文档视界 最新最全的文档下载
当前位置:文档视界 › 表面改性

表面改性

表面改性
表面改性

表面化学改性

表面化学改性 粉体工业是一个重要的基础原料工业,在一些高分子材料工业及高聚物复合材料领域中,粉体常常用作无机矿物填料,不仅降低了材料的生产成本,而且还能提高复合材料的力学性能以及稳定性,甚至可以赋予材料某些特殊的物理化学性能,如耐腐蚀性、绝缘性和阻燃性等。但由于这些无机矿物材料与有机高聚物基质(如塑料、橡胶、树脂等)的界面性质不同,因此当以无机矿物填料作为填充物时,除了需要相关的粒度和粒度分布要求之外,还必须对其表面进行改性,以改善其表面的物理化学特性,使其趋近基体的表面特性,提高其在基体中的分散性,从而提高材料的力学性能及综合性能。 表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的特点是:1)不必整体改善材料,只需进行表面改性或强化,可以节约材料; 2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比; 3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本; 4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。 表面改性的方法有很多,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。下面本文对表面化学反应法改性做简单介绍,并举例说明几种表面化学改性方法。 所谓无机粉体表面化学改性[1]是指通过无机粉体粒子表面和表面改性剂之间的化学吸附作用或化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。表面化学改性法是目前最常用的表面改性方法,在无机粉体粒子表面改性技术中占有极其重要的地位。超细无机粉体颗粒比表面积大,表面键态、电子态与粒子内部不同,配位不全等都为用化学方法对无机粉体粒子进行表面改性提供了有利条件。通常,表面改性剂一端为极性基团,能与粉体表面发生化学反应而连接在一起,另一端的非极性基团能与基体形成物理缠绕或是发生化学反应,从而改变无机粉体的分散性,改善制品的性能。表面化学改性方法包括表面沉积

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

聚合物表面改性方法综述

聚合物表面改性方法综述 连建伟 (中国林业科学研究院林产化学工业研究所) 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由 1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有 31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓

材料表面的硅烷化改性

实验64 材料表面的硅烷化改性 一.实验目的 1.利用硅烷偶联剂改性有机或无机材料。 2.制备无机-有机杂化粉体或薄膜材料。 二.实验原理 很多纳米材料都是重要的无机化工产品,是橡胶.塑料.油漆.油墨.造纸.农药及牙膏等行业不可缺少的优良原料。以SiO2纳米颗粒为例,纯粹制备的SiO2颗粒表面上存在着大量的羟基基团,呈极性.亲水性强,众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构,在这种立体网状结构中分子间作用力很强,应用过程中很难均匀分散在有机聚合物中,颗粒的纳米效应很难发挥出来。如何将纳米SiO2均匀分散在高分子材料中,以提高聚合物材料的各项性能是一个重要的研究方向。 硅烷偶联剂发展至今已有一百多种产品,按Y有机官能团的不同,可分为链系基类硅烷偶联剂.氨基硅烷偶联剂.环氧基类硅烷偶联剂.烷基丙烯酰氧基类硅烷偶联剂及双官能基型硅烷偶联剂等。 硅烷偶联剂处理技术原理简单.操作方便,其与材料表面的作用机理一直是研究的重点,目前关于硅烷在材料表面行为的理论有很多假设,主要有化学键理论.物理吸附理论.表面浸润理论.可逆水解平衡理论和酸碱相互作用理论等。 硅烷偶联剂分子含有两种反应性基团,化学结构可以用X3SiRY来表示,其中,X是可进行水解反应并生成硅烃基(Si-OH)的基团,如卤素.氨基.烷氧基和乙酰氧基等,硅醇基团可和无机物(如无机盐类.硅酸盐.金属及金属氧化物等)发生化学反应,生成稳定的化学键,将硅烷与无机材料连接起来。Y是非水解基团,可与有机基团如乙烯基.氨基.巯基.环氧基等起反应,从而提高硅烷与聚合物的粘连性。R是具有饱和键或不饱和键的碳链,将官能团Y 和Si原子连接起来。因此硅烷偶联剂分子被认为是连接无机材料和有机材料的“分子桥”,能将两种性质悬殊的材料牢固地连接在一起,形成无机相/硅烷偶联剂/有机相的结合形态,从而增加了后续有机涂层与基地材料的结合力。 一般来说,硅烷分子中的两个端基团既能分别参与各自的反应,也能同时起反应。通过适当的控制反应条件,可在不改变Y官能团的前提下取代X官能团,或者在保留X官能团的情况下,使Y官能团改性。若在水性介质中对Y官能团改性,那么X基团同时水解。则硅烷的作用过程依照四步反应模型来解释: ①与硅相连的3个Si-X基团水解成Si-OH; ②Si-OH之间缩合反应,脱水生成Si-OH的低聚硅烷; ③低聚物中的Si-OH与基体表面的-OH形成氢键; ④加热固化过程中发生脱水反应,与基材以共价键连接。 界面上硅烷偶联剂只有一个硅与基材表面键合,剩下两个Si-OH可与其他硅烷中的Si-OH 缩合形成Si-O-Si结构。 常用的硅烷偶联剂主要有; (十二烷基三甲氧基硅烷) (乙烯基三乙氧基硅烷)

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

高分子化学知识点总结

第一章绪论 1.1 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 1.2 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。 2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子) 4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子 5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金) 6)按聚合反应类型分:缩聚物、加聚物 7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

材料改性与表面工程

材料改性与表面工程 镁合金被誉为“21世纪最具发展潜力和前途的绿色工程材料”。他是金属结构材料中最轻的一种,镁合金从早期被应用于航空航天工业到目前在汽车材料、光学仪器、电子电信、军工工业等方面的应用有了很大发展。但是镁合金的耐蚀性耐磨性硬度及耐高温性能较差,在某种程度上又制约了镁合金材料的广泛应用。采用冷喷涂技术在镁合金表面喷涂覆盖上一层致密的保护膜,是解决镁合金腐蚀和磨损问题,提高镁合金铸件使用寿命,拓宽镁合金应用范围的关键之一。 1.冷喷涂原理和特点 超音速冷喷涂(简称冷喷涂)是近年发展起来的一种新型涂层制备工艺,常以金属材料(如钛、镍、钨、钴、铜、合金等)[1-5]为喷涂材料进行金属表面改性和功能涂层的制备。 冷喷涂技术[6]就是将经过一定低温预热的高压(1.5~3.5MPa)气体(N2、He 或压缩气体)分两路,一路通过送粉器,携带经预热(100~600℃)的粉末粒子(1~50 m)从轴向送入高速气流中;另一路通过加热器使气体膨胀,提高气流速度(300~1200 m/s),最后两路气流进入喷枪,在其中形成气─固双相流,在完全固态下撞击基体,通过较大的塑性变形而沉积于基体表面形成涂层。在喷涂过程中,喷枪距离为5~30 mm。 冷喷涂实现低温状态下的金属涂层沉积,具有如下主要优点:其一,喷涂粉末在加工过程中工作温度低,几乎无氧化现象,涂层表面组织均匀;其二,涂层密度大、结合强度高;其三,涂层材料适用广泛,可制备硬度大、耐磨性高、强度高的涂层;其四,可以加工具有特殊物理化学性质的涂层;其五,组织稳定;其六,涂层表面具有残余的压应力,使耐疲劳性增加;其七,喷涂粉末可以回收再利用。 2.国内外用冷喷涂技术在镁合金基体上喷涂铝合金涂层的研究现状 Yongshan Tao[7]等人用冷喷涂的方法在AZ91D镁合金表面沉积一层纯铝涂层,发现涂层中存在微米尺寸的裂纹和孔洞,涂层颗粒边界处中形成了新的界面和亚晶相;在质量分数为3.5%的中性NaCl溶液中浸渍后发现涂层的抗点蚀性能比具有相似纯度的铝块好。在浸渍过程中,由于在涂层中存在着相互独立的微米级或纳米级的孔洞而发生了传质现象。在浸渍十天之后,由于涂层致密细颗粒的结构,它仍然可以为AZ91D 镁合金基体提供良好的耐蚀性保护。 他们还在铝粉中加入α-Al2O3作为增强颗粒,发现涂层和纯铝涂层相比有较小的气孔率,由于α-Al2O3在基体上的渗透和侵蚀,涂层和基体之间的结合力也增强;α-Al2O3在铝基体上的捣固和增强作用涂层具

高分子化学的认识与感悟

高分子化学的认识与感悟 摘要:高分子化学是研究高分子化合物的合成、化学反应的一门学科,同时还涉及聚合物的结构和性能。本文是讲述我在学习了高分子化学这门课程之后对这门课程的掌握、理解,以及我感兴趣的高分子化学课程中的聚合方法的理解。 关键字:高分子化学高分子聚合物聚合方法 一.我对高分子化学的掌握 1.什么是高分子化学 高分子化学是研究高分子化合物(简称高分子)合成(聚合)和化学反应的一门科学;同时还会涉及聚合物的结构和性能。同时也涉及高分子化合物的加工成型和应用等方面。 高分子也成聚合物(或高聚物),有时高分子可指一个大分子,而聚合物则指许多大分子的聚集体。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。 2.高分子的分类和命名 2.1高分子分类 从不同的专业角度,对高分子进行多种分类,例如按来源、合成方法、用途、热行为、结构等来分类。 在高分子课程学习中,我们对高分子的分类是按有机化学和高分子化学角度来考虑,是按照主链结构将高分子分成三大类: ①碳链聚合物:主链完全有碳原子组成,比如绝大部分的烯类和二烯类的加 成聚合物。 ②杂链聚合物:主链除了碳原子外,还有氧、氮、硫等杂原子,比如聚醚、 聚酯、聚酰胺等缩聚物和杂环开环聚合物以及大多数天然高分子。 ③元素有机聚合物:主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、 磷等原子组成,但多半是有机基团,比如甲基、乙基、乙烯基、苯基等。 如果主链和侧基均无碳原子,则称物价高分子,像硅酸盐之类。 2.2高分子命名 在有机化学中我们就学过聚合物的命名,在高分子化学中聚合物的命名跟我们以往的命名没有什么区别,在这里命名方法主要分两类: ①单体来源命名法:就是聚合物名称以单体名为基础。比如乙烯的聚合物我 们称为聚乙烯。 ②结构单元命名法:就像有机化学里一样,先确定重复单元结构,排好单元 次序,命名。最后在名字前加一个聚就可以了。 3.聚合反应与聚合方法 3.1聚合反应 在我们学习高分子化学过程中,聚合反应贯穿了我们整个课本,从缩聚和逐步聚合到自由基聚合、自由基共聚合、离子聚合、配位聚合、开环聚合等,聚合反应中有涉及到聚合物的分子量和分布还有聚合物的大分子的结构、它们的链状和聚合物的聚集态、热转变之类的。我们知道聚合反应有很多种类型,同样我们可以将聚合反应分类。

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

无机分体表面改性方法综述

无机粉体表面改性方法综述 唐亚峰 (南华大学化学化工学院无机非金属材料系湖南衡阳) 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材

高分子化工

高分子化工 高分子化学工业的简称,为高分子化合物(简称高分子)及以其为基础的复合或共混材料的制备和成品制造工业。按材料和产品的用途分类,高分子化工包括的行业有塑料工业、合成橡胶工业、橡胶工业、化学纤维工业,也包括涂料工业和胶粘剂工业。由于原料来源丰富、制造方便、加工简易、品种多并具有为天然产物所无或较天然产物更为卓越的性能,高分子化工已成为发展速度最快的化学工业部门之一。 沿革:高分子化工经历了对天然高分子的利用和加工;对天然高分子的改性;以煤化工为基础生产基本有机原料(通过煤焦油和电石乙炔)和以大规模的石油化工为基础生产烯烃和双烯烃为原料来合成高分子等四个阶段。远在公元前已经开始应用木材、棉麻、羊毛、蚕丝、淀粉等天然高分子化合物。天然橡胶的硫化、赛璐珞(改性的天然纤维素,增塑的硝酸纤维素)的生产迄今已有 100余年之久,但有关高分子的涵义、链式结构、分子量和形成高分子化合物的缩合聚合和加成聚合反应等方面的基本概念,则迟至20世纪30年代才被明确。1907年,美国人L.H.贝克兰研制成功最早的合成树脂──酚醛树脂;20世纪初期,出现了甲基橡胶(聚2,3-二甲基丁二烯)、聚异戊二烯和丁钠橡胶;30年代末,实现了第一个合成纤维──尼龙66的工业化。从此,高分子合成和工业蓬勃发展,为工农业生产、尖端技术以及人们的衣食住行等,不断地提供许多不可缺少的、日新月异的新产品和材料。 成型加工:多数聚合物(或称树脂)需要经过成型加工的过程才能成为制品,有些在加工时尚需加入各种助剂或填料。根据材料的性质和制品的要求,选择适宜的加工方法和助剂或填料。热塑性树脂的加工成型方法有挤出、注射成型、压延、吹塑和热成型等;热固性树脂加工的方法一般采用模压或传递模塑,也用注射成型。将橡胶制成橡胶制品需要经过塑炼、混炼、压延或挤出成型和硫化等基本工序。化学纤维的纺丝包括纺丝熔体或溶液的制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。与高分子合成工业相比,高分子加工工业的生产比较分散,但制品种类繁多,花色品种不胜枚举。目前,高分子加工已逐渐形成为一个独立的工业体系。 产品分类:按主链元素结构分类,产品可分为碳链(主链全由碳原子构成)、杂链(主链除碳原子外尚有氧、氮、硫等)和元素高分子(主链主要由硅、氮、氧、硼、铝、硫、磷等元素构成)。按形

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

高分子化学知识点总结

高分子化学知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

第一章绪论 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要

活性炭表面化学改性及应用研究进展

第8卷 第19期 2008年10月167121819(2008)1925463205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 18 No 119 Oct . 2008 Ζ 2008 Sci 1Tech 1Engng 1 化工技术 活性炭表面化学改性及应用研究进展 陈孝云 林秀兰 魏起华 林金春 欧水丽 (福建农林大学材料工程学院,福州350002) 摘 要 活性炭表面官能团的种类与数量决定了活性炭的表面化学性质,而化学性质决定了活性炭的化学吸附特性。通过改变活性炭表面官能团的种类与数量、消除某些基团或者负载增加活性中心,可以改善活性炭对特定吸附质的吸附能力。论述了活性炭表面化学性质的氧化、还原、酸碱、等离子体、金属负载和电化学等改性及其应用研究进展。关键词 活性炭 吸附 表面化学改性 表面化学性质中图法分类号 T Q42411; 文献标志码 A 2008年5月27日收到国家自然科学基金(30571461)、福建省科技 厅星火计划项目(3182)、福建省自然科学基金(2008J0225)、青年教师基金(08B20)资助 第一作者简介:陈孝云,男,硕士,讲师,研究方向:离子液体和炭材料。E 2mail:chenxy_dicp@1261com 。 活性炭因孔隙结构发达、比表面积大、表面官能团丰富、灰分含量低、化学性质(耐酸、耐碱、耐热)稳定、机械强度高、不溶于水和有机溶剂、可再生重复利用等优点,被广泛用于治理水体、空气、土壤等环境中有机、无机、细菌及尘埃等污染物 [1—3] 。 但由于活性炭品种少、技术含量低、缺少功能化高品质专用活性炭,制约我国活性炭行业迈向更高层次的应用 [3—5] 。将活性炭改性处理,研制出对污染物高效、深度净化的功能活性炭,是降低活性炭使用成本、扩大其使用范围、提高其利用效率的有效途径,是活性炭行业未来发展方向 [4,6] 。活性炭改性主要是通过一些物理、化学处理,改变其孔隙结构(如孔容、孔径大小与分布等);改变活性炭表面的酸、碱性;或者在活性炭表面引入或去除某些官能团使活性炭具有某种特殊的吸附性能和催化特性 [7—10] 。此外,采用不同的活化方法或不同的活化 剂也可以实现制备不同孔径分布及不同表面化学特性的活性炭 [11] 。目前,针对活性炭表面化学性质 改性的方法主要有氧化改性、还原改性、酸碱改性、等 离子体改性、金属负载改性和电化学改性等[8—15] 。 1 活性炭表面化学性质 活性炭的吸附特性不但取决于它的孔隙结构,而且取决于其表面化学性质,表面化学性质决定了活性炭的化学吸附 [9] 。化学性质主要由表面的化 学官能团的种类与数量、表面杂原子和化合物确定,不同的表面官能团、杂原子和化合物对不同的吸附质的吸附有明显差别 [16] 。因此对活性炭表面 化学结构进行化学改性,使其吸附具有更高的选择性具有重要的意义。活性炭表面官能团一般分为含氧官能团(图1)和含氮官能团(图2);含氧官能团主要有羧基、酚羟基、羰基、内酯基及环式过氧基等,含氮官能团可能存在形式有两类酰胺基、酞亚胺基、乳胺基,类吡咯基、类吡嘧啶基等 [11—13] 。 图1 活性炭表面含氧官能团

二氧化钒粉体的表面改性机理及其应用

姓名:谭慧学号:1461020004 班级:14级材料工程二氧化钒粉体的表面改性机理及其应用 )具有优异的半导体金属相变特性,具有良好的应用前景。摘要二氧化钒(VO 2 由于二氧化钒纳米粉体的表面效应,它们常易团聚,使得它在应用中受到很大的局限性,这就需要对纳米二氧化钒粉体进行表面改性。综述了对纳米二氧化钒粉体进行改性处理的方法,介绍了二氧化钒的应用研究新进展,并展望了二氧化钒涂层在智能窗方面的应用中遇到的问题和应用新方向。 关键词二氧化钒改性涂层 Recent Progress in Modified and Application of Vanadium Dioxide )has excellent characteristics of Abstract vanadiumdioxide(VO 2 semiconductor-metal phase transition, has good prospects. Due to surface effects of vanadium dioxide nanopowders, they are often easy to reunite, making its application subject to significant limitations, which requires surface modification of nanometer powders of vanadium oxide. Review on nanometer modified Vanadium Oxide treatment methods, introduced the applied research progress of vanadium dioxide and prospect of vanadium dioxide coating applications in smart Windows encountered problem and application of new directions. modified coating Keywords VO 2 0 引言 )具有连号良好的金属半导自从1959年Morin[1]第一次发现二氧化钒(VO 2 体相变(MIT)特性以来,二氧化钒的这种相变及其相变伴随的光学和电化学性质的突变[2]成为了人们关注的热点。二氧化钒是一种相变温度为68O C左右的热致相变材料。在温度高于68O C时,VO 转变为R相金红石结构,表现出金属特性; 2 在温度低于68O C时,将转变为M相单斜晶系结构,表现出半导体的特性。在二氧化钒相变的同时,VO 的电阻率、透过率和磁化率等都会发生明显的改变。特 2 5g个数量级[3,4]。此外,二氧化钒的相变温度可别是它的电阻率变化可以达到4 ~ 以通过掺杂来调控[5-9]。由于二氧化钒具有这些优异的特性,使得它在智能窗、光储存、太赫兹超材料以及锂电池电极等方面都有很广泛的应用。 1 二氧化钒的改性 近年来,人们对于二氧化钒薄膜制备技术和应用的研究都已经比较成熟。张华[10]介绍了二氧化钒薄膜的常用制备方法并针对目前二氧化钒薄膜存在的问题

相关文档
相关文档 最新文档