文档视界 最新最全的文档下载
当前位置:文档视界 › 二项分布与正态分布个人难点详解

二项分布与正态分布个人难点详解

二项分布与正态分布个人难点详解
二项分布与正态分布个人难点详解

二项分布与正态分布个人难点详解

声明:所有内容皆为个人理解,可能有偏差或错误的地方。只能作为参考,不要尽信。

P是概率

k是p事件发生k次

C是计算该事件重叠的次数,如2正1反的概率就有重叠部分。

% 二项分布如何变为正态分布?

%标准差是为了表示数据的波动大小,在多少名学生中有何意义?

注意部分:

二.正态分布

正态分布可以称为概率密度函数

正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

最中间的μ是平均值,而在他左右的两格σ内,密度最高。

Z值的作用:把距离用标准差为标准来间隔,Z为第几个标准差区间。为了方便查面积,面积就是概率。

社会统计学习题集--二项分布与正态分布.

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定 第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验·关于总体成数的检验一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于(正态)分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( 显著性水平,它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(大),原假设为真而被拒绝的概率越(小)。 4.二项分布的正态近似法,即以将B(x;n,p视为(( np ,npq查表进行计算。 5.已知连续型随机变量~(0,1,若概率P{≥}=0.10,则常数= ()。 6.已知连续型随机变量~(2,9,函数值,则概率=()。 二、单项选择

1.关于学生t分布,下面哪种说法不正确( B )。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差 2.二项分布的数学期望为( C )。 A n(1-np B np(1- p C np D n(1- p。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( D )。 A 大于0.5 B -0.5 C 1 D 0.5。 4.假设检验的基本思想可用( C )来解释。 A 中心极限定理 B 置信区间 C 小概率事件 D 正态分布的性质 5.成数与成数方差的关系是(D)。 A 成数的数值越接近0,成数的方差越大 B 成数的数值越接近0.3,成数的方差越大 C 成数的数值越接近1,成数的方差越大 D 成数的数值越接近0.5,成数的方差越大 6.在统计检验中,那些不大可能的结果称为( D 。如果这类结果真的发生了, 我们将否定假设。 A 检验统计量 B 显著性水平 C 零假设 D 否定域 7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Zα/2=1.96,则当零假设被否定时,犯第一类错误的概率是( C 。 A 20% B 10% C 5% D.1% 8.关于二项分布,下面不正确的描述是( A )。 A 它为连续型随机变量的分布;

正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-(2)==. 奎屯王新敞新疆 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率 [Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 (1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内 的概率不少于,则a 至少有多大[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥

二项分布与正态分布 练习题

二项分布与正态分布 1.用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于1 3 的概率为( ) A.1 27 B.23 C. 827 D.49 解析:选C 由题意可得,用该电脑生成1个实数,且这个实数大于1 3的概率为P = 1-13=23,则用该电脑连续生成3个实数,这3个实数都大于13的概率为? ????233=8 27.故选 C. 2.(2019·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和3 4,甲、乙两人是否获得一等奖相互独立,则这两个人中 恰有一人获得一等奖的概率为( ) A.34 B.23 C.57 D.512 解析:选D 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×? ????1-34+34×? ????1-23=5 12 ,故选D. 3.(2018·厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( ) A.25 B.35 C.18125 D.54125 解析:选D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率是P =C 23? ????352? ????1-35= 54 125 . 4.(2018·唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( ) A.2 9 B.49

C.23 D.79 解析:选D 甲不跑第一棒共有A 13·A 3 3=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 2 2=8 种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79 .故选D. 5.(2019·福建四校联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的1 10,则此次数学考试成绩在100 分到110分之间的人数约为( ) A .400 B .500 C .600 D .800 解析:选A 由题意得,P (X ≤90)=P (X ≥110)=110,所以P (90≤X ≤110)=1-2× 1 10=45,所以P (100≤X ≤110)=2 5,所以此次数学考试成绩在100分到110分之间的人数约为 1 000×2 5 =400.故选A. 6.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5, 则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=1 5,则在第一次闭合后出现红灯的条件 下第二次闭合出现红灯的概率是P (B |A )=P AB P A =1 512 =25 .故选C. 7.(2019·淄博一模)设每天从甲地去乙地的旅客人数为随机变量X ,且X ~ N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )

2.4.1正态分布

2. 4.1正态分布 【教学目标】 1.了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单 应用。 2.了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对 生产过程进行控制。 【教学重难点】 教学重点:1.正态分布曲线的特点; 2.正态分布曲线所表示的意义. 教学难点:1.在实际中什么样的随机变量服从正态分布; 2.正态分布曲线所表示的意义. 【教学过程】 一、设置情境,引入新课 这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。 问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗? 问题 2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么? 问题 3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号

为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗? 问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化? 二、合作探究,得出概念 随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线. 这条曲线可以近似下列函数的图像: 22 ()2,(),(,),2x x e x μσμσ?πσ -- = ∈-∞+∞ 其中实数(0)μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲线。 问题 5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (- 2.322). 解:(1)P (-2.322)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 π 21,求总体落入区 间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥ 奎屯王新敞新疆

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

二项分布与正态分布

二项分布与正态分布 [最新考纲] 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 知 识 梳 理 1.条件概率及其性质 设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 若事件A ,B 相互独立,则P (B |A )=P (B );事件A 与B ,A 与B ,A 与B 都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发 生的概率为p ,则P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 4.正态分布 (1)正态分布的定义及表示 如果对于任何实数a ,b (a

机变量X 服从正态分布,记为X ~N (μ,σ2). 函数φμ,σ(x )=,x ∈R 的图象(正态曲线)关于直线x =μ对称,在x =μ处达到峰值1σ2π. (2)正态总体三个基本概率值 ①P (μ-σ

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布与正态分布的特点及联系

二项分布与正态分布的特点及他们的联系 2008-05-23 09:22:10| 分类:数学|举报|字号订阅 正态分布的特点如下: 1.正态分布的形式是对称的,它的对称轴是过平均数点的垂直线,即关于x=u对称。 2.曲线在Z=0处为最高点,向左右延伸时,在正负1个标准差之内,既向下又向内弯。从正负1个标准差开始,既向下又向外弯。拐点位于正负一个标准差处,曲线两端向靠近基线处无限延伸和接近,但不相交。 3.正态分布下的面积为1,过平均数的垂直线将面积分为左右各0.50的部分。正态曲线下的每一面积都可以被看成是概率,即对应着横坐标值的随机变量出现的概率。 4.正态分布是一族分布,它随着随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。但是所有的正态分布都可以通过公式Z=(Xl—M)/S,转换成标准正态分布,即平均数为0,标准差为1的正态分布。 5.在正态分布曲线中,标准差与概率(面积)有一定的关系。 二项分布的特点如下: 1、二项分布的均值为np,方差为npq。 2、以事件A出现的次数为横坐标,以概率为纵坐标,画出二项分布的图象,可以看出: (1)、二项分布是一种离散性分布 (2)、当p=q=0.5时,图象对称;当p不等于q时,图形是偏斜的。p>q 时,呈负偏态; 3、n->∞时,趋近于正态分布N(np,npq)

一般1/2np>=5且nq>=5时,二项分布就非常接近正态分布。 二项分布函数在教育中主要用来判断试验结果的机遇性与真实性的界限,例如,求测验猜测行为的判断标准:在选择题测验中,通过二项分布计算得出被试凭猜测答对N道以上的概率。 阅读(744)|评论(0)

正态分布习题与详解(非常有用-必考点)

1. 若 x ?N (0,1), 求(I) P (-2.32< x <1.2) ; (2) P ( x >2). 解:(1) P (-2.32< x <1.2)= (1.2)- (-2.32) =(1.2)-[1- (2.32)]=0.8849-(1-0.9898)=0.8747. (2) P (x >2)=1- P (x <2)=1- (2)=1-0.9772=0.0228. i 2利用标准正态分布表,求标准正态总体 (1) 在 N(1,4)下,求 F(3). 2 , (2)在 N(^,b )下,求F (卩一6,卩+6) ; 3 1 解: (1) F (3) = ( ) =0( 1)= 0.8413 2 (2) F(y+b)= ( ------------- ) =0( 1)= 0.8413 F(u —c)= ( ------------ ) =0 (— 1 )=1—0 ( 1 )= 1 - 0.8413 = 0.1587 F(u —b,a+b)=F(a+b)—F(a —b)= 0.8413 — 0.1587 = 0.6826 3某正态 总体函数的概率密度函数是偶函数,而且该函数的最大值为 间(—1.2 , 0.2 )之间的概率 J 0 ( 0.2 ) =0.5793, 0 ( 1.2 ) =0.8848] (X 上 「X (, 1 说明” 0, f(x)的最大值为f() =亍,所以" 1 =,求总体落入区 ),它是偶函数, 解:正态分布的概率密度函数是 f(x) 1,这个正态分布就是标准正态分 P( 1.2 x 0.2) (0.2) ( 1.2) (0-2) [1 (1.2)] (0.2) (1.2) 1 0.5793 0.8848 1 0.4642 4.某县农民年平均收入服从 =500 入在500: 520元间人数的百分比; 内的 概率不少于 0.95,则a 至少有多大? 元, (2) =200元的正态分布?( 1)求此县农民年平均收 如 果要使此县农民年平均收入在( a, a ) [0 ( 0.1 ) =0.5398, 0 ( 1.96 ) =0.975] 解:设 表示此县农民年平均收入, ~ N(500,2002). P(500 520) (520 500 P( a) 200 ) (盘) (500 500、 )(0.1) (0) 0.5398 0.5 0.0398 ( 2 ) 200 a a ( )2( )1 0.95, 200 200 a ( 200) 查表知:— 0.975 - 1.96 200 a 392

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布

正态分布习题与详解(非常有用-必考点)

; 1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= ` (2)F(μ+σ)=)( σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于,则a 至少有多大[Φ()=, Φ()=] ] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200a ∴Φ≥ 奎屯王新敞新疆

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

正态分布练习含答案

正态分布 一.选择题: 1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 2. 已知随机变量X 服从正态分布N (3,σ2 )则P (X <3)等于 ( ) A.15 B.14 C.13 D.12 解析:由正态分布图象知,μ=3为该图象的对称轴,P (X <3)=P (X >3)=12. 答案:D 3.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2 2)(σ2>0)的密度函数图象如图所示,则有 ( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 解析:由图可知,μ2>μ1,且σ2>σ1. 答案:A 4.设随机变量ξ服从正态分布)1,0(N ,则下列结论不正确的是 。 A .)0)(|(|)|(|)|(|>=+<=-<=<-=>-=

B .分数在120分以上的人数与分数在60分以下的人数相同 C .分数在110分以上的人数与分数在50分以下的人数相同 D .该市这次考试的数学成绩标准差为10 解析:由密度函数知,均值(期望)μ=80,标准差σ=10,又曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 答案:B 6. 已知随机变量X ~N (3,22 ),若X =2η+3,则D η等于 ( ) A .0 B .1 C .2 D .4 解析:由X =2η+3,得DX =4D η,而DX =σ2 =4,∴D η=1. 答案:B 7. 在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是 ( ) A .0.6826 B .0.3174 C .0.9544 D .0.9974 答案:C 。解析:由已知X —N (100,36), 故88100112100 (88112)( )(22)2(2)10.954466 P X P Z P Z P Z --<≤=<≤=-<≤=≤-=。 8. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80 分到90分的人数是 ( ) A. 32 B. 16 C. 8 D. 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 二.填空题 9. 若随机变量X ~N (μ,σ2 ),则P (X ≤μ)=________. 解析:由于随机变量X ~N (μ,σ2 ),其概率密度曲线关于x =μ,对称,故P (X ≤μ)=1 2 . 答案:12 10. 已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f (x )在x =________时达到最高点. 解析:∵P (X >0.2)=0.5,∴P (X ≤0.2)=0.5,

河北省张家口一中选修2-3 2.4 正态分布 教案

教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用 。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.即总体密度曲线在区间(a ,b )上得定积分。 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22()2,(),(,)2x x x μσμσ?πσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ?的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

1.一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X b x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2 σμN . 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

二项分布与正态分布习题理含答案

一、选择题 1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是() A.0.18B.0.28 C.0.37 D.0.48 [答案] A [解析]C0.43·0.6+C·0.44=0.1792.故应选A. 2.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为() A.0.2 B.0.41 C.0.74 D.0.67 [答案] C [解析]设事件A为“预报一次,结果准确”P=P(A)=0.8,至少有4次准确这一事件是下面两个互斥事件之和:5次预报,恰有4次准确;5次预报,恰有5次准确,故5次预报,至少有4次准确的概率为P5(4)+P5(5)=C×0.84×0.2+C×0.85×0.20≈0.74.故应选C. 3.(2011·湖北理,5)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=() A.0.6 B.0.4 C.0.3 D.0.2 [答案] C [解析]本题考查利用正态分布求随机变量的概率. ∵P(ξ<4)=0.8,∴P(ξ≥4)=0.2,又μ=2, ∴P(0<ξ<2)=P(2<ξ<4)=0.5-P(ξ≥4) =0.5-0.2=0.3.

4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是.质点P移动五次后位于点(2,3)的概率是() A.()5B.C()5 C.C()3D.CC()5 [答案] B [解析]由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C()3·()2=C()5=C()5.故应选B. 5.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是() A.[0.4,1) B.(0,0.6] C.(0,0.4] D.[0.6,1) [答案] A [解析]CP(1-P)3≤CP2(1-P)2,4(1-P)≤6P,P≥0.4,又01>σ2>σ3>0 B.0<σ1<σ2<1<σ3 C.σ1>σ2>1>σ3>0 D.0<σ1<σ2=1<σ3 [答案] D [解析]当μ一定时,曲线由σ确定,当σ越小,曲线越高瘦,反之越矮胖.故选D. 二、填空题 7.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0).若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为________. [答案]0.8

相关文档
相关文档 最新文档