文档视界 最新最全的文档下载
当前位置:文档视界 › 洛伦兹力问题及解题策略(精选.)

洛伦兹力问题及解题策略(精选.)

洛伦兹力问题及解题策略(精选.)
洛伦兹力问题及解题策略(精选.)

洛伦兹力问题及解题策略

《磁场》一章是高中物理的重点内容之一.历年高考对本章知识的考查覆盖面大,几乎每个知识点都考查到,纵观历年高考试题不难发现,实际上单独考查磁场知识的题目很少,绝大多数试题的考查方式为磁场中的通电导线或带电的运动粒子在安培力或洛伦兹力作用下的运动,尤其以带电粒子在洛伦兹力作用下在匀强磁场中做匀速圆周运动的问题居多,侧重于知识应用方面的考查,且难度较大,对考生的空间想象能力及物理过程、运动规律的综合分析能力要求较高.

从近十年高考物理对洛伦兹力问题的考查情况可知,近十年高考均涉及了洛伦兹力问题,并且1994年、1996年、1999年还以压轴题的形式出现,洛伦兹力问题的重要性由此可见一斑;自1998年以来,此类问题连续以计算题的形式出现,且分值居高不下,由此可见,洛伦兹力问题是高考命题的热点之一,可谓是高考的一道“大餐”.全国高考情况是这样,近年开始实施的春季高考及理科综合能力测试也是这样,甚至对此类问题有“一大一小”的现象,即一个计算题,同时还有一个选择题或填空题,故对洛伦兹力问题必须引起高度的重视.本文将对有关洛伦兹力问题的类型做一大致分类,并指出各类问题的求解策略.

一、带电粒子在磁场中做匀速圆周运动的圆心、半径及周期

1.圆心的确定:因为洛伦兹力指向圆心,根据F⊥v,只要画出粒子运动轨迹上的两点(一般是射入和射出磁场的两点)的洛伦兹力方向,沿两个洛伦兹力方向做其延长线,两延长线的交点即为圆心.

2.半径和周期的计算:带电粒子垂直磁场方向射入磁场,只受洛伦兹力,

将做匀速圆周运动,此时应有qvB=m,由此可求得粒子运动半径R=,周期T=2π m/qB,即粒子的运动周期与粒子的速率大小无关.这几个公式在解决洛伦兹力的问题时经常用到,必须熟练掌握.在实际问题中,半径的计算一般是利用几何知识,常用解三角形的知识(如勾股定理等)求解.

[例1]长为L,间距也为L的两平行板间有垂直纸面向里的匀强磁场,如图1所示,磁感强度为B,今有质量为m、带电荷量为q的正离子,从平行板左端中点以平行于金属板的方向射入磁场,欲使离子恰从平行板右端

飞出,入射离子的速度应为多少?

解析应用上述方法易确定圆心O,则由几何知识有

L2+(R-)2=R2

又离子射入磁场后,受洛伦兹力作用而做匀速圆周运动,且有qvB=m

由以上二式联立解得v=5qBL/4m.

[例2]如图2所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E.一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出.(带电粒子的重力和粒子之间的相互作用力均可忽略)

(1)判断所加的磁场方向;

(2)求分别加电场和磁场时,粒子从e孔射出时的速率;

(3)求电场强度E与磁感应强度B的比值.

解析(1)根据粒子在电场中的偏转方向,可知粒子带正电,根据左手定则判断,磁场方向垂直纸面向外.

(2)设带电粒子的电荷量为q,质量为m,盒子的边长为L,粒子在电场中沿ad方向的位移为L,沿ab方向的位移为,在电场中,有L=,=v0t 由动能定理EqL=mv2-mv02

由以上各式解得E=,v=v0.

在电场中粒子从e孔射出的速度为v0,在磁场中,由于粒子做匀速圆周运动,所以从e孔中射出的速度为v0.

(3)带电粒子在磁场中做匀速圆周运动,在磁场中v=v0,轨道半径为R,根据牛顿第二定律得

qvB=m,解出R=

又根据图3所示的几何关系,应有

(L-R)2+()2=R2

解得轨道半径为R=L

故得磁场的磁感应强度B=

因此=5v0.

二、带电粒子在磁场中的运动时间

带电粒子在磁场中做圆周运动,利用圆心角与弦切角的关系,只要设法求出运动轨迹的圆心角大小,由t=T或者t=T即可求出.

[例3]一束电子以速度v垂直射入宽为d的匀强磁场B中,穿出磁场时速度方向发生了60°的偏转,求电子穿出磁场所用的时间.

解析由几何关系,易求得本题电子在磁场中运动时的圆心角为60°,而非120°,则由图4,得r=

而电子在磁场中运动时满足

evB=m

故可得电子穿出磁场所用时间为

t=.

[例4]如图5所示一个质量为m电荷量为q的粒子从A孔以速度v0垂直AO进入磁感应强度为B的匀强磁场并恰好从C孔垂直于OC射入匀强电场中,已知电场方向跟OC平行,OC⊥AD,OD=2OC,粒子最后打在D点(不计粒子重力).求:

(1)粒子从A点运动到D点所需的时间t;

(2)粒子抵达D点的动能E k.

解析(1)由题意可知,带电粒子在磁场中运动了1/4圆周进入电场,则

R=OC=OD/2,这时有qv0B=m

即R=

而t B=T/4=

进入电场后,做类平抛运动,到达D点时,用时

t E=

故粒子从A点运动到D点所需的时间

t=t B+t E=m.

(2)带电粒子在磁场中运动时洛伦兹力与速度方向垂直,因而不做功.而在电场中运动时电场力要做功,即在整个运动过程中只有电场力做功,所以可用动能定理求解.即有

qER=E k-mv02

又在电场中OC=()2==R

即E=Bv0/2

故粒子抵达D点的动能E k=mv02+qER=mv02.

三、范围类问题

所谓范围类问题,即问题所示的答案属于某一范围,如粒子运动速度的范围、磁场磁感强度的范围及带电粒子荷质比的范围等.在解这类问题时要谨慎考虑限制条件,避免解答的片面性.

[例5]如图6所示,在铅板AB上有一个放射源S,可向各个方向射出速率v=2.04×107m/s的β射线.CD为荧光屏(足够大),AB、CD间距d=10cm,其中存在磁感应强度B=6.0×10-4T的匀强磁场,方向垂直纸面向里.已知β粒子的荷质比e/m=1.7×1011C/kg,试求这时在竖直方向上能观察到荧光屏亮斑区的长度.

解析粒子进入匀强磁场后,满足qv0B=m,则R==0.2m

由于β粒子可向各个方向射出,容易看出向上方射出的β粒子及向右方射出的β粒子打在荧光屏上的位置P、Q之间即为亮斑区,这是求解本题之关键.由图7知PO=OQ,故在竖直方向上能观察到荧光屏亮斑区的长度为

PQ=2PO=2=0.2≈0.35m.

四、复合场问题

所谓复合场,即重力、电场力、洛伦兹力共存或洛伦兹力与电场力同时存在等.当带电粒子所受合外力为零时,所处状态是匀速直线运动或静止状态,当带电粒子所受合力只充当向心力时,粒子做匀速圆周运动,当带电粒子所受合力变化且速度方向不在同一直线上时,粒子做非匀变速曲线运动.

[例6]在某空间同时存在着互相正交的匀强电场和匀强磁场,电场的方向竖直向下,如图8,一带电体A带负电,电荷量为q1,恰能静止于此空间的a点;另一带电体B也带负电,电荷量为q2,正在过a点的竖直平面内做半径为r的匀速圆周运动,结果A、B在a外碰撞并粘合在一起,试分析其后的运动情况.[解析]设A、B的质量分别为m1、m2,B的速率为v,

对电荷A q1E=m1g

对电荷B q2E=m2g,且Bq2v=m2

二者碰撞时系统动量守恒,有m2v=(m1+m2)v′, 且此时总电荷量为q1+q2,总质量为m1+m2, 显然仍有

(q1+q2)E=(m1+m2)g

故它们将以速率v′在竖直平面内做匀速圆周运动,并且有

(q1+q2)v′B=(m1+m2)

由以上方程,可得R=q2r/(q1+q2),此即碰撞后二者共同的运动半径.

[例7]有一电子束穿过具有匀强电场和匀强磁场的空间区域,该区域的电场强度和磁感强度分别为E和B,如图9所示.

(1)如果电子束的速度为v0,要使电子束穿过上述空间区域不发生偏转,电场和磁场应满足什么条件?

(2)如果撤去磁场,电场区域的长度为l,电场强度的方向和电子束初速度方向垂直,电场区域边缘离屏之间的距离为d,要使电子束在屏上偏移距离为y,所需加速电压为多大?

解析(1)要使电子不发生偏转,则应有电场力与洛伦兹力相等,即eE=ev0B,则E=v0B.

(2)电子在电场中向上偏转量s=t2,且tanθ==,而在加速电场中,有eU=mv02,且l=v0t,又偏移距离y=s+dtanθ,解以上方程得U=.

五、带电粒子在电磁场中的动态运动问题

顾名思义,在处理带电粒子或带电物体,在电磁场中的动态问题时,要正确进行物体的运动状况分析,找出物体的速度、位置及其变化,分清运动过程,注意正确分析其受力,此乃求解之关键.

[例8] 如图10所示,套在很长的绝缘直棒上的小球,其质量为m,带电荷量为+q,小球可在棒上滑动,将此棒竖直放在互相垂直且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的动摩擦因数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电荷量不变) 解析小球的受力情况如图10所示,且有

N=qE+qvB

因而F合=mg-μ(qE+qvB),显然随着v的增大,F合减小,其加速度也减小,即小球做加速度减小的变加速度运动,当a=0时,速度达最大值,故可解得

v=0时,a m==g-

a=0时,即mg-μ(qE+qvB)=0时,v m=.

六、极值问题

求极值是物理学中的一类重要问题,可以通过对物理过程准确分析反映学生分析问题的能力,一般地首先要建立合理的物理模型,再根据物理规律确定极端情况而求极值,此即所谓的物理方法求极值.当然根据需要也可以采用其他方法如几何方法、三角方法、代数方法等.

[例9]如图11所示,真空的狭长的区域内有宽度为d,磁感强度为B的匀强磁场,质量为m、电荷量为q的带负电的粒子,从边界AB垂直磁场方向以

一定的速率v射入磁场,并能从磁场边界CD穿出磁场,则粒子入射速度跟边界AB成角θ=_________时,粒子在磁场中运动时间最短.(不计重力,结果用反三角函数表示)

解析带电粒子以一定的速率射入磁场时,其运动半径是一定的.当粒子在磁场中运动时间最短时,圆周的圆心角应最小,即对应的弧长(或弦长)也最短.显然,最短的弦长为磁场宽度d,由图12,则有cosθ=时,即R=,又qvB=m,则有

R=,故cosθ=.

因此,粒子入射速度跟边界AB成角θ=arccos时,粒子在磁场中运动时间最短.

[例10]顶角为2θ的光滑圆锥置于方向竖直向下的匀强磁场中,小球质量为m,带电荷量为q,磁场的磁感强度为B,小球沿圆锥面做匀速圆周运动,则:

(1)顺着磁场方向看,小球如何运动?

(2)小球运动的最小半径是多少?

[解析]小球此时受重力及弹力作用,要使小球能绕圆锥运动,当小球处于图13位置时还须受水平方向向右的洛伦兹力,由左手定则可判知小球由图示位置向外运动,即顺着磁场方向看,小球逆时针运动.

在水平方向有qvB-Ncosθ=m

在竖直方向有Nsinθ=mg

故qvB-mgcotθ=m

即mv2-qvBR+mgRcotθ=0

当该方程有解时,则必有(qBR)2-4m2gRcotθ≥0

解之得R≥4m2g/q2B2tanθ,因此小球运动的最小半径为R=4m2g/q2B2tanθ.

七、洛伦兹力在实际中的应用

电场可以对带电粒子有电场力的作用,而磁场对运动的带电粒子有洛伦兹力作用.当电场和磁场共同存在时,对带电粒子也会施加影响,这一知识在现代科学技术中有着广泛的应用.

1.带电粒子在电场力和洛伦兹力同时作用下的运动主要有三种应用,即速度选择器、磁流体发电机和霍尔效应.

2.带电粒子在电场力与洛伦兹力递次作用可交替作用下的运动也有三种应用,即电视显像管、质谱仪和回旋加速器.

[例11]质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图14所示,离子源S产生的一个质量为m电荷量为q的正离子,离子产生时速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆周运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是( )

A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大;

B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大

C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大

D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小

解析离子加速时,有qU=,在匀强磁场中,做圆周运动,有qvB=m,而x=2R,由以上方程,得x2=,可见本题正确选项为D.

[例12] 磁流体发电技术是一种目前世界上正在研究的新兴技术,它可以直接把内能转化为电能,同时具有效率高(可达45%~55%,火力发电效率为30%),污染少等优点.其原理如图15所示,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)以声速的0.8~2.5倍的速度喷射入磁场中,磁场中有两块金属板A、B,这时A、B上就积聚电荷产生电压,设粒子所带电荷量为q,进入磁场的喷射速度是v,磁场的磁感应强度为B,两块金属板的面积为S,AB间的距离为d.

(1)该磁流体发电机的电动势有多大?

(2)设磁流体发电机内阻为r,当外电阻R是多少时输出功率最大?并求最大输出功率.

(3)为使等离子体以恒定速度v通过磁场必须使通道两端保持一定的压强差,压强差为多大?

解析(1)磁流体发电机的电动势即为S断开时,电源两极板间的电势差,在洛伦兹力作用下,等离子体中的正、负电荷分别向上、下板偏转,使两极板间产生电势差,且电势差随着电荷在两极板上的积累而增大,当电荷不偏转时,

两极板间电势差达到最大值.此时有qvB=qE=q,则U=Bdv.该磁流体发电机的电动势E=Bdv.

(2)发电机的输出功率

P=I2R=()2R=

=

显然,当外电阻R=r时输出功率最大,且

P m=.

(3)当等离子体受到的洛伦兹力与等离子压力差相等时方可以恒定速度通过磁场,即有

△p=

又F=BId,I==

解之得△p=.

八、与力学的综合题

这类问题是以洛伦兹力为载体,本质上可看作是力学题,故解题中在考虑洛伦兹力的前提下,可以利用解决力学问题的三大方法处理之,即动力学观点,包括牛顿三大定律和运动学规律;动量观点,包括动量定理和动量守恒定律;能量观点,包括动能定理和能量守恒定律.在上述方法中,应首选能量观点和动量观点,对多个物体组成的系统,优先考虑两大守恒定律.

[例13]一小球质量为m,带负电,电荷量为q,由长l的绝缘丝线系住,置于匀强磁场中,丝线的另一端固定在A点,提高小球,使丝线拉直与竖直方向成60°角,如图16所示.调节磁场的磁感强度B0,释放小球,球能沿圆周运动,到最低点时,丝线的张力为零,且继续摆动,求:

(1)摆球至最低点时的速度;

(2)B0的值;

(3)小球在摆动过程中丝线受的最大拉力.

解析(1)小球在磁场中受到重力、弹力及洛伦兹力作用,但从释放到运动至最低点只有重力做功,由动能定理,则有mgl(1-cos60°)=mv2解之得v=.

(2)在最低点时,洛伦兹力与重力的合力提供向心力,即有qvB0-mg=m,由以上二式,解得B0=.

(3)由于小球运动方向的不同而使洛伦磁力方向改变,不难判断当小球从右边开始运动时,张力较大,且最低处张力最大,此时有T-qvB0-mg=m 解之得T=4mg.

[例14]一带电液滴在互相垂直的匀强电场和匀强磁场中运动,已知E和B,若此液滴在垂直磁场的平面内做半径为R的匀速圆周运动,如图17所示.求:

(1)液滴速度的大小,绕行方向;

(2)液滴运动到轨道最低点A分裂为质量、电荷量都相等的两液滴,其中一个液滴仍在原运动平面内做半径R1=3R的匀速圆周运动,绕行方向不变,且这个圆周最低点仍为A,则另一个液滴如何运动?

解析本题文字叙述较长,但只要理解题意,求解仍是较简单的.

(1)据题意,应有qE=mg,由此可判断液滴带负电,且qvB=m,则

v=BqR/m=BgR/E,方向为顺时针方向.

(2)分裂后,有.

则v1=3BqR/m=3BgR/E

由动量守恒定律,则有mv=

故v2=2v-v1=-BgR/E

这说明,另一液滴做反方向的圆周运动,且半径不变.

[例15]一个质量m,带有+q电荷量的小球,悬挂在长为L的细线上,放在匀强磁场中,其最大摆角为α,为使摆的周期不受磁场影响,磁感应强度B 应有何限制?

解析由左手定则易判断:小球向左摆动时,所受洛伦兹力背离悬点,将使悬线张力增加,但不影响摆的周期,而向右摆动时,如B足够大,小球可能向悬点移动进而破坏其正常摆动.

设小球处于图中的位置时摆球速度为v,当周期不受磁场影响时由机械能守恒定律,有

=mgL(cosβ-cosα)

据牛顿第二定律,有

T+qvB-mgcosβ=m

由以上二式可求得T=0时的B值,且B=,可见,T=0时B的取值与小球运动的速度v有关.

由有关数学方法可以求得当时,B有最小值,即v=

时,最小值B min=.

这说明了当B=B min时,其他位置上悬线的张力均大于零,故使摆周期不受影响的磁感应强度应满足条件

B min≤.

[例16]如图19所示,在某一足够大的真空室中虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E,方向水平向左的匀强电场.在虚线PH上的一点O处有质量为M,电荷量为Q的镭核().某时刻原来静止的镭核水平向右放出一个质量为m,电荷量为q的α粒子而衰变为氡核(Rn),设α粒子与氡核分离后它们之间的作用力可忽略不计,涉及动量问题时,亏损的质量可不计.

(1)写出镭核衰变为氡核的核反应方程;

(2)经过一段时间α粒子刚好垂直到达虚线PH上的A点,测得OA=L,求此刻氡核的速度.

解析(1)根据核衰变的特点可知,镭核衰变为氡核时满足电荷数守恒和质量数守恒,故有.

(2)镭核衰变时遵守动量守恒定律,则(M-m)v0=mv

α粒子在匀强磁场做匀速圆周运动,在磁场中运动了圆周,则到达A点需时t=

且有qvB=m,R=L/2

而氡核在电场中做匀加速直线运动,t时刻速度v t=v0+at,同时满足牛顿第二定律,即

(Q-q)E=(M-m)a,联立以上各式解得所求氡核速度为

v t=.

最新文件仅供参考已改成word文本。方便更改

高二物理沪科版选修3-1 5.6洛伦兹力与现代科技 教案

5.6洛伦兹力与现代科技 教材分析 本节是本章知识的重要应用之一,是力学知识和电磁学知识的综合。通过对本节知识的学习,学生能够把洛伦兹力和动力学知识有机地结合起来,加深对力、磁场知识的理解,有利于培养学生用物理规律解决实际问题的能力。 教学目标 1.知识与技能 (1)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。 (2)会分析利用磁场控制带电粒子运动问题。 (3)知道质谱仪的工作原理。知道回旋加速器的基本构造、工作原理及用途。 2.过程与方法 通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题,培养学生的分析推理能力。 3.情感、态度与价值观 通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 教学重点难点 重点:带电粒子在匀强磁场中做匀速圆周运动问题。 难点:带电粒子在匀强磁场中的受力分析及运动径迹。 教学方法 讲述法、分析推理法。 教学过程

一.带电粒子在磁场中的圆周运动 (1)运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功。 【注意】 带电粒子做圆周运动的向心力由洛伦兹力提供。 通过“思考与讨论”,使学生理解带电粒子在匀强磁场中做匀速圆周运动的轨道半径r 和周期T 与粒子所带电荷量、质量、粒子的速度、磁感应强度有什么关系。 [出示投影] 一带电量为q ,质量为m ,速度为v 的带电粒子垂直进入磁感应强度为B 的匀强磁场中,其半径r 和周期T 为多大? [问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力] [问题2]向心力的计算公式是什么?[F =mv 2/r ] [教师推导]粒子做匀速圆周运动所需的向心力F =m v 2r 是由粒子所受的洛伦兹力提供的,所以qvB =mv 2/r ,由此得出r =mv qB ,T =2πr v =2πm qB ,可得T =2πm qB 。 (2)轨道半径和周期 带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式。 ①轨道半径r =mv qB ②周期T =2πm /qB 【说明】 (1)轨道半径和粒子的运动速率成正比。 (2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。 例1.如图所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电

安培力洛伦兹力重点分析

知识点: 1. 安培力:磁场对电流的作用力。 2. 安培力的方向判断:左手定则,安培力与电流方向、磁场有效方向相互垂直。 3. 安培力的大小:BLI F 。 4. 磁感应强度:通电导线与磁场方向垂直时,通电导线所受的安培力F 与跟电流I 和导线长度L 的乘积IL 的比值。B=F/IL 单位:特(特斯拉)T 。是描述磁场强弱的物理量 5. 匀强磁场:磁场强弱、方向处处相等的磁场。 磁通量:在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直面积为S 的平面,则磁感应强度B 与面积S 的乘积叫做磁通量,简称磁通。Φ=BS 单位:韦(伯) Wb 。 标量,但有正负 一、应用安培力应注意的问题 1、分析受到的安培力时,要善于把立体图,改画成易于分析受力的平面图形 2、注意磁场和电流的方向是否垂直 二、判断通电导线在安培力作用下的运动方向问题 1.画出导线所在处的磁场方向 2.确定电流方向 3.根据左手定则确定受安培力的方向 4.根据受力情况判断运动情况 三、处理导线受到安培力的一般思路 先对导线进行受力分析,画出导线的受力平面图,然后依照F 合=0,F 合=ma , 列出相应的方程 17.(13分)如图所示,两平行光滑的导轨相距l =0.5m ,两导轨的上端通过一阻值为R =0.4Ω的定值电阻连接,导轨平面与水平面夹角为θ=30o,导轨处于磁感应强度为B =1T 、方向垂直于导轨平面向上的匀强磁场中,一长度恰等于导轨间距、质量为m =0.5kg 的金属棒, 由图示位置静止释放,已知金属棒的电阻为r =0.1Ω,导轨电阻不计,g =10m/s 2 。求: (1)求金属棒释放后,所能达到的最大速度v m ; (2)当金属棒速度达v =2m/s 时,其加速度的大小; (3)若已知金属棒达最大速度时,下滑的距离为s =10m ,求金属棒下滑过程中,棒中产生的焦耳热。 1. 磁场对电流有力的作用,而通电导体中的电流是由电荷的定向移动形成的。洛伦兹力是

高中物理 洛伦兹力与现代技术

第6节 洛伦兹力与现代技术 位于法国和瑞士边界的欧洲核子研究中心 知识梳理 一、带电粒子在磁场中的运动 1.运动轨迹 (1)匀速直线运动:带电粒子的速度方向与磁场方向平行(相同或相反),此时带电粒子所受洛伦兹力为0,粒子将以速度v 做匀速直线运动. (2)匀速圆周运动:带电粒子垂直射入匀强磁场,由于洛伦兹力始终和运动方向垂直,因此,带电粒子速度大小不变,但是速度方向不断在变化,所以带电粒子做匀速圆周运动,洛伦兹力提供向心力. 2.轨迹半径和周期 由F 向=f 得q v B =m v 2R ,所以有R = m v qB ,T = 2πm qB . 二、质谱仪 1.构造 如图3-6-2所示,主要由以下几部分组成:

图3-6-2 ①带电粒子注入器 ②加速电场(U) ③速度选择器(B1、E) ④偏转磁场(B2) ⑤照相底片 2.原理 利用磁场对带电粒子的偏转,由带电粒子的电荷量、轨道半径确定其质量,粒子由加速电场 加速后进入速度选择器,匀速运动,电场力和洛伦兹力平衡qE=q v B1,v=E B1粒子匀速直线 通过进入偏转磁场B2,偏转半径r=m v qB2,可得比荷q m= E B1B2r. 【特别提醒】①速度选择器两极板间距离极小,粒子稍有偏转,即打到极板上.②速度选择器对正负电荷均适用.③速度选择器中的E、B1的方向具有确定的关系,仅改变其中一个方向,就不能对速度做出选择. 三、回旋加速器 1.结构:回旋加速器主要由圆柱形磁极、两个D形金属盒、高频交变电源、粒子源和粒子引出装置等组成. 2.原理 回旋加速器的工作原理如图3-6-3所示.放在A0处的粒子源发出一个带正电的粒子,它以某一速率v0垂直进入匀强磁场中,在磁场中做匀速圆周运动.经过半个周期,当它沿着半圆A0A1时,我们在A1A1′处设置一个向上的电场,使这个带电粒子在A1A1′处受到一次电场的加速,速率由v0增加到v1,然后粒子以速率v1在磁场中做匀速圆周运动. 我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着增大了的圆周运动.又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,我们在A2′A2处设置一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2,如此继续下去.每当粒子运动到A1A1′、A3A3′等处时都使它受到一个向上电场力加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到一个向下电场力加速,那么,粒子将沿着图示的螺旋线回旋下去,速率将一步一步地增大.

高中物理洛伦兹力的知识点介绍

高中物理洛伦兹力的知识点介绍 洛伦兹力是带电粒子在磁场中运动时受到的磁场力。 洛伦兹力f的大小等于Bvq,其的特点就是与速度的大小相关,这是高中物理中少有的一个与速度相关的力。 我们从力的大小、方向、与安培力关系这三个方面来研究洛伦兹力。 洛伦兹力的大小 ⒈当电荷速度方向与磁场方向垂直时,洛伦兹力的大小f=Bvq;高中物理网建议同学们用小写的f来表示洛伦兹力,以便于和安培力区分。 ⒉磁场对静止的电荷无作用力,磁场只对运动电荷有作用力,这与电场对其中的静止电荷或运动电荷总有电场力的作用是不同的。 ⒊当时电荷沿着(或逆着)磁感线方向运行时,洛伦兹力为零。 ⒋当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小 f=Bvqsinθ; 洛伦兹力的方向 ⒈用左手定则来判断:让磁感线穿过手心,四指指向正电荷运动的方向(或负电荷运动方向的反方向),大拇指指向就是洛伦兹力的方向。 ⒉无论v与B是否垂直,洛伦兹力总是同时垂直于电荷运动方向与磁场方向。 洛伦兹力的特点

洛伦兹力的方向总与粒子运动的方向垂直,洛伦兹力只改变速度的方向,不改变速度的大小,故洛伦兹力永远不会对v有积分,即洛伦兹力永不做功。 安培力和洛伦兹力的关系 洛伦兹力是磁场对运动电荷的作用力,安培力是磁场对通电导线的作用力,两者的研究对象是不同的。 安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观实质。 对洛伦兹力和安培力的联系与区别,可从以下几个方面理解: 1.安培力大小为F=ILB,洛伦兹力大小为F=qvB。安培力和洛伦兹力表达式虽然不同,但可互相推导,相互印证。 2.洛伦兹力是微观形式,安培力是宏观表现。洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受的洛伦兹力的宏观表现。 3.即使安培力是导体中所有定向移动的自由电荷受的洛伦兹力的宏观表现,但也不能认为定培力就简单地等于所有定向移动电荷所受洛伦兹力的和,一般只有当导体静止时才能这样认为。 4.洛伦兹力不做功,安培力能够做功。 安培力与洛伦兹力的方向判定 即使洛伦兹力和安培力的方向都由左手定则判定,但它们又是有区别的。 安培力方向判定的左手定则中,四指指向电流方向;而洛伦兹力方向判定的左手定则却是,四指指向正电荷的运动方向,负电荷受力与正电荷方向相反。

高中物理专题训练洛伦兹力

磁场对运动电荷的作用力 1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( ) 2.如图所示,a是带正电的小物块,b是一不带电的绝缘物块,A,B叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F 拉b物块,使A,B一起无相对滑动地向左加 速运动,在加速运动阶段( ) A.A,B一起运动的加速度不变 B.A,B一起运动的加速度增大C.A,B物块间的摩擦力减小 D.A,B物块间的摩擦力增大 3.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是( ) A.油滴必带正电荷,电荷量为 B.油滴必带正电荷,比荷= C.油滴必带负电荷,电荷量为 D.油滴带什么电荷都可以,只要满足q = 4.(多选)在下列各图所示的匀强电场和匀强磁场共存的区域内,电子可能 沿水平方向向右做直线运动的是( ) 5. (多选)在图中虚线所示的区域存在匀强电场和匀强磁场.取坐标如图, 一带电粒子沿x轴正方向进入此区域,在穿过此区域的过程中运动方始终不 发生偏转,不计重力的影响,电场强度E和磁感应强度B的方向可能是 ( ) A.E和B都沿x轴方向 B.E沿y轴正向,B沿z轴正向 C.E沿z轴正向,B沿y轴正向 D.E,B都沿z轴方向 6. (多选)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端 安装了如图7所示的流量计,该装置由绝缘材料制成,长,宽,高分别为 a,b,c,左右两端开口,在垂直于上,下底面方向加磁感应强度为B的匀 强磁场,在前,后两个内侧固定有金属板作为电极,污水充满管口从左向右 流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单 位时间内排出的污水体积),下列说法中正确的是( ) A.若污水中正离子较多,则前表面比后表面电势高 B.前表面的电势一定低于后表面的电势,与哪种离 子多少无关 C.污水中离子浓度越高,电压表的示数将越大 D.污水流量Q与U成正比,与a,b无关 7.(多选)如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量 为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且 相互垂直的匀强磁场和匀强电场中,设小球的电荷量不变,小球由静止下滑 的过程中( ) A.小球加速度一直增大 B.小球速度一直增大,直到最后匀速 C.棒对小球的弹力一直减小 D.小球所受洛伦兹力一直增大,直到最后不变 8.一个质量为m=0.1 g的小滑块,带有q=5×10-4C的电荷量,放置在倾 角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中, 磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,斜面足 够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求: (1)小滑块带何种电荷? (2)小滑块离开斜面时的瞬时速度多大? (3)该斜面长度至少多长? 9.光滑绝缘杆与水平面保持θ角,磁感应强度为B 的匀强磁场充满整个空间,一个带正电q、质量为 m、可以自由滑动的小环套在杆上,如图所示,小 环下滑过程中对杆的压力为零时,小环的速度为________. 10.如图所示,质量为m的带正电小球能沿着竖直的绝缘墙竖 直下滑,磁感应强度为B的匀强磁场方向水平,并与小球运动 方向垂直.若小球电荷量为q,球与墙间的动摩擦因数为μ.则 小球下滑的最大速度为____________,最大加速度为____________. 11.如图所示,各图中的匀强磁场的磁感应强度均为B,带电粒子的速率均 为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛 伦兹力的方向.

安培力和洛伦兹力测试题

安培力和洛伦兹力 一、选择题 1.如图所示,长为2L 的直导线拆成边长相等、夹角为60°的V 形,并置于与其所在平 面相垂直的匀强磁场中,磁场的磁感应强度为B ,当在该导线中通以大小为I 的电流时, 该V 形通电导线受到的安培力大小为( ) A .0 B .0.5BIL C .BIL D .2BIL 2.某同学画的表示磁场B 、电流I 和安培力F 的相互关系如图所示,其中正确的是( ) 3.对磁感应强度的定义式IL F B 的理解,下列说法正确的是 ( ) A .磁感应强度B 跟磁场力F 成正比,跟电流强度I 和导线长度L 的乘积成反比 B .公式表明,磁感应强度B 的方向与通电导体的受力F 的方向相同 C .磁感应强度B 是由磁场本身决定的,不随F 、I 及L 的变化而变化 D .如果通电导体在磁场中某处受到的磁场力F 等于0,则该处的磁感应强度也等于0 4.如图所示,矩形导线框abcd 与无限长通电直导线MN 在同一平面内,直导线中的电流方由M 到N ,导线框的ab 边与直导线平行。若直导线中的电流增大,导线框中将产生感应电流,导 线框会受到安培力的作用,则以下关于导线框受到的安培力的判断正确的是( ) A .导线框有两条边所受安培力的方向相同 B .导线框有两条边所受安培力的大小相同 C .导线框所受的安培力的合力向左 D .导线框所受的安培力的合力向右 5.如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a 、b 和c ,各导线中的电流大小相同,其中a 、c 导线中的电流方向垂直纸面向外,b 导线电流方向垂直纸面向内。每根导线都受到另外两根导线对它的安培力作用。关于每根导线所受安培力的合力,以下说法中正确的是( ) A .导线a 所受安培力的合力方向向右 B .导线c 所受安培力的合力方向向右 C .导线c 所受安培力的合力方向向左 D .导线b 所受安培力的合力方向向左 6.如图所示,有一固定在水平地面上的倾角为θ的光滑斜面,有一根水平放在斜面上的导体棒,长为L ,质量为m ,通有垂直纸面向外的电流I 。空间中存在竖直向下的匀强磁场,磁感应强度为B 。现在释放导体棒,设导体棒受到斜面的支持力为N ,则关于导体棒的受力分析一定正 确的是(重力加速度为g ) ( ) A .mgsinθ=BIL B .mgtanθ=BIL C .mgcosθ=N -BILsinθ D .Nsinθ=BIL 7、 如图所示,两根长通电导线M 、N 中通有同方向等大小的电流,一闭合线框abcd 位于两平行通电导线所在平面上,并可自由运动,线框两侧与导线平行且等距,当 线框中通有图示方向电流时,该线框将( ) A .ab 边向里,cd 边向外转动 B .ab 边向外,cd 边向里转动 C .线框向左平动,靠近导线M D .线框向右平动,靠近导线N

高中物理专题训练洛伦兹力

磁场对运动电荷的作用力 1.质量为m、带电荷量为q的小物块,从倾角为的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是() A.小物块一定带正电荷 B.小物块在斜面上运动时做匀加速直线运动 C.小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动 D.小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为 2.(多选)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够 长,小球在运动过程中电量保持不变,杆上各处的动摩 擦因数相同,则小球运动的速度v与时间t的关系图象 可能是() 3.如图所示,有一磁感应强度为B、方向竖直向上的匀强磁场,一束电子流以 初速度v从水平方向射入,为了使电子流经过磁场时不偏转(不计重力),则磁 场区域内必须同时存在一个匀强电场,这个电场的场强大小和方向是( ) A.B/v,竖直向上 B.B/v,水平向左 C.Bv,垂直于纸面向里 D.Bv,垂直于纸面向外 4.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁 血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀 的.使用时,两电极A,B均与血管壁接触,两触点的连线、磁场方向和血流 速度方向两两垂直,如图所示.由于血液中的正负离子随血流一起在磁场中运 动,电极A,B之间会有微小电势差.在达到平衡时,血管内部的电场可看作 是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测 中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为 160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极A,B的 正负为( ) A. 1.3 m/s,a正、b负 B. 2.7 m/s,a正、b负 C. 1.3 m/s,a负、b正 D. 2.7 m/s,a负、b正 5.(多选)如图所示,质量为m,电量为q的带正电物体,在磁感应强度为 B,方向垂直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动, 则( ) A.物体的速度由v 减小到零的时间等于 B.物体的速度由v 减小到零的时间大于 C. 若另加一个电场强度大小为,方向水平向右的匀强电场,物体将 做匀速运动 D. 若另加一个电场强度大小为,方向竖直向上的匀强电场,物体将 做匀速运动 6.(多选)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平 向右,磁场方向垂直纸面向里,一带电微粒从a点进入场区并刚好能沿ab直 线向上运动,下列说法中正确的是( ) A.微粒一定带负电 B.微粒的动能一定减小 C.微粒的电势能一定增加 D.微粒的机械能一定增加 7.(多选)如图所示,一个带正电荷的小球沿光滑水平绝缘的桌面向右运动, 飞离桌子边缘A,最后落到地板上.设有磁场时飞行时间为t1,水平射程为 x1,着地速度大小为v1;若撤去磁场而其余条件不变时,小球飞行的时间为 t2,水平射程为x2,着地速度大小为v2.则( ) A.x1>x2 B.t1>t2 C.v1>v2 D.v1=v2 8.如图所示为一速度选择器,也称为滤速器的原理图.K为 电子枪,由枪中沿KA方向射出的电子,速率大小不一.当电子通过方向互相 垂直的匀强电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S. 设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直于纸面的匀强 磁场的磁感应强度为0.06 T,问: (1)磁场的指向应该向里还是向外? (2)速度为多大的电子才能通过小孔S? 9.如图所示,某空间存在着相互正交的匀强电场E和匀强磁场B,匀强电场方 向水平向右,匀强磁场方向垂直于纸面水平向里。B=1 T,E=10N/C,现 有一个质量为m=2×10-6kg,电荷量q=2×10-6C的液滴以某一速度进入该 区域恰能做匀速直线运动,求这个速度的大小和方向(g取10 m/s2)。 10.如图所示,套在很长的绝缘直棒上的小球,其质量为m、带电荷量为+q, 小球可在棒上滑动,将此棒竖直放在正交的匀强电场和匀强磁场中,电场强度 是E,磁感应强度是B,小球与棒的动摩擦因数为μ,求小球由 静止沿棒下落到具有最大加速度时的速度____________.所能达 到的最大速度______________. 11.如图所示,一个质量为m带正电的带电体电荷量为 q,紧贴着水平绝缘板的下表面滑动,滑动方向与垂直纸 面的匀强磁场B垂直,则能沿绝缘面滑动的水平速度方向________,大小v应 不小于________,若从速度v0开始运动,则它沿绝缘面运动的过程中,克服摩 擦力做功为________.

安培力和洛伦兹力的关系

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。 (1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。 (a )求导线中的电流I ; (b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。 (2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。 (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有:neSv t t neSv t q I =??=??= (b )每个自由电子所受的洛仑兹力:F 洛=evB 设导体中共有N 个自由电子:N =n ·Sl 导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB 由安培力公式,有:F 安=BlI =Bl ·neSv 得:F 安= F (2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv 如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:t nSv N ?=6 1 Δt 时间内粒子给器壁的冲量为:t nSmv l N I ?=?=23 1 面积为S 的器壁受到粒子压力为:t I F ?= 器壁单位面积所受粒子压力为:231nmv S F f == 安培力与洛仑兹力的关系 杨兴国 运动电荷在磁场中受到洛仑兹力,通电导线在磁场中受到安培力,导线中的电流是由大量自由电子的定向移动形成的,安培力与洛仑兹力之间必定存在密切的关系,可以认为安培力是洛仑兹力的宏观表现,洛仑兹力是安培力的微观实质,但不能认为安培力是导线上自由电子所受洛仑兹力的合力,也不能认为安培力是通过自由电子与导线的晶格骨架碰撞产生的. 图中,通电导线置于静止的磁场之中,导线通有电流I ,长为d l 的导线元,所受的安培力为I d l ×B . 从微观的角度看,导线中的自由电子以速度v 向右运动,在洛仑兹力f =-ev ×B 的作用下,以圆周运动的方式向导线下方侧向偏移,使导线下侧出现负电荷的积累;在导线中产生侧向的霍耳电场,霍耳电场对自由电子有作用力,阻碍自由电子作侧向运动.经过一段时间后,自由电子受到的洛仑兹力与霍耳电场力N 平衡,自由电子只沿导线方向作定向运动,此时,-eE +(-ev ×B )=0,霍耳电场的场强 t

高中物理-洛伦兹力

洛伦兹力 洛伦兹力是带电粒子在磁场中运动时受到的磁场力。 洛伦兹力f的大小等于Bvq,其最大的特点就是与速度的大小相关,这是高中物理中少有的一个与速度相关的力。 我们从力的大小、方向、与安培力关系这三个方面来研究洛伦兹力。 洛伦兹力的大小 ⒈当电荷速度方向与磁场方向垂直时,洛伦兹力的大小f=Bvq;高中物理网建议同学们用小写的f来表示洛伦兹力,以便于和安培力区分。 ⒉磁场对静止的电荷无作用力,磁场只对运动电荷有作用力,这与电场对其中的静止电荷或运动电荷总有电场力的作用是不同的。 ⒊当时电荷沿着(或逆着)磁感线方向运行时,洛伦兹力为零。 ⒋当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小f=Bvqsinθ; 洛伦兹力的方向

⒈用左手定则来判断:让磁感线穿过手心,四指指向正电荷运动的方向(或负电荷运动方向的反方向),大拇指指向就是洛伦兹力的方向。 ⒉无论v与B是否垂直,洛伦兹力总是同时垂直于电荷运动方向与磁场方向。 洛伦兹力的特点 洛伦兹力的方向总与粒子运动的方向垂直,洛伦兹力只改变速度的方向,不改变速度的大小,故洛伦兹力永远不会对v有积分,即洛伦兹力永不做功。 安培力和洛伦兹力的关系 洛伦兹力是磁场对运动电荷的作用力,安培力是磁场对通电导线的作用力,两者的研究对象是不同的。 安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观实质。两者之间的推导请阅读《安培力与洛伦兹力》 对洛伦兹力和安培力的联系与区别,可从以下几个方面理解: 1.安培力大小为F=ILB,洛伦兹力大小为F=qvB。安培力和洛伦兹力表达式虽然不同,但可互相推导,相互印证。 2.洛伦兹力是微观形式,安培力是宏观表现。洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受的洛伦兹力的宏观表现。

高中物理——安培力与洛伦兹力及物理规律

安培力与洛伦兹力在作用效果上有什么不同为什么有时候安培力做功而洛伦兹力不做功 安培力时洛仑兹力的宏观表现。洛仑兹力f=qvB,电流的微观表达式I=nqSv(n 为单位体积自由电子个数,q 为每个电子的电荷量,S 为导线横截面积,v 为自由电子定向移动速率)。一长为L 横截面积为S 的导线,所含自由电子个数为N=SLn ,安培力F=BIL=BnqSvL=(SLn)qvB=(SL,n)即f 安培力为导线中每个电子所受力的洛仑兹力的总和。 洛仑兹力对电荷不做功,但是安培力对导线可以做功,而且安培力又是洛仑兹力的宏观表现,那么为什么呢(这个问题本来就很绞的,很多人读完高中都没搞清楚,所以好好领悟)洛仑兹力对电荷不做功,但是并不代表洛仑兹力的分力对运动电荷不做功。一段导线,假设在磁场中受安培力而水平移动。注意,电子也在沿导线运动。所以根据运动的合成与分解,电子的运动轨迹是斜着的。洛仑兹力是垂直于电子运动轨迹的,所以洛仑兹力一定是斜着的。那么我们就可以将洛仑兹力分解为垂直于导线方向和沿导线方向(既然都预习到这里了,应该知道力的分解吧)。垂直于导线方向的洛仑兹力分力做正功,沿导线方向的分力做负功,这样实现了电能与界械能的转化。正功使导线机械能增加(就是我们看到的安培力做的功),负功阻碍电子运动(即阻碍电流,消耗电能,这部分功体现在电能

的减小上)。并且正功大小一定等于负功大小,这样洛仑兹力的总功才为0。所以我们平时就看到到安培力对导线做功,而洛仑兹力不做功。 还有一点,安培力做正功时,我们可以看到是电能与机械能的转化而不是磁场的能与机械能转化。同时,电流在洛仑兹力的分力作用下受到阻碍,这就是电动机为什么不能使用U=IR 公式的原因,除了电阻对电流的阻碍,这里又多了一个力,因此U=IR不再成立。 一、静电学 二、 1.两种电荷、电荷守恒定律、元电荷:(e=×10-19C);带电体电 荷量等于元电荷的整数倍 三、 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力 (N),k:静电力常量k=× 109N?m/C22,Q1、Q2:两点电荷的电 量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用 力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 四、 3.电场强度:E=F/q(定义式、计算式){ E:电场强度(N/C),是 矢量(电场的叠加原理) ,q:检验电荷的电量(C)} 五、 4.真空点(源)电荷形成的电场E=kQ/r2 {r :源电荷到该位置的 距离( m),Q:源电荷的电量} 六、 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}

高中物理 3.6洛伦兹力与现代技术 第2课时学案(含解析)粤教版选修

高中物理 3.6洛伦兹力与现代技术第2课时学案(含解析)粤教版选修 3、6 洛伦兹力与现代技术 第2课时 1、带电粒子在匀强磁场中的运动特点:(1)当带电粒子(不计重力)的速度方向与磁场方向平行时,带电粒子所受洛伦兹力F=0,粒子做匀速直线运动、(2)当带电粒子(不计重力)的速度方向与磁场方向垂直时,带电粒子所受洛伦兹力f=qvB,粒子在匀强磁场中做匀速圆周运动,半径为r=,周期为T=、 2、分析带电粒子在匀强磁场中做匀速圆周运动问题的关键是确定圆心和半径、(1)圆心的确定:①入、出方向垂线的交点;②入或出方向垂线与弦的中垂线的交点、(2)图1半径的确定:利用几何知识解直角三角形、做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形、注意圆心角α等于粒子速度转过的偏向角φ,且等于弦切角θ的2倍,如图1所示,即φ=α=2θ、 3、带电粒子在匀强电场中的运动特点: (1)带电粒子沿与电场线平行的方向进入匀强电场时,粒子做匀变速直线运动、(2)带电粒子沿垂直于电场方向进入匀强电场时,粒子做类平抛运动、

一、带电粒子在有界磁场中的运动解决带电粒子在有界磁场 中运动问题的方法先画出运动轨迹草图,找到粒子在磁场中做匀 速圆周运动的圆心位置、半径大小以及与半径相关的几何关系是 解题的关键、解决此类问题时应注意下列结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示、图2(2) 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如 图(d)所示、 (3)当以一定的速率垂直射入磁场时,它的运动弧长越长,圆心角越大,则带电粒子在有界磁场中运动时间越长、例1 在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强 度大小为 B、方向垂直于纸面向里的匀强磁场,如图3所示、一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出、图3(1)请判断该粒子带何种电荷,并求出其比荷;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于 入射方向改变了60角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析(1)由粒子的运动轨迹(如图),利用左手定则可知,该粒子带负电荷、粒子由A点射入,由C点 飞出,其速度方向改变了90,则粒子轨迹半径R=r,又qvB=m,则粒子的比荷=、(2)设粒子从D点飞出磁场,速度方向改变了60

高中物理 3.6 洛伦兹力与现代技术学案1 粤教版选修3-1

3.6 洛伦兹力与现代技术 学案1(粤教版选修3-1) 一、带电粒子在磁场中的运动 1.无磁场时,电子束的径迹为______,电子束垂直射入匀强磁场时,径迹为________. 2.质量为m ,电荷量为q 的带电粒子在匀强磁场B 中做匀速圆周运动的轨道半径r =______,周期T =________. 二、质谱仪和回旋加速器 图1 1.质谱仪 (1)结构如图1所示 (2)S 1和S 2间存在着________,P 1和P 2之间的区域存在着相互正交的________和________.只有满足v =________的带电粒子才能做匀速直线运动通过S 0上的狭缝.S 0下方空间只存在 ________.带电粒子在该区域做________运动,运动半径为r =______,消去v 可得带电粒 子的荷质比为q m =____________. 2.回旋加速器 图2 (1)结构如图2所示 (2)回旋加速器的核心部件是两个________,其间留有空隙,并加以________,________处于中心O 附近,______垂直穿过D 形盒表面,由于盒内无电场,离子将在盒内空间做______运动,只有经过两盒的间隙时才受电场作用而被________,随着速度的增加,离子做圆周运动的半径也将增大. 一、带电粒子在磁场中的运动 [问题情境] 图3 当“太阳风”的带电粒子被地磁场拉向两极时,带电粒子的轨迹为什么呈螺旋形?

1.什么条件下,电子在匀强磁场中径迹为直线和圆? 2.试推导带电粒子在匀强磁场中做匀速圆周运动的半径r和周期T的公式. [要点提炼] 1.沿着与磁场________的方向射入磁场的带电粒子在匀强磁场中做匀速圆周运动. 2.带电粒子在匀强磁场中做匀速圆周运动的半径r=__________,周期T=__________. 二、质谱仪 [问题情境] 1.质谱仪有什么用途? 2.结合课本叙述质谱仪的构造和各部分的作用? 3.简述质谱仪的工作原理? 二、回旋加速器 [问题情境] 1.回旋加速器主要由哪几部分组成? 2.回旋加速器的原理是怎样的? 3.带电粒子经回旋加速器获得的速度与哪些物理量有关? [问题延伸] 1.粒子在D形盒中运动的轨道半径,每次都不相同,但周期均________. 2.两D形盒间所加交流电压的周期与带电粒子做匀速圆周运动的周期是________的. 图4 例1 两个带异种电荷的粒子以同一速度从同一位置垂直磁场边界进入匀强磁场,如图4所示,在磁场中它们的轨迹均为半个圆周,粒子A的轨迹半径为r1,粒子B的轨迹半径为r2,

高中物理 5.5《探究洛伦兹力》教案 沪科版选修3-1

探究洛伦兹力 一、教法和学法设计的中心思想 探究性学习是新一轮课程改革中物理课程标准里提出的重要课程理念,其宗旨是改变学生的学习方式,突出学生的主体地位,物理教师不但应该接受这一理念,而且必须将这一理念体现到教学行为中去。对学生而言,学习也是一种经历,其中少不了学生自己的亲身体验,老师不能包办代替。物理教学要重视科学探究的过程,要从重视和设计学生体验学习入手,让学生置身于一定的情景,去经历、感受。 探究式教学是美国教育学家布鲁纳在借鉴了杜威的学习程序理论的基础上首先提出的,主要可分为两类:①引导发现式:创设情景——观察探究——推理证明——总结练习;②探究训练式:遇到问题——搜集资料和建立假说——用事实和逻辑论证——形成探究能力。经教学实践,形成以“引导——探究式”为主要框架,比较适合国内的实用教学模式。他是以解决问题为中心,注重学生独立钻研,着眼于思维和创造性的培养,充分发挥学生的主动性,仿造科学家探求未知领域知识的途径,通过发现问题、提出问题、分析问题、创造性地解决问题等去掌握知识,培养创造力和创造精神。 二、教学目标 1、知识目标 1)、通过实验的探究,认识洛伦兹力;会判断洛伦兹力的方向。 2)、理解洛伦兹力公式的推导过程;会计算洛伦兹力的大小。 3)、理解带电粒子垂直进入磁场中做匀速圆周运动的规律。 2、能力目标 1)、通过科学的探究过程,培养学生实验探究能力、理论分析能力和运用数学解决物理问题的能力; 2)、了解宏观研究与微观研究相结合的科学方法。 3、情感、态度、价值观 让学生亲身感受物理的科学探究活动,学习探索物理世界的方法和策略,培养学生的思维。 三、教学设计过程

高中物理选修磁场安培力洛伦兹力定稿版

高中物理选修磁场安培 力洛伦兹力 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

选修3-1 磁场练习 姓名:___________分数:___________ 一、选择题(题型注释) 1.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截 面.一质量为m、电荷量为q(q>0)的粒子以速率v 沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A. B. C. D. 2.如图,长为2l的直导线拆成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为() 3.在以下几幅图中,洛伦兹力的方向判断正确的是: 4.对确定磁场某一点的磁感应强度,根据关系式B=F/IL得出的下列结论中,说法正确的是() A.B随I的减小而增大; B.B随L的减小而增大; C.B随F的增大而增大; D.B与I、L、F的变化无关 5.如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I 1与I 2 .与 两导线垂直的一平面内有a、b、c、d四点,a、b、c在两导线的水平连线上且间距相等,b是两导线连线中点,b、d连线与两导线连线垂直.则

(A )I 2受到的磁场力水平向左 (B )I 1与I 2产生的磁场有可能相同 (C )b 、d 两点磁感应强度的方向必定竖直向下 (D )a 点和 c 点位置的磁感应强度不可能都为零 6.带电为+q 的粒子在匀强磁场中运动,下面说法中正确的是 A .只要速度大小相同,所受洛仑兹力就相同 B .如果把+q 改为-q ,且速度反向大小不变,则洛仑兹力的大小、方向均不变 C .洛仑兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子只受到洛仑兹力作用,其运动的动能可能增大 7.边长为a 的正方形,处于有界磁场如图所示,一束电子以水平速度射入磁场后,分别从A 处和C 处射出,则v A :v C =__________;所经历的时间之比t A :t C =___________ 8.一电子以垂直于匀强磁场的速度v A ,从A 处进入长为d 宽为h 的匀强磁场区域,如图所示,发生偏移而从B 处离开磁场,若电量为e ,磁感应强度为B ,弧AB 的长为L ,则 A .电子在磁场中运动的平均速度是v A B .电子在磁场中运动的时间为A L t v = C .洛仑兹力对电子做功是A Bev h ?

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系 摘要:本文从引起动生电动势的非静电力开始,通过做功分析磁场中能量转换和安培力与洛伦兹力的关系。 关键词:动生电动势;能量;洛伦兹力;做功;霍尔电场在高中物理《磁场》和《电磁感应》两章的学习中,我们常常会遇到这样的问题:磁场对运动电荷有洛伦兹力的作用,但洛伦兹力不做功,那么动生电动势中能量是如何转换的呢?安培力是洛伦兹力的宏观表现形式,为什么安培力在磁场中可以做功而洛伦兹力不做功呢?洛伦兹力和安培力会引起能量的转换吗?如果能,是如何进行能量的转换呢?笔者针对上述问题进行问答分析。 1 引起动生电动势的非静电力是什么? 电动势是把单位正电荷从电源负极经内部移到正极非静电力所做的功,即:ε=W非q,通过非静电力做功把其它形式的能转化为电能。导体棒在磁场中做切割磁感线运动产生的感应电动势即动生电动势,《教材》中由法拉第电磁感应定律得出其大小为:ε=BLV。但动生电动势是如何产生的呢?下面我们来分析一下。 如图1,导体棒在磁场中以速度V做切割磁感线运动,带动导体棒中正负电荷以相同速度向右运动,由左手定则知:正电荷受到向上的洛伦兹力,负电荷受到向下的洛伦兹力,从而正负电荷发生重新分布,使导体棒上端由于堆积了正电荷电势升高,下端由于堆积了负电荷电势降低,导体棒上下两端产生了电势差,储存了电能,相当于电源,如图2所示。 洛伦兹力是引起电动势的非静电力,那么,它做功了吗?如图3所示,导体棒MN以速度V匀速向右运动,电子将在洛伦兹力作用下沿导体棒加速运动向外部电路供电,电路中形成电流,设某时刻电子相对于导体棒的运动速度为u,则电子运动的合速度为V合=V 2 u 2,与导体棒成θ角;由左手定则知:电子所受洛伦兹力F=eBV合与速度V合垂直,F可以分解为水平向左的力F1和沿导体棒向下的力F2。而F2=Fsinθ=eBV合sinθ=eBV为恒力,故其把单位电荷从M端移动到N端做功为:W=F2Le=eBVLe=BLV,与由法拉第电磁感应定律推导出的表达式一致,所以引起动生电动势的非静电力是洛伦兹力沿导体棒的分力,并且该力移动电荷做功把其它形式的能转化为电能向电路供电。 2 产生动生电动势的过程中,能量是如何转换的呢?洛仑兹力做功了吗? 在产生电动势ε=BLV的过程中,移动电荷靠的是洛伦兹力的分力(非静电力F2),而洛伦兹力不做功,其能量是如何转换的呢? 如图3所示,洛伦兹力F始终与V合垂直,沿左下方,对电荷不做功。但在电荷移动的过程中, F 水平向左的分力F1与导体棒垂直,对电荷做负功,消耗其它能量(动能);F沿导体棒向下的分力F2充当非静电力对电荷做正功,将其它形式的能(导体棒的动能)转化为电能。可作如下定量计算: 对任意时刻,外力克服F1做功的功率:

高中物理 3.6 洛伦兹力与现代技术学案1 粤教版选修

高中物理 3.6 洛伦兹力与现代技术学案1 粤教 版选修 3、6 洛伦兹力与现代技术学案1(粤教版选修3-1) 一、带电粒子在磁场中的运动 1、无磁场时,电子束的径迹为______,电子束垂直射入匀强磁场时,径迹为________、 2、质量为m,电荷量为q的带电粒子在匀强磁场B中做匀速圆周运动的轨道半径r=______,周期T=________、 二、质谱仪和回旋加速器图 11、质谱仪(1)结构如图1所示(2)S1和S2间存在着 ________,P1和P2之间的区域存在着相互正交的________和 ________、只有满足v=________的带电粒子才能做匀速直线运动通过S0上的狭缝、S0下方空间只存在________、带电粒子在该区域做________运动,运动半径为r=______,消去v可得带电粒子的荷质比为=____________、2、回旋加速器图2(1)结构如图2所示(2)回旋加速器的核心部件是两个________,其间留有空隙,并加以________,________处于中心O附近,______垂直穿过D形盒表面,由于盒内无电场,离子将在盒内空间做______运动,只有经过两盒的间隙时才受电场作用而被________,随着速度的增加,离子做圆周运动的半径也将增大、

一、带电粒子在磁场中的运动[问题情境]图3 当“太阳风”的带电粒子被地磁场拉向两极时,带电粒子的轨迹为什么呈螺旋形? 1、什么条件下,电子在匀强磁场中径迹为直线和圆? 2、试推导带电粒子在匀强磁场中做匀速圆周运动的半径r和周期T的公式、 [要点提炼] 1、沿着与磁场________的方向射入磁场的带电粒子在匀强磁场中做匀速圆周运动、 2、带电粒子在匀强磁场中做匀速圆周运动的半径r=__________,周期T=__________、 二、质谱仪[问题情境] 1、质谱仪有什么用途? 2、结合课本叙述质谱仪的构造和各部分的作用? 3、简述质谱仪的工作原理? 二、回旋加速器[问题情境] 1、回旋加速器主要由哪几部分组成? 2、回旋加速器的原理是怎样的? 3、带电粒子经回旋加速器获得的速度与哪些物理量有关? [问题延伸] 1、粒子在D形盒中运动的轨道半径,每次都不相同,但周期均________、 2、两D形盒间所加交流电压的周期与带电粒子做匀速圆周运动的周期是________的、图4例1 两个带异种电荷的粒

相关文档
相关文档 最新文档