文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论与数理统计精彩试题及问题详解

概率论与数理统计精彩试题及问题详解

概率论与数理统计精彩试题及问题详解
概率论与数理统计精彩试题及问题详解

考试科目: 概率论与数理统计考试时间:120分钟 试卷总分100分

一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5小

题,每小题3分,总计15分)

1.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( A )。

(A)1/3 (B)2/3 (C)1/6 (D)3/6

2.设随机变量的概率密度?

??≤>=-101)(2x x Kx x f ,则K=( B )。

(A)1/2 (B)1 (C)-1 (D)3/2 3.对于任意随机变量ηξ,,若)()()(ηξξηE E E =,则( B )。 (A) )()()(ηξξηD D D = (B ))()()(ηξηξD D D +=+ (C) ηξ,一定独立 (D )ηξ,不独立

5.设)4,5.1(~N ξ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2<ξ<4}=( A )。 (A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543

二、填空题(在每个小题填入一个正确答案,填在题末的括号中,本大题共5小题,每小题3分,

总计15分)

1.设A 、B 为互不相容的随机事件,6.0)(,3.0)(==B P A P 则=?)(B A P ( 0.9 )。 2.设有10件产品,其中有1件次品,今从中任取出1件为次品的概率为( 1/10 )。

3.设随机变量X 的概率密度??

?≤≤=其它

,

010,1)(x x f 则{}=>2.0X P ( 8/10 )。

4.设D(ξ)=9, D(η)=16, 5.0=ξηρ,则D(ηξ+)=( 13 )。 *5.设),(~y 2σμN ,则

~y n

σμ

-( N(0,1) )。

三、计算题(本大题共6小题,每小题10分,总计60分)

1.某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的25%,35%,

40%,又这三条流水线的次品率分别为0.05,0.04,0.02。现从出厂的产品中任取一件,问恰好取到次品的概率是多少?

(1)全概率公式

)

4(0345

.0)6(100

210040100410035100510025)()()(3

1

分分=?+?+?=

=∑=i i i B A P B P A P

2.设连续型随机变量X 的密度为 ???≤>=-.0,

00

,)(5x x Ae x f x

(1)确定常数A (2)求}2.0{>X P (3)求分布函数F(x).

(2)①)3(15

1

0)(0

5分==

+=???+∞

-∞

-+∞

-A dx Ae dx dx x x ?

故A=5 。

②.3679.05)2.0(12.05≈==>-+∞

-?e dx e P x ξ (3分)

③当x<0时,F(x)=0; (1分)

当0≥x 时,x

x

x

x e dx e dx dx x x F 50

515)()(-∞

-∞

---=+==???? (2分)

故???<≥-=-0

0,,0

1)(5x x e

x F x

. (1分)

3.设二维随机变量(ηξ,)的分布密度???<<<<=其它,01

0,,6),(2ξξηξηξf

求关于ξ和关于η的边缘密度函数。

(3)

?

+∞∞

-=分)

2(),()(dy y x f x f x

分)(其它3010),(6622??

???≤≤-==?x x x x x dy ?

+∞

-=分)

(2),()(dx y x f y f y 分)

(其它3010),(66??

???≤≤-==?y y y y y dx

4.设连续型随即变量ξ的概率密度??

?

??≤<-≤≤=其它,02

1,210,

)(x x x x x f ,

求E(x),D(x)

(4)??-+=1

02

12)2(dx x x dx x EX 1)18(31

)14(31=---+=

(4分)

??-+=1021232)2(dx x x dx x EX 6

7

)116(41)18(3241=---+=(3分)

6

1

167)(22=-=-=EX EX DX (3分)

四.证明题(本大题共2小题,总计10分)

2.设)

,2,1(}{ =k X k 是独立随机变量序列,且??

??

??

??--++12212212112

1202~k k k k k k X , 试证}{k X 服从大数定理。

(2))

2(.),2,1(,

12

1

)2(21)2()()()

2(,02

12)211(021

)2()(12212221

2212分分 ==+?-===+-?+?

-=++++k X E X D X E k k k k k k k k

k k k k

由切比雪夫大数定理可知}{k X 服从大数定理。 (1分)

考试科目:概率论与数理统计 考试时间:120分钟 试卷总分100分

一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小

题,每小题3分,总计15分)

1.设,A B 为两随机事件,且B A ?,则下列式子正确的是__A __

A .

()()P A B P A += B .()()P AB P A =

C. ()()|P B A P B = D. ()()()P B A P B P A -=- 2. 设

()2,,X

N μσ那么当σ增大时,{}-P X μσ<= C

A .增大

B .减少

C .不变

D .增减不定

3. 设()()

()()~,E X-1X 21,X P poission λλ-==????分布且则_A _

A.1 B. 2 C .3 D .0 二、填空题(本大题共5小题,每小题3分,总计15分

1 .设A 、B 、C 、是三个随机事件。用A 、B 、C 表示事件“A 、B 、C 至少有一个发生”

A B C ;

2.设有10件产品,其中有1件次品,今从中任取出1件为次品的概率是 0.1 3.设随机变量X 与Y 相互独立,()()~1,2,~0,1,X N Y N 则随机变量23Z X Y =-+的概率密度函数 (

)2

1523z f z -??- ???

=

;

4.已知()

2

~2,0.4,X N -则()2

3E X += 1.16

三、计算题(本大题共6小题,每小题10分,共计60分)

1.设考生的报名表来自三个地区,各有10份,15份,25份,其中女生的分别为3份,7份,5

份。随机的从一地区先后任取两份报名表。求先取到一份报名表是女生的概率。

解.设B 为“取得的报名表为女生的”,i A 为“考生的报名表是第i 个地区的”,i=1,2,3 由全概率公式 2分

3

i 1

()()(|)i i P B P A P B A ==∑ 3分

131711

=+31031535

?+?? 3分 29

90

=

1分 即先取到一份报名表为女生的概率为29

90=. 1分

2.设随机变量X 的概率密度为()f x =Ax+10x 20,≤

?

其他 ,求① A 值; ②X 的分布函数()F x ;

③{}1.5 2.5P X << (1)

()()2

1221f x dx Ax dx A +∞

-∞

=+=+=?

?

,1

2

A ∴=- 2分 (2)()()x F x f t dt -∞

=?

1分

0,0

101,

0221,

2

x x dt t dt x x -∞

=+-+≤

?≥??? 3分 20,01,

0241,

2

x x x x x

=-+≤

(3){}()()1.5 2.5 2.5 1.50.0625P X F F <<=-= 3分

3.设二维随机变量(,)X Y 有密度函数:()3x 4y ke ,x 0,y 0;(,)0,

f x y -+?>>?=???其它

求:(1)常数A ;

(2)()x y ,落在区域D 的概率,其中(){}D x,y ;0x 1,0

3. (34)

340

ke

d d

e d 112

x y x

y k

x y k e dx y +∞

+∞

+∞

+∞

-+--==

=?

?

??,12k ∴= 5分 (){}{}()()12

343

8

00

,01,0212110.9502

x

y

P x y D P X Y e

dx e

dy e

e ----∈=<≤<≤==--≈?? 5分

4 . 设足球队A 与B 比赛,若有一队胜4场,则比赛结束,假设A ,B 在每场比赛中获胜的概率均为1

2

,试求平均需比赛几场才能分出胜负?

4. 设X 为需要比赛的场数, 1分

则{}148P X ==,{}154P X ==,{}5616P X ==,{}5

716P X ==, 4分

所以()1155

4567 5.8841616

E X =?+?+?+?≈ 4分

答:平均需比赛6场才能分出胜负 1分

2.设{}n X 为相互独立的随机变量序列

,

{n 1P X ,n ==

{}n 2

P X 01,n

==-n 2,3,

=

证明{}n X 服从大数定律。

2.(

)(112010n E X n n n ??

=+?+?-= ???

1分

()()(

)

(2

2

2

22112012

n n n D X E X E X n n n =+????

??

=

?+?+?- ???= 2,3,

i = 1分

令1

2

1,2,3,

,n n i i Y X n n +===∑则()()2

0,,n n E Y D Y n

== 2分

0ε?>,由切比雪夫不等式知

(){}

22

1n n P Y E Y n εε

-<≥- 1分

故有

(){}

n lim 1n n P Y E Y ε→∞

-<→,

即{}n X 服从大数定律。 1分

1.对于事件,A B ,下列命题正确的是__D __

A .若,A

B 互不相容,则.A 与B 也互不相容 B .若,A B 相容,则.A 与B 也相容

C.若,A B 互不相容,则.A 与B 也相互独立 D.若A 与B 相互独立, 那么.A 与B 相互独立

2. 假设随机变量X的分布函数为()F x ,密度函数为()f x .若X与-X有相同的分布函数,则

下列各式中正确的是__C __

A .()F x =()F x -;

B .()F x =()F x --;

C .()f x =()f x -;

D .()f x =()f x --; 3. 若()21

1

~,X N

μσ,()22

2

~,Y N μσ,那么(,)X Y 的联合分布为__C __

A.二维正态,且0ρ=; B. 二维正态,且ρ不定; C. 未必是二维正态; D. 以上都不对 .

4. 设随机变量X和Y的方差存在且不等于0,则()()()D X Y D X D Y +=+是X和Y的__C __

A . 不相关的充分条件,但不是必要条件;

B .独立的必要条件,但不是充分条件;

C . 不相关的充分必要条件;

D . 独立充分必要条件. 二、填空题(本大题共5小题,每小题3分,总计15分

1. 设A 、B 、C 、是三个随机事件。用A 、B 、C 表示事件“A 、B 、C 恰有一个发生”

ABC

ABC ABC ;

2. 设离散型随机变量X 分布律为{}5(1/2)(1,2,)k

p X k A k == =则A= 1/5

3. 用(,)X Y 的联合分布函数(,)F x y 表示{,}p a X b Y c <≤≤= (,)(,)F b c F a c -; 4.已知()~10,0.6,X N ()~1,2,Y N 且X 与Y 相互独立,则()3D X Y -= 7.4 三、计算题(本大题共6小题,每小题10分,共计60分)

1.轰炸机轰炸目标,它能飞到距离目标400,200,100(米)的概率分别为0.5,0.3,0.2,又

设他在距离目标400,200,100(米)的命中率分别为0.01,0.02,0.1。求目标被命中的概率。

1.由全概率公式 2分 0.5*0.010.3*0.020.2*0.10.031++= 7分 目标被命中的概率为0.031. 1分

2.设随机变量X 的概率密度为()f x =10,x

其他

,求①C 值; ②X 的分布函数()F x ;

③求X 落在区间11

(,)22

-内的概率。

2.(1)

(

)1

1f x dx C +∞

-∞

-==?

?

,1

C π

∴=

2分

(2)()()x

F x f t dt -∞

=?

1分

0,111arcsin ,1121,

1x

x x x x π-?≤-?

?==+-<

(3){}()()0.50.50.50.51/3P X F F -<<=--= 3分

3.设二维随机变量(,)X Y 的密度函数:222

21,(,)0,

x y R

f x y R π?+≤?=???其它

求:求关于X 与关于Y 的边缘分布密度;

3. 当R x R -≤≤

时2()(,)X f x f x y dy R

π∞

-∞

===?

,3分 于是

2()0,X R x R

f x R π??-≤≤=???

其他 2分

同理

Y ()0,R x R

f y -≤≤=??

其他 5分

4 .设随机变量X 具有密度函数01()2120x

x f x x

x ≤≤??

=-<≤???

其他,求()E X 及()D X 。

4.12

20

1

()(2)1E X x dx x x dx =+-=?? 5分

1

2

22

3

20

1

()()(2)11/6D X EX EX x dx x x dx =-=+--=?? 5分

四、证明题(本大题共2小题,每小题5分,共10分)

2.设{}k X ,(1,2)k =是独立随机变量序列,21

22120

21111222k k k k k

k X ++??

- ?= ?- ???

证明{}k X 服从大数定律。

2.)

2(.),2,1(,

12

1

)2(21)2()()()

2(,

0212)211(021

)2()(12212221

2212分分 ==+?-===+-

?+?

-=++++k X E X D X E k k k k k k k k

k k k k

由切比雪夫大数定理可知}{k X 服从大数定理。

(1分)

一、填空题(本大题共5小题,每小题4分,总计20分) 1. 设,A B 为随机事件,()0.5P A =,()0.6P B =,()0.7P A

B =,则()|P A B = 2/3

2.设10把钥匙中有2把能打开门, 现任意取两把, 能打开门的概率是 17/45

3.设X ~(10,3),N Y ~(1,2)N , 且X 与Y 相互独立, 则(32)D X Y -= 35 4.设随机变量[0,6]X 在区间上服从均匀分布,则关于未知量x 的方程2

210x Xx ++=有实根的

概率为____5/6_____

5. 设随机变量X 的数学期望()7E X =,方差()5D X =,用切比雪夫不等式估计得

{}212P X <<≥ 4/5 .

二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小

题,每小题4分,总计20分)

1.设事件,A B 相互独立,且()0P A >,()0P B >,,则有 B

(A) ()|0P B A =; (B) ()()|P A B P A =; (C) ()|0P A B =; (D) ()()P AB P A = 2. 设X ~2

(,)N μσ,那么概率{2}P X μ<+ D

(A) 随μ增加而变大; (B) 随μ增加而减小; (C) 随σ增加而不变; (D) 随σ增加而减小

3. 设1{0,0}5P X Y ≥≥=

,2

{0}{0}5

P X P Y ≥=≥=,则{max{,}0}P X Y ≥= C (A) 15; (B) 25; (C) 35; (D) 45

4.设,X Y 相互独立,X 服从()0,2上的均匀分布,Y 的概率密度函数为,0

()0,0y Y e y f y y -?≥=?

则{}1P X Y +≥=__D __

(A) 11e --; (B) 21e --; (C) 212e --; (D) 1

10.5e -- 三、计算题(本大题共5小题,每小题10分,共计50分) 1.某产品整箱出售,每一箱中20件产品,若各箱中次品数为0件,1件,2件的概率分别为80%,

10%,10%,现在从中任取一箱,顾客随意抽查4件,如果无次品,则买下该箱产品,如果有次品,则退货,求: (1) 顾客买下该箱产品的概率;(2) 在顾客买下的一箱产品中,确实无次品的概率.

解:设A 表示“顾客买下该箱产品” ,i B 分别表示“箱中次品数为0件,1件,2件” 0,1,2i =

则()0P B =80%,()1P B =10%()2P B =10%,,()0|P A B =1,()4191420

|C P A B C =,()418

2420

|C P A B C =,(3分)

由全概率公式得:()()()2

|i

i

i P A P A B P B ==

=∑448/475,(7分)

由贝叶斯公式得:()()()

000||()

P A B P B P B A P A =

=95/112 (10分)

2.已知随机变量X 的密度为,01

()0,ax b x f x +<

其它,且{1/2}5/8P x >=,

求: (1) 常数,a b 的值; (2) 随机变量X 的分布函数()F x

解: (1) 由1()/2f x dx a b +∞

-∞

=

=+?

, {}1/2

5/81/2()3/8/2P X f x dx a b +∞

=>==+?

解得

1,1/2a b == (4分)

(2) 0.5,01

()0,x x f x +<

其它,当0x <时, (){}0F x P X x =≤=,当01x ≤<时,

(){}()()20

0.5/2x

F x P X x x dx x x =≤=+=+?

, 当1x ≥时, ()1F x =, 所以

()()20,

0/2,011,

1x F x x x x x

=+≤

≥? (10分)

3.设二维随机变量(,)X Y 有密度函数:21

,01,02;

(,)3

0,

x xy x y f x y ?+≤≤≤≤?=???其他 (1)求边缘概率密度()(),X Y f x f y ;(2)求条件密度()()|||,|X Y Y X f x y f y x ;

(3)求概率{}P X Y >.

解: (1)()(,)X f x f x y dy +∞

-∞

=

?

222/3,01

0,x x x ?+≤≤=??

其他

()(,)Y f y f x y dx +∞

-∞

=?

1/3/6,02

0,

y y +≤≤?=??其他 (4分)

(2) 当02y ≤≤时, ()|(,)|()

X Y Y f x y f x y f y ==2

62,0120,

x xy x y ?+≤≤?=+???

其他

当01x <≤时, ()|(,)|()Y X

X f x y f y x f x =223,02

620,

x xy

y x x

?+≤≤?=+??

?其他 (8分)

(3) {}P X Y >(,)x y

f x y dy >=

?

120017/243x dx x xy dy ??

=+= ??

??? (10分)

4 . 设随机变量,X Y 独立同分布,都服从参数为λ的泊松分布,设2U X Y =+,2V X Y =-,

求随机变量U 与V 的相关系数UV ρ

4 .解: ()()E X E Y λ==,()()D X D Y λ==,()3E U λ=,()3E V λ=

()()5D U D V λ==,()()(),43Cov U V D X D Y λ=-=, (8分)

UV ρ=

分)

四、证明题(本大题共2小题,每小题5分,共10分)

1. 设事件,,A B C 相互独立,证明事件A B -与事件C 也相互独立

1. 证明:由于事件,,A B C 相互独立,所以()()()()P ABC P A P B P C =,

()()()P AB P A P B =,()()()P AC P A P C =,()()()P BC P B P C =,(2分)所以

()()()

P A B C P AC BC -=-()()

P AC P ABC =-()()()()()P A P C P A P B P C =-()()P A B P C =-

即()()P

A B C -()()P A B P C =-,所以事件A B -与C 也相互独立 (5分)

一、填空题(本大题共5小题,每小题4分,总计20分)

1 .设,A B 是两个随机事件, ()=0.7P A , ()=0.3P A B -,则事件“,A B 同时发生”

的对立事件的概率为 0.6

2.设有40件产品,其中有4件次品,从中不放回的任取10次,每次取一件,则最后一件取的

为次品的概率是 0.1 3.设随机变量X 与Y 相互独立,X ~()1,2,N Y ~()0,1,N 则随机变量243Z X Y =-+的方差为 24

4.设随机变量X 的数学期望()75E X =,方差()5D X =,用切比雪夫不等式估计得

{}750.05

P X ε-≥≤,则ε= 10 二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小

题,每小题4分,总计20分)

1.设总体X ~2

(1,)N σ,12,,,n X X X ???是取自总体X 的一个样本, 则为参数2

σ的无偏估计量的

是( A )

(A) 211()1n i i X X n =--∑; (B) 2

11()n i i X X n =-∑; (C) 21

1n i

i X n =∑; (D) 2X 2. 设X ~(,1)N μ,则满足{}{}22P X P X >=≤的参数μ=( C )

(A) 0; (B) 1; (C) 2; (D) 3 3.设3{0,0}7P X Y ≥≥=

, 4

{0}{0}7

P X P Y ≥=≥=, 则{max{,}0}P X Y ≥=( C ) (A) 37; (B) 4

7

; (C) 57; (D) 67

三、计算题(本大题共5小题,每小题10分,共计50分)

1.两个箱子中都有10个球,其中第一箱中4个白球,6个红球,第二箱中6个白球,4个红球,

现从第一箱中任取2个球放入第二箱中,再从第二箱中任取1个球,(1) 求 从第二箱中取的球为白球的概率;(2) 若从第二箱中取的球为白球,求从第一箱中取的2个球都为白球的概率

1.解: 设A 表示“从第二箱中取的球为白球” ,i B 分别表示“从第一箱中取的2个球都为

白球,1白1红,2个球都为红球” 1,2,3i =, 则()1P B =2

4

210

C C =2/15,()2P B =1146210C C C =8/15,

()3P B =2

6210

C C =1/3,()1|P A B =2/3,()2|P A B =7/12,()3|P A B =1/2,(4分) 由

全概率公式得:()()()3

1

|i

i

i P A P A B P B ==

=

∑17/30, 由贝叶斯公式得:

()()()

111||()

P A B P B P B A P A =

=8/51 (10分)

2.设随机变量X 与Y 同分布,X 的概率密度为()f x =2

302

80,

x x ?<≤????,其它 ,事件{}

A X a =>与事件{}

B Y a =>相互独立,且()3

4

P A B =

,求常数a 的值。

2.解: 由于事件,A B 相互独立,所以()()()P AB P A P B =()2

P A =????,所以

()()()()P A B P A P B P AB =+-()()2

23/4P A P A =-=????,解得

()1/2P A =或()3/2P A =(舍去),(5分)

所以(){}31/2()1/8a

P A P X a f x dx a +∞

==>==-?

,得a =分)

3.设二维随机变量(,)X Y 有密度函数:()43,0,0;(,)0,x y Ae x y f x y -+?>>?=???

其他

(1)求常数A ;

(2)求边缘概率密度()(),X Y f x f y ; (3),X Y 是否相互独立。

3.解:(1)(43)0

1(,)d d e d d 12

x y A

f x y x y A x y +∞+∞

+∞

+∞

-+=

==

??

?

?

,12A ∴= (4分) (2)()(,)X f x f x y dy +∞

-∞

=

?

44,0

0,

x e x -?>=??其他

()(,)Y f y f x y dx +∞

-∞

=?

33,0

0,

x e y -?>=??其他(8分)

(3)()()(,)X Y f x y f x f y =,所以,X Y 相互独立。(10分)

4 . 设随机变量X ~()1,9N ,Y ~()0,16N ,相关系数12XY ρ=-,设32

X Y

Z =+ 求: (1) 随机变量Z 的期望()E Z 与方差()D Z ;

(2) 随机变量X 与Z 的相关系数XZ ρ

4 . 解: (1) X ~()1,9N ,Y ~()0,16N ,所以()1E X =,()0E Y =,()9D X =,

()16D Y =,(,)6XY Cov X Y ρ==- ,所以

()()()11332E Z E X E Y =+=,()()()112

(,)3946

D Z D X D Y Cov X Y =++=(5分)

(2) 由于()11(,)(,)0

32Cov X Z D X Cov X Y =+=,所以0XZ ρ== (10

分)

四、证明题(本大题共2小题,每小题5分,共10分)

1. 设事件,,A B C 相互独立,证明事件A

B 与事件

C 也相互独立.

1. 证明:由于事件,,A B C 相互独立,所以()()()()P ABC P A P B P C =,

()()()P AB P A P B =,()()()P AC P A P C =,()()()P BC P B P C =,所以

()()()

P A B C P AC

BC =()()()

P AC P BC P ABC =+-()()()()()()()P A P C P B P C P A P B P C =+-()()()()()()()P A P B P A P C P A P B P C =+- ()()P A B P C =

即()()P

A B C ()()P A B P C =,所以事件A B 与C 也相互独立。(5分)

一、填空题(本大题共6小题,每小题3分,总计18分)

1. 设,A B 为随机事件,()0.8P A B =,()0.4P B =,则()

|P A B = 2/3 2.10个球队平均分成两组进行比赛,则最强的两个队分到同一组的概率为 2/9

3.设随机变量X 在区间[0,1]上服从均匀分布,则X

Y e =的数学期望为 1e - 4.设X ~(,)b n p 为二项分布,且() 1.6E X =,() 1.28D X =,则n =___8___p = 0.2

5. 设随机变量X 在区间[0,2]上服从均匀分布,用切比雪夫不等式估计得{}

12P X -≥≤

1/12 .

二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)

1.设,A B 为事件,且A B ?,则下列式子一定正确的是( B )

(A) ()()P A

B P A =; (B) ()()P BA P A =;

(C) ()()P AB P B =; (D) ()()()P A B P A P B -=-

2. 设随机变量X 的分布率为{}1!

k

P X k a k λ==?, ()1,2,k =,则a = ( D )

(A) e λ-; (B) e λ; (C) 1e λ--; (D) 1e λ

- 3. 设(1,1)X N ,概率密度为()f x ,分布函数为()F x ,则有( A )

(A) {1}{1}P X P X ≤=≥; (B) {0}{0}P X P X ≤=≥;

(C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈

4. 设2{1,1}5P X Y ≤≤=

,3

{1}{1}5

P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( A ) (A) 45; (B) 925

; (C) 35; (D) 2

5

5. 设随机变量(),X Y 满足方差()()D X Y D X Y +=-,则必有( B )

(A) X 与Y 独立; (B) X 与Y 不相关;

(C) X 与Y 不独立; (D) ()0D X =或()0D Y =

三、计算题(本大题共6小题,每小题10分,共计60分) 1.有三个盒子,第一个盒子中有2个黑球,4个白球,第二个盒子中有4个黑球,2个白球,第三个盒

子中有3个黑球,3个白球,今从3个盒子中任取一个盒子,再从中任取1球. (1) 求此球是白球的概率;

(2) 若已知取得的为白球,求此球是从第一个盒子中取出的概率.

解:设A 表示“取得的为白球” ,i B 分别表示“取得的为第一,二,三盒的球” 1,2,3i = 则()()()1231/3P B P B P B ===,()1|2/3P A B =,()2|1/3P A B =,()3|1/2P A B =,(2分)

由全概率公式得:()()()3

1

|i

i

i P A P A B P B ==

=∑1/2,(6分)

由贝叶斯公式得:()()()

111||()

P A B P B P B A P A =

=4/9 (10分)

2.已知连续型随机变量X 的分布函数为0,

()arcsin ,1,

x a x F x A B a x a a x a ≤-???

=+-<≤??

>??,其中0a >为常

数。

求: (1) 常数,A B 的值; (2) 随机变量X 的密度函数()f x ;(3) 2a P X a ??

<< ???

解: (1) 由()F x 右连续性, (

)()F a

F a +

-=-, ()()F a F a +

=得02

A B π

-=,12

A B π

+

=, 解得1/2,1/A B π== (6分)

(2) (

)()0,a x a f x F x -<<'==?

其它, (8分)

(3) 2a P X a ??

<<= ???

()()/2F a F a -=1/3 (10分)

3.设随机变量X 在区间[1,2]上服从均匀分布, 求2X

Y e =概率密度。

3.解: X 的概率密度为()X f x 1,120,

x ≤≤?=?

?其他,2x y e =,220x

y e '=>,反函数导数()12h y y

'=

,{}242min ,e e e α==,{}244max ,e e e β==,所以2X Y e =的概率密度为

()Y f y ()()(),0,X f h y h y y αβ?'≤≤?=?

??

其他()24

1/2,0,y e y e

?≤≤=??其他(10分)

4.设二维随机变量(,)X Y 的密度函数:2,0,01

(,)0,

Ay x y y f x y ?<<<<=??其他

(1)求常数A 的值;(2)求边缘概率密度()(),X Y f x f y ;

(3)X 和Y 是否独立?

4.解: (1)由(,)1f x y dy +∞

-∞

=?

,得4A = (3分)

(2)()(,)X f x f x y dy +∞

-∞

=

?

()21,01

0,

x x ?-≤≤=??其他(6分)

()(,)Y f y f x y dx +∞

-∞

=?

34,01

0,y y ?≤≤=??

其他 (9分)

(3) ()()(,)X Y f x f y f x y ≠,不独立(10分)

5 . 设二维随机变量(,)X Y 的概率密度函数: 6,01(,)0,

x x y f x y <<

?其他

求(1)数学期望()E X 与()E Y ;(2)X 与Y 的协方差(),Cov X Y

5 .解: ()1/2E X =,(2分)()3/4E Y =,(4分)()3/5E XY = (6分),所以

(),Cov X Y ()()()E XY E X E X =-=9/40 (10分)

四、证明题(本大题共1小题,每小题4分,共4分)

1. 设三个事件,,A B C 满足AB C ?,试证明:()()()1P A P B P C +≤+ 1. 证明:由于AB C ?,所以()()P AB P C ≤,所以

()()()()P A P B P A B P AB +=+()()P A B P C ≤+()1P C ≤+ (4分)

一、填空题(本大题共6小题,每小题3分,总计18分)

1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则()()

P AB P AB += 0.1 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 0.4

3.设随机变量X 在区间[0,2]上服从均匀分布,则2

Y X =的概率密度函数为

()1,040,

Y y f y ?<

??其他 4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()2

4E X ??+=??

54

5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}

22P X -≥≤

1/2 .

二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小

题,每小题3分,总计18分)

1.设,A B 为对立事件, ()01P B <<, 则下列概率值为1的是( C )

(A) ()

|P A B ; (B) ()|P B A ; (C) ()

|P A B ; (D) ()P AB

2. 设随机变量X ~()1,1N ,概率密度为()f x ,分布函数()F x ,则下列正确的是( B )

(A) {0}{0}P X P X ≤=≥; (B) {1}{1}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈ 3. 设()f x 是随机变量X 的概率密度,则一定成立的是( B )

(A) ()f x 定义域为[0,1]; (B) ()f x 非负; (C) ()f x 的值域为[0,1]; (D) ()f x 连续

4. 设4{1,1}9P X Y ≤≤=

,5

{1}{1}9

P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( A ) (A) 23; (B) 2081; (C) 4

9

; (D) 13

5. 设随机变量(),X Y 的方差()4D X =,()1D Y =,相关系数0.6XY ρ=,则方差

()32D X Y -= ( D )

(A) 40; (B) 34; (C) 17.6; (D) 25.6

三、计算题(本大题共6小题,每小题10分,共计60分)

1.甲乙丙三个同学同时独立参加考试,不及格的概率分别为: 0.2 ,0.3,0.4,

(1) 求恰有2位同学不及格的概率;

(2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率.

1.解:设,,A B C 分别表示 “甲,乙,丙同学不及格” , 则()0.2P A =,()0.3P B =,()0.4P C =,

由题意,,A B C 相互独立 (2分)

(1) 事件“恰有2位同学不及格” 为: D ABC

ABC ABC =,所以

()P D ()()()P ABC P ABC P ABC =+

()()()()()()()()()P A P B P C P A P B P C P A P B P C =++=0.188 (6分)

(2)()()|()P BD P B D P D = ()()()

P ABC P ABC P D +==33/47 (10分)

2.已知连续型随机变量X 的分布函数为2

20,

0(),0

x x F x A Be x -≤??

=??+>?, 求: (1) 常数,A B 的值; (2) 随机变量X 的密度函数()f x

;(3) )

2P X <<

解: (1) 由()F x 右连续性得()()0

0F F +

=,即0A B +=, 又由()1F +∞=得,1A =, 解

得1,1A B ==- (5分)

(2) ()2

2,0()0,

x

xe x f x F x -??>'==???其它, (8分)

(3) )2P

X <<(

)2F F

=-1

2e

e --=- (10分)

3.设随机变量X 与Y 相互独立,概率密度分别为:

,0()0,

0x X e x f x x -?>=?

≤?,1,01

()0,Y y f y <

3.解: 由于随机变量X 与Y 相互独立,所以Z X Y =+的密度函数为

()()()Z X Y f z f x f z x dx +∞

-∞

=-?

(2分)

1

,01

,10,0z x z x z

e dy z e dy z z ---?<

?

?? 11,01,10,0z z z e z e e z z ---?-<

4.设二维随机变量(,)X Y 的密度函数:,

02,(,)0,

A x y x

f x y ?<<<=?

?其他

(1)求常数A 的值;(2)求边缘概率密度()(),X Y f x f y ;

(3)X 和Y 是否独立?

4.解: (1)由(,)1f x y dy +∞

-∞

=?

,得1/4A = (2分)

(2)()(,)X f x f x y dy +∞

-∞

=

?

1/4,020,

x

x dy x -?≤≤?=????其他 /2,02

0,x x ≤≤?=??其他 (5分)

()(,)Y f y f x y dx +∞

-∞

=?

221/4,20

1/4,020,y

y dx y dx y -?-≤

=?≤

??其他()()2/4,202/4,020,y y y y +-≤

?其他 (9分)

(3) ()()(,)X Y f x f y f x y ≠,不独立(10分)

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

相关文档
相关文档 最新文档