文档视界 最新最全的文档下载
当前位置:文档视界 › 曲线积分的计算法

曲线积分的计算法

曲线积分的计算法
曲线积分的计算法

曲线积分的计算法

1.基本方法

f第一类(对弧长)

曲线积分J

1 转化

第二类(对坐标)

C用参数方程

(1)选择积分变量用直角坐标方程

I用极坐标方程

对弧长曲线积分的计算

定理

设f(x,y)在曲线弧L上有定义且连续,

L的参数方程为X (t),( t )其中

y (t),

(t), (t)在[,]上具有一阶连续导数,且

L f(x,y)ds f[ (t), (t)h 2(t) 2(t)dt

( )

汪意:

1. 定积分的下限一定要小于上限;

2. f(x,y)中x, y不彼此独立,而是相互有关的

特殊情形

(1) L : y (x) a x b.

L f(x,y)ds f[x, (x)L.1 2(x)dx.

(2) L:x (y) c y d.

L f(x,y)ds : f[ (y), y] .,1 2(y)dy.定积分

(2)确定积分上下限下小上大

下始上终

x a cost,

xyds L :椭圆

(第象限). L

y bsi nt.

2 2

o 2

a cost bsi nt ( as int) (bcost) dt a

b 2 sin t cost . a 2 sin 2

t b 2

cos 2 tdt

ab

~ 2

a b

2

ab(a

[

2 ,— a 2 cos sin k v a 2

I

1 ka

2 . a 2 k 2.

2

求1

x 2ds,

例4 其中

2 2 2 2

为圆周x y z a,

2 0.

x y z

z k

)

k 2

d

解由对称性

故]1 (x 2

x 2ds z 2)ds

y 2ds z 2ds.

a

2 --------------------------------------- b u du (令u a 2sin 21 b 2 cos 21)

ab b 2)

3( a b)

求 I l yds,

其中 L: y 2 4x,从(1,2)到(1, 2)一段.

2

dy °.

-

L

2

\

\

\

xyzds, 其中 的一段.(0

a cos , y a sin ,

对坐标的曲线积分的计算

设P(x, y),Q(x, y)在曲线弧L 上有定义且连

续丄的参数方程为X

⑴,

当参数t 单调地由 变

y

(t),

到 时,点M(x,y)从L 的起点A 沿L 运动到终点B,

(t), (t)在以 及 为端点的闭区间上具有一阶连 续导数,且2(t) 2(t) 0,则曲线积分

L

P(x, y)dx Q(x, y)dy 存在,

且 L P(x,y)dx Q(x, y)dy

{P[ (t), (t)] (t) Q[ (t), (t)] (t)}dt

特殊情形

(1)L: y y(x) x 起点为a , 终点为b.

则 Pdx

L

Qdy

b {P[x,y(x)]

a

Q[x, y(x)]y (x)}dx.

⑵L:x

x(y) y 起点为c , 终点为d.

则 Pdx

L

Qdy

d

c {P[x(y),y]x(y) Q[x(y), y]}dy

例5计算L (2a y)dx xdy,其中L 为摆线x a(t sint

),

y a(1 cost)上对应

t 从0至U 2

的一段弧.

2

a tsintdt

原式

2

2 n

a

t si ntdt

2 a

tcost sint

2

2 n a

ds

2 a 3

(2 a

ds,球面大圆周长)

提示 :(2a y)dx xdy

a(1 cost) a(1 cost)dt

a(t sint) asintdt

例6 计算 xyzdz 其中 由平面y = z 截球面

X 2 y 2 Z 2 1所得,从

z 轴正向看沿逆时针方向

提示:因在 上有X 2 2y2 1, 故

产 x cost

1 ?J.

z 2

si nt

原式=1 "coWtsi n 2tdt

2\'2 0 n

1

4 2

cos 21 (1 cos 2 t)d t

2 2 0

2 n

16

曲面积分的计算法 1.基本方法

(1) 选择积分变量 一代入曲面方程 第一类:始终非负

(2) 积分元素投影第二类:有向投影 (3) 确定二重积分域

—把曲面积分域投影到相关坐标面

y 霍 si nt (0

t 2 n )

曲面积分

第一类(对面积)

_________________________ !

对面积的曲面积分的计算法

定理: 设有光滑曲面

:z z(x,y), (x, y) D xy

f (x, y, 2)在 上连续,则曲面积分 f (x,y ,z)dS

存在,且有

f(x,y ,z)dS

。乂‘ f (x’y’zXy))

2

2

1 Z x (x,y) Z y (x,y)dxdy

例 7

计算

(x

y

z ) ds ,

其中 为

平面 y

z

5被柱面

x

2 y 2

25所截得的

部分

.

积分曲面

:

z

5 y ,

解干

投影域

:D xy

{(x,y)|

x 2 y 2 25}

dS . 1 Z z/dxdy

Ji 0

( 1)2 dxdy 2d xdy

x 2 y 2 z 2

1

外侧在第一和第五卦限部分

解:把

分为上下两部分

故 (x y z)ds

-2 (x y 5 y)dxdy

D xy

—2

5

.2 d (5 r cos )rdr

0、

丿

2 (5 x) dxdy

D xy

125、. 2

对坐标的曲面积分计算 :一投、二代、三定号

例8. 计算曲面积分1 xyzdxdy,其中

为球面

(X, y) D xy :

xyzdxd y

2 2

x y

X 0, y

2

D xy

xyzdxd y xy zdxd y

2

xy 1

y 2 dxdy

2

D xy

2

sin2

%5

sin .. Tr 2 rdrd 0" cos

1

计算

x)dydz 其中艺是旋转抛物面

z

平面

z

0及

z

2之间的部分的下侧

2(x

zdxdy y 2)介于

2 2

(z x) dydz (z x) cos ds

2

cos

(z x) dxdy 在曲面

cos

x

cos ------------------- , cos

J i X 2 y 2 2

(z x) dydz zdxdy 上,有

1 1 x

2 y 2

[(z 2 x)( 1

2

{[:(x 4

1(x 2

/ 2?

(r cos

x) z] dxdy

D xy

2

[x 2 D xy

2 0

y 2

) x] ( x) 2

)]dxdy 1(x 2 y 2)}dxdy

1

r 2)rdr 8 .

2

曲线计算公式

一、曲线要素计算 已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长) 1、求ZH 点(或ZY 点)坐标及方位角 ?? ? ??-=-=-=11sin cos A T JDY ZHY A T JDX ZHX T JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角 ?? ? ??+=+=+-=22sin cos A T JDY HZY A T JDX HZX L T JDZH HZZH H 3、求解切线长T 、外距E 、曲线长L (1)圆曲线 ?? ? ??=-==180/)1)2/cos(/1()2/tan( απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan( )(02 0R l l l Rl l R p R E l R L q p R T s s s H s H H ===?????-+=+?-=+?+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ??? ??+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=??-==-=-=1111121132 125cos sin sin cos /180)2/() 6/()40/(A y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π 四、圆曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=?+?-=?? ???=-==++-=-++=--=11111212311102 1123 1111 cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中 五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ??????--=?+-=??+==-=-=222222223 2 225cos sin sin cos /180)2/()6/() 40/(A y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH HZZH L s s s π 六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负) ?? ? ??-=-=+=T N Y BDY T N X BDX T T sin cos α 七、纵断面高程计算 (1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ) )(*ZH DZH i H DH -+= (2) 竖曲线上高程计算 已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) ) 2/(2 R l k il H DH ZH DZH l ?-+=-= 注: JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标 R 、L S1、L S2:半径、缓和曲线1、缓和曲线2 LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。 DLJJ :道路交角(右夹角α)。 BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值 i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。 一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

平曲线要素计算公式(给学生用的)

第三节 竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。 一、竖曲线要素的计算公式 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l s JD(桩号)=QZ(桩号)+J/2 30-3 336629-3 4028)-(3 )(227-3 2 sec )(26-3 225-3 2ls 180)2(m 18024) -(3 2 )(23) -(3 9022)-(3 23842421)-(3 )( 24023 4202 30003 422 3m R l R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q s s s s s Y s s s s s s -=-=-=-?+=-=+??-=+??=+?+=???=-=-=α π βααπα πβ

相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: [例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD的设计高程与施工高。 解:1.计算竖曲线要素 ω= |i2-i1|= | =,为凸型。 曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即 {}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=?? ?? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 2 2 21221x x D y y dxdy dx dy x x =???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

32 121 3x x y dx x ??= ???? 2 51 133x dx x ?? =- ???? 221412761264x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并 不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计 算,这是可以将复 杂的积分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不 是y 型区域,但是将可D 划分为 ()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 1 2 D D D d d d σσσ=+??????12230 12 2 x x x x dx dy dx dy -=+?? ?? 1 20112322x x dx x dx ? ???=-+-- ? ???? ??? 1 2 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 3D o x y 1 D 2D 图 4 y x O x=2y y=2x x+y=3 图5

公路工程常用公式

公路工程常用公式 一、三角函数公式: 1)、在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 ○1三边之间的关系为(勾股定理) ○2锐角之间的关系为∠A+∠B=90° ○3边角之间的关系为 (4)其他有关公式 面积公式:(hc为c边上的高) 2)、正弦公式,即为正弦定理 在一个三角形中,各边和它所对角的正弦的比相 等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形 中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC,都有 (1)a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB;sinC = a : b : c; 3)任意三角形余弦公式:a2=b2+c2-2bc(cosA) ;cosA=(b2+c2-a2)/2bc 二、弧长公式:n∏r/180;扇形面积公式:n∏r2/360 公路测量常用公式: 一、圆曲线:曲线要素的计算若已知:转角α 及半径 R ,则:切线长:;曲线长: 外距:;切曲差: (1)主点里程的计算 ZY 里程 =JD 里程 -T ; YZ 里程 =ZY 里程 +L ;

QZ 里程 =YZ 里程 -L/2 ; JD 里程 =QZ 里程 +D/2 (用于校核) 二、缓和曲线 (spiral) 的测设 1、概念:为缓和行车方向的突变和离心力的突然产生与消失,需要在直线(超高为 0 )与圆曲线(超高为 h )之间插入一段曲率半径由无穷大逐渐变化至圆曲线半径的过渡曲线(使超高由 0 变为 h ),此曲线为缓和曲线。主要有回旋线、三次抛物线及双纽线等。 2、回旋型缓和曲线基本公式 ——缓和曲线全长。 (1)切线角公式:——缓和曲线长所对应的中心角。 (2)缓和曲线角公式:——缓和曲线全长所对应的中心角亦称缓和曲线角。 (3)缓和曲线的参数方程: (4)圆曲线终点的坐标:

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正 数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在1 2 D D 上也可积,且 ()12 ,D D f x y d σ??()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分 (),d c f x y dy ? 存在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}1 2 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ?? ()() () 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分.

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

Excell软件绘制ELISA标准曲线

怎么用Excell软件绘制ELISA标准曲线 许多试剂检测都涉及到标准曲线的问题,究竟如何绘制或制作标准曲线呢? 用Excell和SPSS的软件能做出来吗?,怎么操作?能一起求出计算公式吗? 有没有专门的软件来处理呢?介绍几种? 希望有这方面经验的介绍自己的经历,与大家分享,“与众同乐才是真的快了” 的确,标准曲线做的好与坏会直接影响到实验的结果,甚至是关系到实验的成败。 首先,做标准曲线样品检测时有几个问题需要注意: 1、样品的浓度等指标是根据标准曲线计算出来的,所以首先要把做标准曲线看作是比做正式实验还要重要的一件事,否则后面的实验结果无从谈起。 2、设置标准曲线样品的标准浓度范围要有一个比较大的跨度,并且要能涵盖你所要检测实验样品的浓度,即样品的浓度要在标准曲线浓度范围之内,包括上限和下限。而对于呈S型的标准曲线,尽量要使实验样品的浓度在中间坡度最陡段,即曲线几乎成直线的范围内。 3、最好采用倍比稀释法配制标准曲线中的标准样品浓度,这样就能够保证标准样品的浓度不会出现较大的偏离。 4、检测标准样品时,应按浓度递增顺序进行,以减少高浓度对低浓度的影响,提高准确性。 5、标准曲线的样品数一般为7个点,但至少要保证有5个点。 6、做出的标准曲线相关系数因实验要求不同而有所变动,但一般来说,相关系数R至少要大于0.98,对于有些实验,至少要0.99甚至是0.999.

怎样绘制标准曲线? 标准曲线浓度得到后,可通过计算器、Excell或SPSS统计软件进行绘制,并得到相关的回归方程(即计算公式和相关系数(回归系数,个人认为,Excell 软件比较好用一些;SPSS也行,不过是英文的,初学者不是很容易掌握;计算器嘛太麻烦了,所以现在一般不用。 双抗夹心法ELISA拟和曲线: 拟和曲线: 打开EXCEL软件;在工作表中 输入第一行:浓度值,如0 10 50 100 400 输入第二行:该浓度下的调整后的od值,如0 0.586 1.397 1.997 3.42 选择这些输入的数据,用插入里的图表按钮,进入图表向导,在“标准类型”中选择“xy散点图”;在“子图表类型”中选择“折线散点图”,按“下一步”;选择“系列产生在行”,按“下一步”;数据标志,可以填写:如数据y 轴,OD值;数据x轴,浓度;按下一步,点击完成。可得曲线图。 单击曲线,按右键,选择“添加趋势线”,在类型中,选择多项式;在选项中,选择显示公式,选择显示R平方值。得到公式和R平方值。 也可以用上面说的方法,在公司已经提供的图表上,双击图表,把它输入到图表的数据中,就可以拟和新的曲线。 计算浓度: 举例:第一次实验: 标准曲线为:

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

标准曲线的制作方法

标准样品的准备 由于你做的是基因表达分析,样品的准备就比较简单了,因为你要知道都是相对的数值(你的对照样品和实验样品中基因表达的比值),这样就不需要知道精确的拷贝数,所以标准品也就无须知道精确的拷贝数,只需知道稀释的倍数就可以了。 你实验中的标准品可以是来源比较丰富的细胞或组织的RNA转录得到的cDNA。将这种cDNA进行梯度的稀释,可以是稀释10倍,100,1000,10000等倍(具体到你的实验要根据具体的情况来调整稀释倍数。最好能作一个预实验来看看什么样的稀释倍数比较适合你的这种基因的扩增)。而对于各个稀释倍数我们要对它的拷贝数进行赋值,这个值当然不是标准品中真实含有的基因数量(在基因表达分析中也不需要),而是我们根据稀释倍数给每一个稀释度人为赋予的拷贝数,这只是为了方便实验最终结果的计算而已。比如我们把前面稀释十倍的样品赋值为10000个拷贝,100倍的赋值为1000个拷贝依次类推把10000倍的赋为10等。要注意,赋值的数目的倍数差异和你稀释的倍数是一样的,比如前面是10稀释,后面赋值也是10倍变化。 如何做标准曲线 在定量实验中标准品是要和你的未知样品一起进行定量实验的,这样在实验结束,无论是标准品还是未知样品都将跑出曲线,获得Ct值。那么我们先可以把未知样品放到一边,对于标准品来说,我们既获得了Ct值,还知道他们的拷贝数(虽然这个拷贝数是我们自己赋予的)。这样我们可以通过标准品的Ct值和拷贝数做一条标准曲线(以拷贝数为横坐标,而Ct值为纵坐标)。一旦作出了标准曲线,而未知样品的Ct值我们知道(通过实验求得的),这时候就在标准曲线上进行定位,就可以得到未知样品的拷贝数了。 事实上,操作起来没有那么复杂,你只需要告诉软件你的哪个孔是标准品,哪个是未知样品,以及标准品的拷贝数等必要信息,软件会自动帮你把标准曲线和未知样品的拷贝数计算出来。 举例来说如何进行设置 先进入软件,在板设置中选择所放样品的位置,并标上unknow或standard等信息。 选择要使用的荧光染料。

缓和曲线、(计算公式)

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算 已知:如图, 第一横坡:i1 第二横坡:i2 过渡段长度:L 待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i 解:d=x/L i=(i2-i1)(1-3d2+2d3)+i1 六、匝道坐标计算 已知:①待求点桩号:K ②曲线起点桩号:K0 ③曲线终点桩号:K1 ④曲线起点坐标:x0,y0

标准曲线法与标准加入法的区别

1 标准曲线法 1.1标准曲线法的计算公式 在一定条件下,标准曲线是一条直线,直线的斜率和截距可以用最小二乘法求得。现在好多仪器软件都能自动生成标准曲线,所以一小部分版友不清楚标准曲线的具体计算方法。本人查找了一些资料,找到标准曲线的斜率和截距的计算方法,和大家分享。 工作曲线可以用一元线性方程表示: y=a+bx (1) 式中,x为标准溶液的浓度,y为相应的吸光度。 使用最小二乘法确定的直线称为回归线,a,b称为回归系数。 b 为直线的斜率,可由下式求得:

1.2 灵敏度 灵敏度是指该方法对单位浓度或单位量的待测物质的变化所引起的响应量变化的过程。一般用标准曲线的斜率b为方法的灵敏度,b越大,灵敏度越高。 不要小看灵敏度,用处可大了。灵敏度由于仪器的不同,实验条件等的不同,在不断的变化。但在一定的实验条件下,灵敏度相对还是比较稳定的。所以,建议对灵敏度也做个质量控制图,具体做法见我另一个帖子。 每次标准曲线做好以后,观察灵敏度是否在一定的范围内维持稳定。如果发现灵敏度突然降低,就需要考虑,是否是仪器出问题了。火焰首先考虑雾化器是否堵塞,石墨炉首先考虑石墨管是否是烧坏。解决方法是用通丝清理雾化器,更换石墨管后继续测定标准曲线,带灵敏度稳定后进行样品测定。还有,在打开一瓶新的标准溶液的时候,在仪器进行维修以后,一定要注意灵敏度的变化。 1.3线性范围 线性范围这个大家都比较清楚,主要从相关系数r看,一般要求r大于等于三个九。我在这里和大家分享的是,我想了好久才想开的一个问题。之前看好多书上

后来专门做了好多次实验,还是一直是直线在,只是有时候浓度高时,线性不好,高浓度点不在标准曲线上,而是在标准曲线的下面,而且离拟合的标准曲线比较远。遇到这种情况,标准曲线的线性相关系数就很差,有时候才一个九,如图2所示。最后我终于想明白了,如果自己用手动拟合的话,用平滑的曲线去连接所有点的话,你就会发现,如果在线性范围内,连接起来就是直线,如果超出了线性范围,连接起来就是一条弯曲的曲线。从弯曲的拐点开始,就已经超出了线性范围,如图3所示。 所以,判断是否超出线性范围,个人觉得不是看是否弯曲,软件用最小二乘法拟合的一次曲线,永远是直线。要看你的高浓度点是否在拟合的标准曲线上或离得比较近,相关系数是否在三个九以内。如果不在,从拐点开始的那个点,就超出了线性范围,应该删除,从新拟合。 1.4检出限 检出限是指对某一特定的分析方法在给定的置信水平内可以从样品中检测待测物质的最小浓度或最小量。

各种曲线计算公式

一、公路平曲线坐标计算公式 1、缓和曲线: Lb1 0 {K,D} ①T=A2/R ②L=J(K-O)+T ③B=T2 /2/A2 *180/π④M=(L-T)-(L5-T5)/40/A4+(L9-T9)/3456/A8-(L13-T13)/599040/A12+(L17-T17)/17542600/A16 5.N=(L3-T3)/6/A2-(L7-T7)/336/A6+(L11-T11)/42240/A10-(L15-T15) /9676800/A14+(L19-T19)/3530097000/A18 ⑥I=(L2-T2)*180/2/A2/π ⑦X=C+Mcos(Q-ZB)-ZNsin(Q-ZB)+Dcon(Q+ZI+S)◢ ⑧Y=F+Msin(Q-ZB)+ZNcos(Q-ZB)+Dsin(Q+ZI+S)◢ Goto 0 注:A:缘和曲线参数 R:起点半径 J:曲率半径判定值(当曲率半径由小到大取1,否则取-1)(当起点半径到终点半径是由大或无穷大到小取+1,反之则取-1) K:欲求点里程 O:缘和曲线起点里程 C:缘和曲线起点X坐标Q:起始方位角(当J=-1时,方位角应+180。) Z:偏角判定值(当J=1时,左偏为-1,右偏为1;当J=-1时,左偏

为1,右偏为-1) D:距中桩的距离 S:斜交角度 F:缘和曲线起点Y坐标 2、圆曲线 Lb1 0 {K,D} ①L=K-0 ②X=C+R[sin(Q+L/R*180/π)-sinQ]+Dcos(Q+L/R*180/π+S)◢ ③Y=F-R[cos(Q+L/R*180/π)-cosQ]+Dsin(Q+L/R*180/π+S)◢ Goto 0 注:K:欲求点里程 O:圆曲线起点里程 C:圆曲线起点X坐标 R:圆曲线半径 (左偏为负) Q:起始方位角 D:距中桩的距离 S:斜交角度 F:圆曲线起点Y坐标 3、直线 Lb1 0 {K,D} ①L=K-0 ②X=C+LcosQ+Dcos(Q+S)◢

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面 为顶的曲顶柱体的体积. f x y d D (,)σ?? f x y (,)≥0D a x b x y x ≤≤≤≤??12()()?1()x ?2()x [,]a b f x y d D (,)σ?? D z f x y =(,)

在区间上任意取定一个点,作平行于 面的平面,这平 面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为 一般地,过区间上任一点且平行于面的平面截曲顶柱体所得 截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X 的二次积分,即先把看作常数,只看作的函数,对计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对 , 后对的二次积分也常记作 [,]a b x 0yoz x x =0[(),()]??1020x x z f x y =(,)0A x f x y dy x x ()(,)()() 0010 20= ??? [,]a b x yoz A x f x y dy x x ()(,)()()= ???1 2V A x a dx f x y dy dx b x x a b ==????? ? ?????()(,)()() ?? 12dx dy y x f d y x f b a x x D ??????? ? ??????=)(2)(1),(),(??σx ),(y x f y ),(y x f )(1x ?)(2x ?x x a b y x

相关文档