同频率但不同占空比方波抽样 7. 模拟语音信号抽样与还原 四. 实验现象及结果分析: 1. 固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形: 抽样方波频率为4KHz 时的频谱: 50K …… …… PAM 输出波形 输入波形

分析: 理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。 (2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形: 2KHz 6K 10K 14K 输入波形 PAM 输出波形

【微机实验】2018东南大学微型计算机原理及应用实验二

实验二基本算术和逻辑运算 学院:信息科学与工程学院姓名:周信元学号:04016523 实验日期:2018.4.4 一、实验目的 1.熟悉算术和逻辑运算指令的功能。 2.进一步了解标志寄存器各标志位的意义和指令执行对它的影响。 二、实验任务 1.采用单步执行方式执行下列各程序段,检查各标志位的情况。 程序段1 MOV AX, 10101H ;AX=1010H MOV SI, 2000H ;SI=2000H ADD AL, 30H ;AX=1040H ADD AX, SI ;AX=3040H MOV BX, 03FFH ;BX=03FFH ADD AX, BX ;AX=343FH MOV[0020],1000H ;DS:[0020]=1000H ADD 0020, AX ;DS:[0020]=443FH 程序段2: MOV AX, OA0AOIH ;AX=A0A0H ADO AX, OFFFFH ;AX=A09FH MOV CX, OFFOOH ;CX=FF00H ADD AX, CX ;AX=9F9FH SUB AX, AX ;AX=0000H INC AX ;AX=0001H OR CX, OOFFH ;CX=FFFFH AND CX, OFOFH ;CX=0F0FH M0V[0010],CX ;DS:[0010]=OFOFH 程序段3: MOV BL, 25H ;BX=0025H MO[0010],04H ;DS:[0010]=04H MOV AL, [0010] ;AX=0004H MUL BL ;AX=0094H 程序段4: MOV BL, 04H ;BX=0004H MOV WORD PTR L0010], 0080H;DS:[0010]=0080H MOV AX, [0010] ;AX=0080H DIV BL ;AX=0020H 程序段5:

自动检测技术实验一

自动检测技术实验一-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

东南大学自动化学院 实验报告课程名称:检测技术 第 1 次实验 实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 姓名:学号: 实验室:实验组别: 同组人员:实验时间:2013 年 11 月 16 日评定成绩:审阅教师:

实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。 图2-1 应变式传感器安装示意图

图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi =0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零 拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验

高等数学实验报告

课程实验报告 专业年级2016级计算机类2班课程名称高等数学 指导教师张文红 学生姓名李发元 学号20160107000215 实验日期2016.12 .21 实验地点勤学楼4-24 实验成绩 教务处制 2016 年9月21 日

实验项 目名称 Matlab软件入门与求连续函数的极限 实验目的 及要求 实验目的: 1.了解Matlab软件的入门知识; 2.掌握Matlab软件计算函数极限的方法; 3.掌握Matlab软件计算函数导数的方法。 实验要求: 1.按照实验要求,在相应位置填写答案; 2.将完成的实验报告,以电子版的形式交给班长, 转交给任课教师,文件名“姓名+ 学号”。 实验内容利用Matlab完成下列内容: 1、(1) 2 2 1 lim 471 x x x x →∞ - -+ ;(2) 3 tan sin lim x x x x → - ;(3) 1 lim 1 x x x x →∞ - ?? ? + ??2、(1)x x y ln 2 =,求y';(2)ln(1) y x =+,求()n y 实验步骤1.开启MATLAB编辑窗口,键入编写的命令,运行; 2.若出现错误,修改、运行直到输出正确结果; 3.将Matlab输入输出结果,粘贴到该实验报告相应的位置。第一题 2 2 1 lim 471 x x x x →∞ - -+ 运行编码是 >> syms x >> limit((x^2-1)/(4x^2x+1),x,inf) ans =

1/4 第二题3 0tan sin lim x x x x →- >> syms x >> limit((tanx-sinx)/(x^3),x,0) ans = 1 第三题1lim 1x x x x →∞-?? ?+?? >> syms x >> limit(((x-1)^x)/(x+1),x,inf) ans = 2 第四题(1)x x y ln 2=,求y '; >> syms x >>f(x)=x^2in(x) f(x)=x^2in(x) >>diff(f(x)), ans = 2xinx+x 第五题ln(1)y x =+,求()n y >> syms x >>f(x)In(1+x) f(x)In(1+x) >>diff(f(x),n), ans =

视野检查实验报告

视野检查实验报告 篇一:视野检查实验报告 彩色分辨视野测定实验报告 学号:02a14541姓名:庄加华高意日期:摘要:本实验旨在学习视野计的使用方法和视野的检查方法,并了解测定视野的意义,比较左 右视野的异同并指出盲点在视网膜上的位置并计算它的大小。实验以一名大学生为被试,用 彩色视野计测定被试的视野以及盲点范围。研究结果表明: (1)被试视野范围红色视标上方为40,鼻侧72°,下方50°,颞侧65°。 (2)被试左右两眼的视野范围都大致呈椭圆形,视野在不同角度上可以看到的范围是不一

样的,在鼻侧要小于颞侧,上方小于下方。引言: 视野是指当人的头部和眼球不动时,人眼能观察到的空间范围通常以角度表示。人的视 野范围,在垂直面内,最大固定视野为115°,扩大的视野范围为150°;在水平面内,最大 固定视野为180°,扩大的视野为190°。人眼最佳视区上下,左右视野均为只有°左右;良好视野范围,位于在垂直面内水 平视线以下30°和水平面内零线左﹑右两侧各15°的范围内;有效视野范围,位于垂直面内 水平视线以上25°,以下35°,在水平面内零线左右各35°的视野范围。在垂直面内,实际上人的自然视线低于水平视线,直立时低15°,放松站立时低30°,放松坐姿时低40°,因此,视野范围在垂直面内的下界限也应随放松坐姿,放松立姿而改变。色觉视野,不同颜色对人眼的刺激不同,所以视野也不同。白色视野最大,黄﹑蓝﹑红 ﹑绿的视野依次减小。方法: 被试者

东南大学机械学院20XX级一名本科生,男,年龄为20,视力正常 仪器与材料 彩色分辨视野计,红色视标,视野图纸,铅笔 实验设计采用双因素被试内设计,自变量为左右眼和角度,因变量为被试看到的视野范围。 实验程序 准备工作 1、把视野图纸安放在视野计背面圆盘上,学习在图纸 上做记录的方法。(记录时与被试 反应的左右方位相反,上下方位颠倒)。 2、主试选择一种某一大小及颜色(如红色)的刺激。 3、让被试坐在视野计前。被试戴上遮眼罩把左眼遮起来,下巴放在仪器的支架上,用右 眼注视正前方的黄色注视点,一定不要转动眼睛。同时用余光注意仪器的半圆弧。如果看到 弧上有红色的圆点,或者原来看到了红色后来又消失了,要求立即报告出来。在红点消失前,

高等数学的实验报告册答案

《数学实验——高等数学分册》(郭科主编) ---《实验报告册》参考答案 ------轩轩 第5章 1.(1) syms x y; f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2*y^2)); limit(limit(f,x,0),y,0) ans = (2) syms x y; f=(log(x*exp(x)+exp(y)))/sqrt(x^2+y^2); limit(limit(f,x,0),y,0) ans = NaN 另解 syms x y; f=log(x*exp(x)+exp(y)); g=sqrt(x^2+y^2); limit(limit(f/g,x,0),y,0) ans = NaN 注:“()”多了以后,系统无法识别,但在matlab的语法上是合理的。在有的一些matlab 版本上可以识别。在以下的题目答案中同理。 (3) syms x y; f=(2*x*sin(y))/(sqrt(x*y+1)-1); limit(limit(f,x,0),y,0) ans = 4 另解

syms x y; f=2*x*sin(y); g=sqrt(x*y+1)-1; limit(limit(f/g,x,0),y,0) ans = 4 2.(1) syms x y; z=((x^2+y^2)/(x^2-y^2))*exp(x*y); zx=diff(z,x) zx = (2*x*exp(x*y))/(x^2 - y^2) - (2*x*exp(x*y)*(x^2 + y^2))/(x^2 - y^2)^2 + (y*exp(x*y)*(x^2 + y^2))/(x^2 - y^2) zy=diff(z,y) zy = (2*y*exp(x*y))/(x^2 - y^2) + (x*exp(x*y)*(x^2 + y^2))/(x^2 - y^2) + (2*y*exp(x*y)*(x^2 + y^2))/(x^2 - y^2)^2 注:所有的x在高的版本中都可以替换为x。(即,不用单引号,结果任然正确。前提为:不与前面的函数冲突。) (2)syms x y z; u=log(3*x-2*y+z); ux=diff(u,x) ux = 3/(3*x - 2*y + z) uy=diff(u,y) uy = -2/(3*x - 2*y + z) uz=diff(u,'z') uz = 1/(3*x - 2*y + z) (3)syms x y; z=sqrt(x)*sin(y/x);

相关文档
相关文档 最新文档