文档视界 最新最全的文档下载
当前位置:文档视界 › 机械设计基础(杨可桢版)1_18章答案(全)

机械设计基础(杨可桢版)1_18章答案(全)

机械设计基础(杨可桢版)1_18章答案(全)
机械设计基础(杨可桢版)1_18章答案(全)

机械设计基础习题答案

第八章回转件的平衡

8-1解:依题意该转子的离心力大小为

该转子本身的重量为

则,即该转子的离心力是其本身重量的倍。

8-2答:方法如下:

( 1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方;

( 2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。静止后,在转子上画过轴心的铅垂线1;

( 3)将转子逆时针转过一个小角度,然后放开,转子缓慢回摆。静止后画过轴心的铅垂线2;

( 4)做线1和2的角平分线,重心就在这条直线上。

8-3答:( 1)两种振动产生的原因分析:主轴周期性速度波动是由于受到周期性外力,使输入功和输出功之差形成周期性动能的增减,从而使主轴呈现周期性速度波动,这种波动在运动副中产生变化的附加作用力,使得机座产生振动。而回转体不平衡产生的振动是由于回转体上的偏心质量,在回转时产生方向不断变化的离心力所产生的。(2)从理论上来说,这两种振动都可以消除。对于周期性速度波动,只要使输入功和输出功时时相等,就能保证机械运转的不均匀系数为零,彻底消除速度波动,从而彻底消除这种机座振动。对于回转体不平衡使机座产生的振动,只要满足静或动平衡原理,也可以消除的。(3)从实践上说,周期性速度波动使机座产生的振动是不能彻底消除的。因为实际中不可能使输入功和输出功时时相等,同时如果用飞轮也只能减小速度波动,而不能彻底消除速度波动。因此这种振动只能减小而不能彻底消除。对于回转体不平衡产生的振动在实践上是可以消除的。对于轴向尺寸很小的转子,用静平衡原理,在静平衡机上实验,增加或减去平衡质量,最后保证所有偏心质量的离心力矢量和为零即可。对于轴向尺寸较大的转子,用动平衡原理,在动平衡机上,用双面平衡法,保证两个平衡基面上所有偏心质量的离心力食量和为零即可。

8-4

图 8 . 7

解:已知的不平衡质径积为。设方向的质径积为,方向的质径积为

,它们的方向沿着各自的向径指向圆外。用作图法求解,取,作图 8 . 7 所示。由静平衡条件得:

由图 8-7 量得,。

8-5

图 8 . 9

解:先求出各不平衡质径积的大小:

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 9 所示。由静平衡条件得:

由图 8 . 9 量得,方向与水平夹角为。

8-6

图8.11

解:( 1)求质心偏移实际就是求静平衡时的平衡向静,因此可以按照静平衡条件考虑这个问题。先求出各不平衡质径积的大小:方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 11 ( a )所示。由静平衡条件得:

由图量得,则质心偏移的距离为,偏移的方向就是平衡质径积的方向,与水平夹角为。

( 2 )求左右支反力实际上就是求动平衡时在左右支点所在平面所需要的平衡力。先把不平衡质量在两支承所在平面上分解。

左支承:;

右支承:;

则在两个支承所在平面上的质径积的大小分别为:

左支承:;

右支承:;

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 11 ( b )( c )所示。由动平衡条件得:左支承:,量得,

则支反力大小为

右支承:,量得,

则支反力大小为

8-7

图8.13

解:( 1)先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:

基面Ⅱ:

则在两个基面上的质径积分别为:

基面Ⅰ:,方向垂直向下。

基面Ⅱ:,方向垂直向上。

用作图法求解,取,作图 8 . 13 ( a )( b )所示。由动平衡条件得:

基面Ⅰ:,平衡质径积,方向垂直向上。

基面Ⅱ:,平衡质径积,方向垂直向下。

8-8

图 8.14 解:先把不平衡质量在两平衡基面和上分解。

基面:

基面:

则在两个基面上的质径积分别为:

基面:

图 8.15 基面:

用作图法求解,取,作图 8 . 15 ( a )( b )所示。由动平衡条件得:

由图上量取:,方向如图 8 . 15 ( a )( b )所示。

校核。设坐标轴方向如图 8 . 15 所示,用解析法校核。

基面:

向有:

向有:

基面:

向有:

向有:

两个平面在向和向合力均为零,因此所得结果正确。

由于回转半径为,因此所加的平衡质量应为

8-9

图 8.17

解:先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:

基面Ⅱ:

则在两个基面上的质径积的大小分别为:

基面Ⅰ:

基面Ⅱ:

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 17 ( a )( b )所示。由动平衡条

件得:

基面Ⅰ:,

量得,,方向如图所示。

基面Ⅱ:

量得,,方向如图所示。

8-10解:( 1)求左右支反力实际上就是求动平衡时在支点Ⅰ、Ⅱ所在平面所需要的平衡力。先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:

基面Ⅱ:

则在两个基面上的质径积的大小分别为:

基面Ⅰ:

基面Ⅱ:

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 19 ( a )

图 8.19

( b )所示。由动平衡条件得:

基面Ⅰ:,

量得,则支反力方向如图 8 . 19 ( a )所示,大小为

。基面Ⅱ:

量得,则支反力方向如图 8 . 19 ( b )所示,大小为

( 2)如果在面上加一平衡质径积进行静平衡,则按静平衡条件求解,只需要,和

三个质径积矢量和为零即可。

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 19 ( c )所示。由静平衡条件得:

。量得,方向如图 8 . 19 ( c )所示。

( 3)静平衡之后,按照有三个偏心质量做动平衡计算,求取基面Ⅰ和Ⅱ上的平衡力即可。同理把所有不

平衡质量在两平衡基面Ⅰ和Ⅱ上分解,然后求基面上的质径积,有:

基面Ⅰ:,

基面Ⅱ:,

方向沿着各自的向径指向外面。用作图法求解,取,作图 8 . 19 ( d )( e )所示。由动平衡条件

得:

基面Ⅰ:,

量得,则支反力方向如图 8 . 19 ( d )所示,大小为

基面Ⅱ:

量得,则支反力方向如图 8 . 19 ( e )所示,大小为

( 4)静平衡后,两个支座的支反力一个增大,一个减小。

第九章机械零件设计概论

9-1答退火:将钢加热到一定温度,并保温到一定时间后,随炉缓慢冷却的热处理方法。主要用来消除应力、降低硬度,便于切削。

正火:将钢加热到一定温度,保温一定时间后,空冷或风冷的热处理方法。可消除应力,降低硬度,便于切削加工;对一般零件,也可作为最终热处理,提高材料的机械性能。

淬火:将钢加热到一定温度,保温一定时间后,浸入到淬火介质中快速冷却的热处理方法。可提高材料的硬度和耐磨性,但存在很大的应力,脆性也相应增加。淬火后一般需回火。淬火还可提高其抗腐蚀性。

调质:淬火后加高温回火的热处理方法。可获得强度、硬度、塑性、韧性等均较好的综合力学性能,广泛应用于较为重要的零件设计中。

表面淬火:迅速将零件表面加热到淬火温度后立即喷水冷却,使工件表层淬火的热处理方法。主要用于中碳钢或中碳合金钢,以提高表层硬度和耐磨性,同时疲劳强度和冲击韧性都有所提高。

渗碳淬火:将工件放入渗碳介质中加热,并保温一定时间,使介质中的碳渗入到钢件中的热处理方法。适合于低碳钢或低碳合金钢,可提高表层硬度和耐磨性,而仍保留芯部的韧性和高塑性。

9-2解见下表

9-3解查教材表 9-1,Q235的屈服极限

查手册 GB706-88标准,14号热轧工字钢的截面面积

则拉断时所所的最小拉力为

9-4解查教材表9-1,45钢的屈服极限

许用应力

把夹紧力向截面中心转化,则有拉力和弯距

截面面积

抗弯截面模量

则最大夹紧力

应力分布图如图所示

机械设计基础第一章

《机械设计基础》电子教案 第一章机械设计基础概论 课题机械设计基础概论 授课日期授课类型理论课课时 教学目标了解机械及其组成 机械设计的基本要求和一般程序 金属材料的性能 机械零件的常用材料 机械零件的力学基础 摩擦、磨损及润滑 本课程的研究内容、性质及任务 教学内容机械及其组成 机械设计的基本要求和一般程序 金属材料的性能 机械零件的常用材料 机械零件的力学基础 摩擦、磨损及润滑 本课程的研究内容、性质及任务 教学方法教师讲解与学生领悟、练习相结合。 教学资源多媒体教室,多媒体课件 教学步骤及主要内容备注教学环节教学内容

讲授新知 第一节机械及其组成 1 机器是执行机械运动的装置,用来变换或传递能力、物流和 (1)动力部分。 (2) (3) (4)控制部分。 2 机构是用来传递运动和力的、有一个构件为机架的、用运动副连接起来的构件系统。 1 从运动学的角度看,机器是由若干个运动的单元所组成,这些运动单元称为构件。构件可以是单一的整体(如活塞),也可以 2 零件是组成构件的基本单元。零件可以分为两类,一类是通用零件,在各种机器中普遍使用,如螺母、齿轮、键等;另外一类是专用零件,在少数机器中使用,如内燃机的曲轴,汽轮机中 第二节机械设计的基本要求和一般程序 机械零件的常见失效形式有断裂或过大的塑性变形,过大的弹性变形,工作表面失效(如磨损、疲劳点蚀、表面压馈、胶合等),发生强烈的振动以及破坏正常工作条件引起的失效(如连 1. 2. 3. 4. 5. 6.其他方面的要求 (1)根据零件在机械中的地位和作用,选择零件的类型和结(2)分析零件的载荷性质,拟定零件的计算简图,计算作用(3)根据零件的工作条件及对零件的特殊要求,选择适当的(4)分析零件可能出现的失效形式,决定计算准则和许用应

《机械设计基础》答案

《机械设计基础》作业答案 第一章 平面机构的自由度和速度分析 1-1 1-2 1-3 1-4 1-6 自由度为 或: 1-10 自由度为: 或: 1-11 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 第二章 平面连杆机构 2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双

曲柄机构还是双摇杆机构。 (1)双曲柄机构 (2)曲柄摇杆机构 (3)双摇杆机构 (4)双摇杆机构 2-3 画出题2-3图所示各机构的传动角和压力角。图中标注箭头的构件为原动件。 2-4 已知某曲柄摇杆机构的曲柄匀速转动,极位夹角θ为300,摇杆工作行程需时7s 。试问:(1)摇杆空回程需时几秒?(2)曲柄每分钟转数是多少? 解:(1)根据题已知条件可得: 工作行程曲柄的转角01210=? 则空回程曲柄的转角02150=? 摇杆工作行程用时7s ,则可得到空回程需时: (2)由前计算可知,曲柄每转一周需时12s ,则曲柄每分钟的转数为 2-7 设计一曲柄滑块机构,如题2-7图所示。已知滑块的行程mm s 50=,偏距 mm e 16=,行程速度变化系数2.1=K ,求曲柄和连杆的长度。 解:由K=1.2可得极位夹角 第三章 凸轮机构 3-1 题3-1图所示为一偏置直动从动件盘形凸轮机构,已知AB 段为凸轮的推程廓线,试在图上标注推程运动角Φ。 3-2题3-2图所示为一偏置直动从动件盘形凸轮机构,已知凸轮是一个以C 点为圆心的圆盘,试求轮廓上D 点与尖顶接触是的压力角,并作图表示。

机械设计基础重点杨可桢

机械设计基础重点 第三章1.凸轮按从动件型式的分类 2.从动件常用的运动规律,各有什么冲击 3.绘制从动件的运动规律和凸轮的轮廓 4.凸轮设计时滚子半径有什么要求为什么 5.什么是压力角压力角的大小影响什么 6.压力角和基圆半径有什么关系为什么要合理选择基圆的半径选取原则是什么 第四章1、常用的间歇运动机构2、槽轮机构中的运动系数 第五章1、机器的速度波动分为哪两类各用什么调节 2、机器运转速度不均匀系数的定义。 3、飞轮设计公式的含义。 4、刚性回转件的静平衡和动平衡各适用于何种场合条件各是什么 第六章1、零件的工作能力的基本准则。 2、钢的常用热处理。 3、应力循环特性γ定义及变应力的分类。 4、变应力下零件的主要失效形式是什么有何特点 5、部分系数法的安全系数主要考虑哪几个方面 第七章1、螺纹的分类、防松。 2、螺纹联接件。 3、螺栓、螺栓组强度计算。 4、松键和紧键的区别。

5、键大小的选择。 6、平键的挤压和剪切强度校核,强度不足时的措施。 7、花键的优缺点、类型。 第九章1、廓啮合基本定律 2、标准直齿的几何参数计算 3、一对渐开线直齿轮的正确啮合条件、可分性及重合度 4、渐开线齿轮的根切,最小齿数,变位的概念 5、轮齿的主要失效形式 6、直齿轮的弯曲强度和接触强度的计算点 7、直齿轮、斜齿轮的受力分析(方向和大小) 8、锥齿轮的受力分析(方向) 9、斜齿轮的几何参数计算以及当量齿轮 10 一对渐开线斜齿轮的正确啮合条件 11 锥齿轮的几何参数计算以及当量齿轮 12 一对渐开线锥齿轮的正确啮合条件 第十章1、蜗杆蜗轮的正确啮合条件及中间平面 2、蜗杆的直径系数和分度圆直径 3、蜗杆传动的几何尺寸计算 4、蜗杆传动的主要失效形式 5、蜗杆传动的受力分析 6、蜗杆传动的热平衡计算,改善热平衡的方法 第十一章1、定轴轮系的传动比计算

机械设计基础第6章

第6章圆柱齿轮传动 6.1 齿轮传动的特点、应用和分类 6.1.1齿轮传动的特点 齿轮传动用来传递任意两轴间的运动和动力,其圆周速度可达到300m/s,传递功率可达105KW,齿轮直径可从不到1mm到150m 以上,是现代机械中应用最广的一种机械传动。 齿轮传动与带传动相比主要有以下优点: (1)传递动力大、效率高; (2)寿命长,工作平稳,可靠性高; (3)能保证恒定的传动比,能传递任意夹角两轴间的运动。 齿轮传动与带传动相比主要缺点有: (1)制造、安装精度要求较高,因而成本也较高; (2)不宜作远距离传动。 6.1.2齿轮传动的类型 6.2 渐开线的形成原理及其基本性质 6.2.1 渐开线的形成 直线BK沿半径为rb的圆作纯滚动时,直线上任一点K 的轨迹称为该圆的渐开线。该圆称为渐开线的基圆。 --- 渐开线上rb --- 基圆半径;BK --- 渐开线发生线; k K点的展角 6.2.2 渐开线的性质

(1)发生线沿基圆滚过的线段长度等 于基圆上被滚过的相应弧长。 由于发生线BK在基圆上作纯滚动,故 (2)渐开线上任意一点法线必然与基 圆相切。换言之,基圆的切线必为渐开 线上某点的法线。 因为当发生线在基圆上作纯滚动时,它 与基圆的切点B是发生线上各点在这 一瞬时的速度瞬心,渐开线上K点的轨 迹可视为以B点为圆心,BK为半径所 作的极小圆弧,故B点为渐开线上K 点的曲率中心,BK为其曲率半径和K点的法线,而发生线始终相切于基圆,所以渐开线上任意一点法线必然与基圆相切。(3)渐开线齿廓上某点的法线与该点的速度方向所夹的锐角称为该点的压力角。 (4)渐开线的形状只取决于基圆大小。 基圆愈小,渐开线愈弯曲;基圆愈大,渐开线愈平直。当基圆半径为无穷大,其渐开线将成为一条直线。 (5)基圆内无渐开线。 6.2.3 渐开线方程 建立渐开线方程式前,我们先了解一下渐开线压力角的概 念:

《机械设计基础》答案

《机械设计基础》答案

《机械设计基础》作业答案 第一章平面机构的自由度和速度分析1-1 1-2 1-3 1-4

1-5 自由度为: 1 1 19 21 1 )0 1 9 2( 7 3 ' )' 2( 3 = -- = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 8 2 6 3 2 3 = - ? - ? = - - = H L P P n F 1-6

自由度为 1 1 )0 1 12 2( 9 3 ' )' 2( 3 = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 22 24 1 11 2 8 3 2 3 = -- = - ? - ? = - - = H L P P n F 1-10 自由度为: 1 1 28 30 1 )2 2 1 14 2( 10 3 ' )' 2( 3 = -- = - - ? + ? - ? = - - + - =F P P P n F H L 或: 1 2 24 27 2 1 12 2 9 3 2 3 = -- = ? - ? - ? = - - = H L P P n F 1-11

22 424323=-?-?=--=H L P P n F 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1334313141P P P P ?=?ωω 1 41314133431==P P P P ωω 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。

最新机械设计基础答案(杨可桢)

The answer of schoolwork of MECHINE THEORY AND DESIGN (Just for reference) 教材:杨可桢(第五版) 教师:邓嵘 时间:200809~200811

目录 Chapter 1 (1) Chapter 2 (4) 2-1 (4) 2-2 (4) 2-3 (5) 2-4 (5) 2-5 (6) 2-7 (6) 2-10 (6) 2-13 (6) Chapter3 (7) 3-1 (7) 3-2 (7) 3-4(简单,略) (7) Chapter4 (8) 4-1 (8) 4-2 (8) 4-3 (8) 4-4 (8) 4-5 (9) 4-6 (9) 4-8 (9) 4-9 (10) 4-10 (10) 4-14 (11) Chapter5 (11) 5-1 (11) 5-2 (12) 5-3 (12) 5-4 (12) 5-5 (13) 5-6 (13) 5-7 (13) 5-8 (14) 5-9 (14) 5-10 (14) 5-14 (15) 5-15 (15)

Chapter 1 3,4,0321 L H L H n p p F n p p ====--=3,4,0 321L H L H n p p F n p p ====--=3,4,0321 L H L H n p p F n p p ====--=3,4,0 321 L H L H n p p F n p p ====--=1-1 1-2 1-3 1-4

1109,12,2,3(2)1 L H L H n P P F n P P -====-+=、194,4,2,3(2)2 L H L H n P P F n P P -====-+=、186,8,1,3(2)1 L H L H n P P F n P P -====-+= 、178,11,0,3(2)2 L H L H n P P F n P P -====-+=、168,11,1 ,3(2)1 L H L H n P P F n P P -====-+= 、156,8,1,3(2)1 L H L H n P P F n P P -====-+=、

机械设计基础习题答案第6章

6-1 齿轮啮合传动应满足哪些条件? 答:齿轮啮合传动应满足:1.两齿轮模数和压力角分别相等;2.12 1≥= p B B b ε,即实际啮 合线B 1 B 2大于基圆齿距p b 。3. 满足无侧隙啮合,即一轮节圆上的齿槽宽与另一轮节圆上的齿厚之差为零。 6-2 齿轮的失效形式有哪些?采取什么措施可减缓失效? 答:1.轮齿折断。设计齿轮传动时,采用适当的工艺措施,如降低齿根表面的粗糙度,适当增大齿根圆角、对齿根表面进行强化处理(如喷丸、辗压等)以及采用良好的热处理工艺等,都能提高轮齿的抗折断能力。 2.齿面点蚀。可采用提高齿面硬度,降低表面粗糙度,增大润滑油粘度等措施来提高齿面抗点蚀能力。 3.齿面磨损。减小齿面粗糙度、保持良好的润滑、采用闭式传动等措施可减轻或避免磨粒磨损。 4.齿面胶合。可适当提高齿面硬度及降低表面粗糙度,选用抗胶合性能好的材料,使用时采用粘度较大或抗胶合性较好的润滑油等。 5.塑性变形。为减小塑性变形,应提高轮齿硬度。 6-3 现有4个标准齿轮:m 1=4mm ,z 1=25;m 2=4mm ,z 2=50;m 3= 3mm ,z 3=60;m 4=2.5mm ,z 4=40。试问:(1)哪两个齿轮的渐开线形状相同?(2)哪两个齿轮能正确啮合?(3)哪两个齿轮能用同一把滚刀加工?这两个齿轮能否改成同一把铣刀加工? 答:1.根据渐开线性质4,渐开线的形状取决于基圆半径,基圆半径 ααc o s 2 c o s r mz r b ==。当两齿轮基圆半径相等时,其齿廓形状相同。 98.46cos 2 cos 1 1 11 r == =ααz m r b 97.93cos 2 cos 21 2 22r ===ααz m r b 38.56cos 2 cos 3 3 31b3 r == =ααz m r 98.46cos 2 cos 4 4 44r == =ααz m r b 因此,齿轮1和4渐开线形状相同。 2.两个齿轮能正确啮合条件是两齿轮模数和压力角分别相等。因此,齿轮1和2能够正确啮合。 3.齿轮利用滚刀加工时,只要齿数和压力角相等,齿轮都可用同一把刀具加工。因此,齿轮1和2可用同一把刀具加工。 不能。铣刀加工齿轮为仿形法。需渐开线形状相同。 6-4 什么是软齿面和硬齿面齿轮传动?设计准则是什么? 答:软齿面齿轮齿面硬度≤350HBS ,应齿面齿轮齿面硬度>350HBS 。其设计准则分别为:

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

机械设计基础课后答案(杨可桢)50781

1-1至1-4解机构运动简图如下图所示。 图 1.11 题1-1解图图1.12 题1-2解图 图1.13 题1-3解图图1.14 题1-4解图 1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解 1-13解该导杆机构的全部瞬心如图所示,构件 1、3的角速比为: 1-14解该正切机构的全部瞬心如图所示,构件 3的速度为:,方 向垂直向上。 1-15解要求轮 1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。则:,轮2与轮1的转向相反。 1-16解( 1)图a中的构件组合的自由度为: 自由度为零,为一刚性桁架,所以构件之间不能产生相对运 动。 ( 2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动。故图 b中机构的自由度为:所以构件之间能产生相对运动。 题 2-1答 : a ),且最短杆为机架,因此是双曲柄机构。 b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。 c ),不满足杆长条件,因此是双摇杆机构。 d ),且最短杆的对边为机架,因此是双摇杆机构。 题 2-2解 : 要想成为转动导杆机构,则要求与均为周转副。 ( 1 )当为周转副时,要求能通过两次与机架共线的位置。见图 2-15 中位置和 。 在中,直角边小于斜边,故有:(极限情况取等号); 在中,直角边小于斜边,故有:(极限情况取等号)。 综合这二者,要求即可。 ( 2 )当为周转副时,要求能通过两次与机架共线的位置。见图 2-15 中位置和 。 在位置时,从线段来看,要能绕过点要求:(极限情况取等号); 在位置时,因为导杆是无限长的,故没有过多条件限制。 ( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是: 题 2-3 见图 2.16 。

机械设计基础答案

《机械设计基础》作业答案 第一章平面机构的自由度和速度分析1-1 1-2 1-3 1-4 1-5 自由度为: 或: 1-6 自由度为 或: 1-10 自由度为: 或: 1-11

1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 1-16:题1-16图所示曲柄滑块机构,已知: s mm l AB /100=,s mm l BC /250=,s rad /101=ω,求机构全部瞬心、滑块速度3v 和连杆角速度2ω。 在三角形ABC 中,BCA AB BC ∠=sin 45sin 0,52sin =∠BCA ,5 23cos =∠BCA , 045sin sin BC ABC AC =∠,mm AC 7.310≈ 1-17:题1-17图所示平底摆动从动件凸轮1为半径20=r 的圆盘,圆盘中心C 与凸轮回转中心的距离mm l AC 15=,mm l AB 90=,s rad /101=ω,求00=θ和0180=θ时,从动件角速度2ω的数值和方向。 00=θ时 方向如图中所示 当0180=θ时

方向如图中所示

第二章 平面连杆机构 2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。 (1)双曲柄机构 (2)曲柄摇杆机构 (3)双摇杆机构 (4)双摇杆机构 2-3 画出题2-3图所示各机构的传动角和压力角。图中标注箭头的构件为原动件。 2-4 已知某曲柄摇杆机构的曲柄匀速转动,极位夹角θ为300,摇杆工作行程需时7s 。试问:(1)摇杆空回程需时几秒?(2)曲柄每分钟转数是多少? 解:(1)根据题已知条件可得: 工作行程曲柄的转角01210=? 则空回程曲柄的转角02150=? 摇杆工作行程用时7s ,则可得到空回程需时: (2)由前计算可知,曲柄每转一周需时12s ,则曲柄每分钟的转数为 2-5 设计一脚踏轧棉机的曲柄摇杆机构,如题2-5图所示,要求踏板CD 在水平位置上下各摆100,且mm l mm l AD CD 1000,500==。(1)试用图解法求曲柄AB 和连杆BC 的长度;(2)用式(2-6)和式(2-6)'计算此机构的最小传动角。

机械设计基础

机械设计基础Revised on November 25, 2020

第一章 1-1 运动副 一、低副:两构件为面接触的运动副 二、高副:两构件为点或线接触的运动副 1-2机械系统的运动简图设计 P14表1-1 1-3机械系统具有确定运动的条件 三、平面自由度的计算 1.找到机构的总构件数N,则活动构件数n=N-1 2.找到构件的低副个数P1 3.找到机构构件的高副个数Ph 4.带入公式F=3n-2p1-ph 注意事项: 1.复合铰链:则其低副个数为m-1个既3-1=2个 2.局部自由度:两者相同,可不考虑其低副个数 3.虚约束:存在与否都不影响其运动的轨迹 4.判断最后运动是否确定应看F是否等于原动件的个数,若等于则确定,若大于则不确 定 课后题:P22 1-7 1-9 图1-24 1-25 1-27 1-28 第二章 2-1 铰链四杆机构 曲柄基准:最短杆与最长杆长度只和小于等于其他两杆长度之和 不同机构的分析: 1.曲柄摇杆:最短杆与机架相邻 2.双曲柄摇杆:最短杆为机架 3.双摇杆:最短杆远离机架 极为夹角:在两极限位置时,曲柄所夹的锐角θ称为极为夹角 判断方法: 1.曲柄与连杆两次共线的位置 2.利用定义找到两次极限位置 公式: θ=180(k-1)/(k+1) 作图,运动物理关系计算出θ值,从而求得其他值 课后题:P43 2-6 2-10 2-13 第三章 3-2从动件的常用运动规律 一、基本术语 基圆:以凸轮轮廓的最小向径r0为半径的园称为基圆 推程:从动件被凸轮推动,以一定运动规律由距离回转中心最近位置A到达最远位置B’所走过的距离AB’称为推程 远休止角:当凸轮继续回转δs角,从动件在最远位置停止不动,δs称为远休止角 回程:凸轮继续回转δh时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置所走过的距离。δ b称为回程运动角

杨可桢《机械设计基础》(第5版)笔记和课后习题(间歇运动机构)

第6章 间歇运动机构 6.1 复习笔记 主动件连续运动(连续转动或连续往复运动)时,从动件做周期性时动、时停运动的机构成为间歇运动机构。 一、棘轮机构 如图6-1所示,机构是由棘轮2、棘爪3、主动摆杆和机架组成的。 运动原理:主动棘爪作往复摆动,从动棘轮作单向间歇转动。 优点:结构简单、制造方便、运动可靠、棘轮轴每次转过角度的大小可以在较大范围内调节。 缺点:工作时有较大的冲击和噪音,运动精度较差。 因此棘轮机构适用于速度较低和载荷不大的场合。 棘轮机构按结构形式分:齿式棘轮机构和摩擦式棘轮机构;按啮合方式分:外啮合棘轮机构和内啮合机构;按运动形式分:单动式棘轮机构、双动式棘轮结构和双向式棘轮机构。 图6-1 棘轮机构 1.棘爪工作条件 在工作行程中,为了使棘爪能顺利进入棘轮的齿底,应满足: 90α?>?+-∑ 其中,α为棘齿的倾斜角,?为摩擦角,∑为棘爪轴心和棘轮轴心与棘轮齿顶点的连线之间的夹角。 为了使传递相同的转矩时棘爪受力最小,一般取90∑=?,为保证棘轮正常工作,使棘爪啮紧齿根,则有: α?> 2.棘轮、棘爪的几何尺寸计算 选定齿数z 和确定模数m 之后,棘轮和棘爪的主要几何尺寸计算公式如下: 顶圆直径 D m z =; 齿高 0.75h m =; 齿顶厚 a m =; 齿槽夹角 6055θ=??或; 棘爪长度 2=L m π。

二、槽轮机构 如图6-2中所示,该机构是由带圆销的主动拨盘1、带有径向槽的从动槽轮2以及机架组成的。其中,拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧都是起锁定作用。 工作特点:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动,实现了将连续回转变换为间歇转动。 特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。因槽轮运动过程中角速度有变化,存在柔性冲击,因此不适合高速运动场合。 图6-2 槽轮机构 运动特性系数τ:槽轮每次运动的时间m t 对主动构件回转一周的时间t 之比,有: m 2 = 2-= t z t z τ 其中,z 为槽数,是槽轮机构的主要参数。 为保证槽轮机构运动,其运动特性系数τ大于零,根据上式可得z ≥3,一般取z=4-8。上式表明,这种槽轮机构的运动特性系数τ总小于0.5,为得到τ大于0.5的槽轮机构,设拨盘上均匀分布的圆销数目为K ,则运动特性系数: (2) 2K z z τ-= 三、不完全齿轮机构 如图6-3所示,在主动齿轮只做出一个或几个齿,根据运动时间和停歇时间的要求在从动轮上做出与主动轮相啮合的轮齿。其余部分为锁止圆弧。当两轮齿进入啮合时,与齿轮传动一样,无齿部分由锁止弧定位使从动轮静止。

机械设计基础课后习题答案 第11章

11-1 解1)由公式可知: 轮齿的工作应力不变,则则,若,该齿轮传动能传递的功率 11-2解由公式 可知,由抗疲劳点蚀允许的最大扭矩有关系: 设提高后的转矩和许用应力分别为、 当转速不变时,转矩和功率可提高 69%。 11-3解软齿面闭式齿轮传动应分别验算其接触强度和弯曲强度。( 1)许用应力查教材表 11-1小齿轮45钢调质硬度:210~230HBS取220HBS;大齿轮ZG270-500正火硬度:140~170HBS,取155HBS。 查教材图 11-7, 查教材图 11-10 , 查教材表 11-4取, 故: ( 2)验算接触强度,验算公式为:

其中:小齿轮转矩 载荷系数查教材表11-3得齿宽 中心距齿数比 则: 、,能满足接触强度。 ( 3)验算弯曲强度,验算公式: 其中:齿形系数:查教材图 11-9得、 则: 满足弯曲强度。 11-4解开式齿轮传动的主要失效形式是磨损,目前的设计方法是按弯曲强度设计,并将许用应力降低以弥补磨损对齿轮的影响。 ( 1)许用弯曲应力查教材表11-1小齿轮45钢调质硬度:210~230HBS取220HBS;大齿轮 45钢正火硬度:170~210HBS,取190HBS。查教材图11-10得 ,

查教材表 11-4 ,并将许用应用降低30% ( 2)其弯曲强度设计公式: 其中:小齿轮转矩 载荷系数查教材表11-3得取齿宽系数 齿数,取齿数比 齿形系数查教材图 11-9得、 因 故将代入设计公式 因此 取模数中心距 齿宽 11-5解硬齿面闭式齿轮传动的主要失效形式是折断,设计方法是按弯曲强度设计,并验算其齿面接触强度。

机械设计基础练习题+答案解析

机械设计基础试题库 第一章绪论机械设计概述 一、判断(每题一分) 1、一部机器可以只含有一个机构,也可以由数个机构组成。……( √ ) 2、机器的传动部分就是完成机器预定的动作,通常处于整个传动的终端。(×) 4、机构就是具有确定相对运动的构件组合。………………………………(√) 5、构件可以由一个零件组成,也可以由几个零件组成。………………(√) 6、整体式连杆就是最小的制造单元,所以它就是零件而不就是构件。……(× ) 7、连杆就是一个构件,也就是一个零件。………………………(√) 8、减速器中的轴、齿轮、箱体都就是通用零件。………………………………(×) 二、选择(每题一分) 1、组成机器的运动单元体就是什么?( B ) A.机构 B.构件 C.部件 D.零件 2、机器与机构的本质区别就是什么?( A ) A.就是否能完成有用的机械功或转换机械能 B.就是否由许多构件组合而成 C.各构件间能否产生相对运动 D.两者没有区别 3、下列哪一点就是构件概念的正确表述?( D ) A.构件就是机器零件组合而成的。 B.构件就是机器的装配单元 C.构件就是机器的制造单元 D.构件就是机器的运动单元 4、下列实物中,哪一种属于专用零件?( B ) A.钉 B.起重吊钩 C.螺母 D.键 5、以下不属于机器的工作部分的就是( D ) A.数控机床的刀架 B.工业机器人的手臂 C.汽车的轮子 D.空气压缩机 三、填空(每空一分) 1、根据功能,一台完整的机器就是由(动力系统 )、(执行系统 )、(传动系统)、(操作控制系统)四部分组成的。车床上的主轴属于( 执行)部分。

2、机械中不可拆卸的基本单元称为(零件 ),它就是( 制造 )的单元体。 3、机械中制造的单元称为( 零件 ),运动的单元称为(构件 ),装配的单元称为(机构)。 4、从( 运动 )观点瞧,机器与机构并无区别,工程上统称为( 机械)。 5、机器或机构各部分之间应具有_相对__运动。机器工作时,都能完成有用的__机械功___或实现转换__能量___。 第二章平面机构的结构分析 一、填空题(每空一分) 2、两构件之间以线接触所组成的平面运动副,称为高副,它产生 1 个约束,而保留 2 个自由度。 3、机构具有确定的相对运动条件就是原动件数等于机构的自由度。 4、在平面机构中若引入一个高副将引入___1__个约束,而引入一个低副将引入_2___个约束,构件数、约束数与机构自由度的关系就是F=3n-2Pl-Ph 。 5、当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为2,至少为 1 。 6、在平面机构中,具有两个约束的运动副就是低副,具有一个约束的运动副就是高副。 7、计算平面机构自由度的公式为F= F=3n-2Pl-Ph ,应用此公式时应注意判断:A、复合铰链,B、局部自由度,C、虚约束。 二、选择题(每空一分) 1、有两个平面机构的自由度都等于1,现用一个带有两铰链的运动构件将它们串成一个平面机构,则其自由度等于 B 。 A、 0 B、 1 C、 2 2、在机构中原动件数目 B 机构自由度时,该机构具有确定的运动。 A、小于 B、等于 C、大于。 3、计算机构自由度时,若计入虚约束,则机构自由度就会 B 。 A、增多 B、减少 C、不变。 4、构件运动确定的条件就是 C 。 A、自由度大于1 B、自由度大于零 C、自由度等于原动件数。

杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-滚动轴承【圣才出品】

第16章滚动轴承 16.1复习笔记 【通关提要】 本章主要介绍了滚动轴承的类型及其代号、失效形式、寿命计算、当量动载荷的计算以及派生轴向力。学习时需要重点掌握以上内容。其中,滚动轴承的类型及其代号、失效形式,多以选择题、填空题和简答题的形式出现,其余内容以计算题为主,尤其派生轴向力,几乎每年都考一道计算题。复习本章时,考生需以计算为主,理解记忆细节内容。 【重点难点归纳】 一、滚动轴承的基本类型和特点 1.滚动轴承的分类(见表16-1-1) 表16-1-1滚动轴承的分类 2.使用性能(见表16-1-2) 表16-1-2滚动轴承的使用性能

3.机械中常用滚动轴承的类型和性能特点 机械中常用滚动轴承的类型和性能特点查看教材表16-2。 二、滚动轴承的代号(见表16-1-3) 表16-1-3滚动轴承的代号

三、滚动轴承的选择计算 1.失效形式 (1)疲劳破坏; (2)永久变形; (3)磨损、胶合、内外圈和保持架破损。 2.轴承寿命 (1)轴承的寿命 轴承的滚动体或套圈首次出现疲劳点蚀之前,轴承的转数或相应的运转小时数。(2)轴承寿命的可靠度R

一组相同的轴承能达到或超过规定寿命的百分率。 (3)基本额定寿命 具有90%可靠度时轴承的寿命,以L 10表示。 (4)基本额定动载荷 当一套轴承进入运转并且基本额定寿命为106r 时,轴承所能承受的载荷。 (5)寿命计算公式 L=(C/P)?或L h =(C/P)?·106/(60n) 式中,?为寿命指数,对于球轴承?=3,对于滚子轴承?=10/3;C 为基本额定动载荷,对向心轴承为C r ,对推力轴承为C a ;n 为轴的转速;P 为当量动载荷。修正后的寿命计算公式为 610(60t h p f C L n f P ε=或 1660()10 p h t f P n C L f ε=?式中,f t 为温度系数,f t ≤1;f P 为载荷系数。 3.当量动载荷的计算 对于既承受径向载荷F r 又承受轴向载荷F a 的轴承,其当量动载荷的计算公式为 P=XF r +YF a 式中,X、Y 分别为径向动载荷系数及轴向动载荷系数。 对于向心轴承,则有:

最新机械设计基础教案——第6章间歇运动机构.docx

第 6 章间歇运动机构 (一)教学要求 1.掌握各种常用机构的工作原理 2.了解各种机构的组成及应用 (二)教学的重点与难点 1.工作原理 2.常用机构的应用 (三)教学内容 6.1槽轮机构 一、组成、工作原理 1.组成:具有径向槽的槽轮,具有圆销的构件,机架 2.工作原理: 构件 1→连续转动;构件2(槽轮)→时而转动,时而静止 当构件 1 的圆销 A 尚未进入槽轮的径向槽时,槽轮的内凹锁住弧被构件 1 的外凸圆弧卡住,槽轮静止不动。 当构件 1 的圆销 A 开始进入槽轮径向槽的位置,锁住弧被松开,圆销驱使槽轮传动。 当圆销开始脱出径向槽时,槽轮的另一内凹锁住弧又被构件 1 的外凸圆弧卡住,槽轮静止不动。 往复循环。 4 个槽的槽轮机构:构件 1 转一周,槽轮转1 周。4

6 个槽的槽轮机构:构件 1 转一周,槽轮转1 周。6 二、槽轮机构的基本尺寸和运动系数 1.基本尺寸 b l (r r s )r s——圆销的半径 r l sin2b——槽轮回转中心到径向槽底的距离 a l cos2a——槽轮回转中心到径向槽口的距离 r——圆销中心到构件 1 中心的距离 l ——两轮回转中心之间的距离 2.运动系数(τ ):槽轮每次运动的时间 m t 之比。 t 对主动构件回转一周的时间 t m21(构件 1 等速回转) t2 2 1——槽轮运动时构件 1 转过的角度 (通常,为了使槽轮 2 在开始和终止运动时的瞬时角速度为零。以避免圆销与槽发生撞击,圆销进入、退出径向槽的瞬间使O1A ⊥O2A ) ∴ 2 1222 Z ∴ 21Z211 22Z2Z 讨论: 1、τ>0,∴ Z ≥3 τ=0,槽轮始终不动。 2、111 2Z :槽轮的运动时间总小于静止时间。 2 3、要使1 ,须在构件 1 上安装多个圆销。2 设 K为均匀分布的圆销数, K (Z2) 2Z 三、槽轮机构的特点和应用 优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求恒定旋转角的分度机构中。 缺点:①对一个已定的槽轮机构来说,其转角不能调节。 ②在转动始、末,加速度变化较大,有冲击。 应用:应用在转速不高,要求间歇转动的装置中。 电影放映机中,用以间歇地移动影片。 自动机中的自动传送链装置。(布图)

《机械设计基础》答案

《机械设计基础》作业答案第一章平面机构的自由度和速度分析 1 —1 1 - 2 1 —3 1 —4 1 —5

自由度为: F 3n (2P L P H P') F' 3 7 (2 9 1 0) 1 21 19 1 1 或: F 3n 2P L P H 3 6 2 8 1 1 1-6 自由度为 F 3n (2P L P H P') F' 3 9 (2 12 1 0) 1 1 或: F 3n 2P L F H 3 8 2 11 1 24 22 1 1 1 —10

自由度为: F 3n (2P L P H P') F' 3 10 (2 1 4 1 2 2) 1 30 28 1 1 或: F 3n 2P L P H 3 9 2 12 1 2 27 24 2 1 1 —11 F 3n 2P L P H 3 4 2 4 2 2 1 —13:求出题1-13图导杆机构的全部瞬心和构件 1 R4R3 3 卩34只3 1、3的角速度比。

1 - 14:求出题1-14图正切机构的全部瞬心。设1 10rad/s,求构件3的速度v3。 100 v3v P13 1P14P310 200 2000mm/s 1- 15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试 1 R4p 2 2 B4R2

IP 24R 2I 2r 2 IR 4P 12I r 1 1 10rad /s ,求机构全部瞬心、滑块速度 g 和连杆角速度 1 P 4P 3I 10 AC tan BCA 916.565mm/s R 4R2 1 _ 100_10_ 2.9rad P 24R2 2 AC 100 1 — 17:题1-17图所示平底摆动从动件凸轮 1为半径r 20的圆盘, 圆盘中心 C 与凸轮回 转中心的距离l AC 15mm , l AB 90mm , 1 10rad /s ,求 00和 1800时,从 动件角速度 2的数值和方向。 1 — 16 :题1-16图所示曲柄滑块机构,已知: 1AB 100mm /s , I BC 250mm/s , 在三角形ABC 中, BC sin 45° AB ------------- ,sin sin BCA BCA —, 5 cos BCA AC sin ABC BC sin 45° ,AC 310.7mm V 3 V p13 1 R4p 2 2 P 24 P 2〔

国家开放大学机械设计基础形成性考核习题及答案

机械设计基础课程形成性考核作业(一) 第1章 静力分析基础 1.取分离体画受力图时,__CEF__力的指向可以假定,__ABDG__力的指向不能假定。 A .光滑面约束力 B .柔体约束力 C .铰链约束力 D .活动铰链反力 E .固定端约束力 F .固定端约束力偶矩 G .正压力 2.列平衡方程求解平面任意力系时,坐标轴选在__B__的方向上,使投影方程简便;矩心应选在_FG_点上,使力矩方程简便。 A .与已知力垂直 B .与未知力垂直 C .与未知力平行 D .任意 E .已知力作用点 F .未知力作用点 G .两未知力交点 H .任意点 3.画出图示各结构中AB 构件的受力图。 4.如图所示吊杆中A 、B 、C 均为铰链连接,已知主动力F =40kN,AB =BC =2m,α=30?.求两吊杆的受力的大小。 解:受力分析如下图 列力平衡方程: 又因为 AB=BC 第2章 常用机构概述 1.机构具有确定运动的条件是什么? 答:当机构的原动件数等于自由度数时,机构具有确定的运动 2.什么是运动副?什么是高副?什么是低副? 答:使两个构件直接接触并产生一定相对运动的联接,称为运动副。以点接触或线接触的运动副称为高副,以面接触的运动副称为低副。 3.计算下列机构的自由度,并指出复合铰链、局部自由度和虚约束。 (1)n =7,P L =10,P H =0 (2)n =5,P L =7,P H =0 C 处为复合铰链 (3)n =7,P L =10,P H =0 (4)n =7,P L =9,P H =1 E 、E ’有一处为虚约束 F 为局部自由度 C 处为复合铰链 第3章 平面连杆机构 1.对于铰链四杆机构,当满足杆长之和的条件时,若取_C_为机架,将得到双曲柄机构。 A .最长杆 B .与最短杆相邻的构件 C .最短杆 D .与最短杆相对的构件 2.根据尺寸和机架判断铰链四杆机构的类型。 a )双曲柄机构 b )曲柄摇杆机构 c )双摇杆机构 d )双摇杆机构 3.在图示铰链四杆机构中,已知,l BC =150mm ,l CD =120mm ,l AD =100mm ,AD 为机架;若想得到双曲柄机构,求l AB 的最小值。 解:要得到双曲柄机构,因此AD 杆必须为最短杆; 若AB 为最长杆,则AB ≥BC =150mm 若BC 为最长杆,由杆长条件得: 因此AB l 的最小值为130mm 4.画出各机构的压力角传动角。箭头标注的构件为原动件。 .如下图: 第4章 凸轮机构 1.凸轮主要由__凸轮___,___推杆__和___机架___三个基本构件组成。 2.凸轮机构从动件的形式有__尖顶_从动件,_滚子_从动件和_平底__从动件。 3.按凸轮的形状可分为__盘形_凸轮、_圆柱_凸轮和__曲面__凸轮。 4.已知图示凸轮机构的偏心圆盘的半径R =25mm ,凸轮轴心到圆盘中心的距离L=15mm ,滚子半径r T =5mm 。试求: (1)凸轮的基圆半径R O =?解:(1)mm r L R R T 15515250=+-=+-= (2) (4)mm r L R L r R S T T 98.10)()(22=----+=

机械设计基础(第五版)_杨可桢主编_课后习题答案

机械设计基础(第五版)课后习题答案(完整版) 杨可竺、程光蕴、李仲生主编 1-1至1-4解机构运动简图如下图所示。 图 1.11 题1-1解图图1.12 题1-2解图 图1.13 题1-3解图图1.14 题1-4解图 1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解 1-13解该导杆机构的全部瞬心如图所示,构件1、3的角速比为: 1-14解该正切机构的全部瞬心如图所示,构件3的速度为:,方向垂直向上。

1-15解要求轮1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即, 和,如图所示。则:,轮2与轮1的转向相反。 1-16解(1)图a中的构件组合的自由度为: 自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。 (2)图b中的CD 杆是虚约束,去掉与否不影响机构的运动。故图b中机构的自由度为: 所以构件之间能产生相对运动。 题2-1答: a ),且最短杆为机架,因此是双曲柄机构。 b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。 c ),不满足杆长条件,因此是双摇杆机构。 d ),且最短杆的对边为机架,因此是双摇杆机构。 题2-2解: 要想成为转动导杆机构,则要求与均为周转副。 ( 1 )当为周转副时,要求能通过两次与机架共线的位置。见图2-15 中位置和。 在中,直角边小于斜边,故有:(极限情况取等号); 在中,直角边小于斜边,故有:(极限情况取等号)。 综合这二者,要求即可。 ( 2 )当为周转副时,要求能通过两次与机架共线的位置。见图2-15 中位置和 。 在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。 ( 3 )综合(1 )、(2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是: 题2-3 见图 2.16 。

相关文档
相关文档 最新文档