文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料

纳米材料

纳米材料
纳米材料

纳米材料与纳米结构复习题

1.简单论述纳米材料的定义与分类。

答:广义上讲:纳米材料是指在三维空间中至少有一维处于纳米尺度范围,或由他们作为基本单元构成的材料。

按维数,纳米材料可分为三类:

零维:指在空间三维尺度均在纳米尺度,如纳米颗粒,原子团簇等。

一维:指在空间有两处处于纳米尺度,如纳米丝,纳米棒,纳米管等。

二维:指在三维空间中有一维处在纳米尺度,如超薄膜,多层膜等。

因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元又分别具有量子点,量子线和量子阱之称

2.什么是原子团簇? 谈谈它的分类。

答:原子团簇: 指几个至几百个原子的聚集体(粒径一般等于或小于1nm)

例如: C n H m(n与m都是整数);碳簇(C60、C70和富勒烯等)

原子团簇的分类:

a 一元原子团簇:即同一种原子形成的团簇,如金属团簇,非金属团簇,碳簇等。

b二元原子团簇:即有两种原子构成的团簇,例如Zn n P m, Ag n S m等。

c 多元原子团簇:有多种原子构成的团簇,例如V n(C6H6)m等

d原子簇化合物:原子团簇与其它分子以配位键形成的化合物。例如(Ag)n(NH3)m等。3.通过Raman 光谱中如何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效观察到单壁纳米管特有谱线,这是鉴定单壁纳米管非常灵敏的方法。100-400cm-1范围内出现单壁纳米管特征峰,单壁纳米管特有的呼吸振动模式;1609cm-1是定向多壁纳米管的拉曼特征峰。

单臂管的直径d与特征拉曼峰波数成反比,即:d=224/w。式中的d单壁管的直径,nm;w为特征拉曼峰的波数cm-1

4.论述碳纳米管的生长机理。

答:采用化学气相沉积(CVD)在衬底上控制生长多壁碳纳米管。原理:首先,过镀金属(Fe,Co,Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体;随后,碳原子从过饱和的催化剂颗粒中析出;最后,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。

各种生长模型

1、五元环-七元环缺陷沉积生长

2、层-层相互作用生长

3、层流生长

4、顶端生长

5、根部生长

6、喷塑模式生长

7、范守善院士:13C同位素标记,多壁碳纳米管的所有层数同时从催化剂中生长出来的,证明了“帽”式生长(yarmulke)的合理性

生长机理

表面扩散生长机理:不是生长一内单壁管,然后生长外单壁管;而是在从固熔体相处时,开始就形成多层管

顶端生长和根部生长:生长机理是V-L-S生长机理,关键特征:体相扩散。如果催化剂保留在纳米管顶端,为顶端生长;如果催化剂保留在底部,为根部生长。

VLS(气-液-固)顶端生长模型示意图

5.论述气相和溶液法生长纳米线的生长机理。

答:气相法生长纳米线一般按照气-液-固(V-L-S)和气-固(V-S)生长机理

气-液-固(V-L-S)生长机理:首先在衬底表面沉积一层具有催化作用的薄膜(通常为Au),在一定温度下,Au与衬底形成合金液滴或单独形成液滴。此时通过载气或热蒸发,将反应物原子带到合金液滴处,凝聚成核。当这些原子在液滴中达到饱和后,会在液滴表面结晶,析出并生长成纳米线,最终合金留在纳米线的一端。由于形成的合金液滴尺寸很小,并且纳米线只能在催化剂液滴上进行顶端或根部生长,因此能够生长出纳米线。

气-固(Vapor-solid,V-S)生长法原理:

凹坑或蚀丘为纳米丝提供了成核位置, 并且它的尺寸限定纳米丝的临界成核直径,因此在制备MgO纳米丝时,Mg蒸汽在氩气的传送下,能够在生长区生长成纳米丝。

溶液法生长纳米线一般按照溶液-液相-固相(S-L-S)和选择性吸附生长机理

溶液-液相-固相(S-L-S)生长机理与V-L-S生长机理相同,只是按V-L-S机制生长,原料由气相提供;而S-L-S机制的原料是由溶液提供的。

选择性吸附生长机理:不同的吸附剂会选择性的通过吸附键的形式(不是物理吸附)吸附在特定晶面上,从而抑制该方向的生长,从而得到超长的纳米线。在ZnO纳米线的制备中,C2O22-选择性吸附在ZnO的侧面,从而抑制了侧面的生长,从而使ZnO沿C 轴方向生长出超长纳米线。

6.解释纳米颗粒红外吸收带的宽化和蓝移的原因。

答:红外吸收带宽化的原因:

纳米氮化硅、SiC、及Al2O3粉,对红外有一个宽频带强吸收谱。由于纳米粒子大的比表面导致了平均配位数下降,不饱和键和悬键增多,与常规大块材料不同,没有一个单一的,择优的键振动模,而存在一个较宽的键振动模的分布,在红外光场作用下,它们对红外吸收的频率也就存在一个较宽的分布。这就导致了纳米粒子红外吸收带的宽化。蓝移原因:

与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向。主要由于表面效应引起:由于纳米微粒尺寸小,大的表面张力使晶格畸变,晶格常数变小。对纳米氧化物和氮化物小粒子研究表明:第一近邻和第二近邻的距离变短。键长的缩短导致纳米微粒的键本征振动频率增大,结果使红外光吸收带移向了高波数,即蓝移(化学键的振动)。

7.论述光催化的基本原理以及提高光催化活性的途径。

答:光催化的基本原理:当半导体纳米粒子受到大于禁带宽度能量的光子照射后,电子从价带跃迁到导带,产生电子空穴时,电子具有还原性,空穴具有氧化性。空穴与半导体纳米粒子表面OH―反应生成氧化性很高的·OH自由基,这种活泼的·OH自由基可把许多难降解的有机物氧化为CO2和H2O等无机物。

半导体的光催化活性主要取决于:导带与价带的氧化―还原电位。价带的氧化―还原电位越正,导带的氧化―还原电位越负,则光生电子和空穴的还原及氧化能力越强,光催化的效率就越高。

提高光催化活性的途径:1.减小半导体光催化剂的颗粒尺寸,可以提高其催化效率。纳米半导体的尺寸越小,处于表面的原子越多,比表面积越大,大大增强了半导体催化吸

附的能力从而提高了光催化降解有机物的能力

2.通过对纳米半导体材料进行敏化,搀杂,表面修饰以及表面沉淀金属或金属氧化物等方法,显著改善光吸收及光催化性能。

8.什么是库仑堵塞效应以及观察到的条件?

答:库仑堵塞效应:由于库仑堵塞能的存在对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子传输,这种现象叫做库仑堵塞效应。

通常,库仑堵塞在极低温度下观察到:观察到的条件是:(e2/2C)> k B T. 因为体系越小,C越小,e2/2C越大。如果量子点的尺寸为几纳米,可在室温下观察到上述效应;如果是十几纳米,上述效应必须在液氮温度下观察。

9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。

答:

式中:E(r):纳米微粒的吸收带隙,Eg(r=∞)为体相的带隙,r为粒子半径=[m e-1+m h-1] -1为粒子的折合质量,其中me和mh分别为电子和空穴的有效质量。

第二项为量子限域能(蓝移);反应量子限域效应,颗粒尺寸降低,能隙变宽,导致光吸收边移向短波方向,发生蓝移。

第三项为电子-空穴的库仑作用能(红移);介电限域效应导致介电常数ε增加引起吸收边蓝移。

第四项为有效里德伯能。

由上式可以看出,随着粒子半径的减少,量子限域效应为主时,其吸收光谱发生蓝移。库仑作用为主时,其吸收光谱发生红移。当微粒尺寸变小后出现明显的激子峰。其发光峰并不随粒径的减小而移动,而发光强度随半径的减小而迅速增大。

10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。

答:Raman散射是一个“光子-电子-声子”相互作用的过程,当不同波长的激光激发硅纳米线样品产生Raman光谱时,电子能隙与激光能量相近的那部分晶粒将得到优先和较强的激发。所以对于同种样品入射波长增加时,Raman峰向高波数移动,半峰宽变窄,对称型变好。声子限域效应加强,使Raman峰向低波长方向移动,发生蓝移;表面包覆或镶嵌某物质时,Raman峰要考虑压应力的影响,压应力增加,Raman峰向长波长方向移动,发生红移。

11.论述制备纳米材料的气相法和湿化学法。

气相法:CVD 激光烧蚀金属有机气相沉积热蒸发法分子束外延

湿化学法:水热(溶剂热)胶体化学法

CVD:近年来采用化学气相沉积在衬底上控制生长多壁碳纳米管。首先,过镀金属(Fe,Co,Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体。随后碳原子从过饱和的催化剂颗粒中析出。为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。

激光烧蚀:激光烧蚀是用一束高能激光辐射靶材表面,使其表面迅速加热融化蒸发,随

后冷却结晶生长的一种制备材料的方法。激光烧蚀的作用在于克服平衡状态下团簇尺寸的限制,可形成比平衡状态下团簇最小尺寸还小的直径为纳米级的液相催化剂团簇,这种液相催化剂尺寸的大小限定了后期按V-L-S机理生长的线状物的直径。

金属有机化学气相沉积:MOCVD是在气相外延生长的基础上发展起来的一种新型气相外延生长技术。与CVD不同的只是所用反应源不同。

热蒸发法:具体过程如下,直接将原料或者是原料与催化剂的混合物放在路子的高温煅加热蒸发,用载气将蒸气吹到冷端,从而形成核长大的过程。

分子束外延:在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。

水热(溶剂热):水热法是利用高温高压的水溶液使那些在大气条件下不溶或者难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。溶剂热反应是水热反应的发展,它与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。

胶体化学法:

12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。

纳米结构:是以纳米尺度的物质单元为基础。按一定规律构筑和营造一种新的体系。它包括一维、二维、三维体系。这些物质单元包括纳米微粒、稳定的团簇、纳米立方体、纳米圆盘、人造原子、纳米管、纳米棒、纳米线以及纳米尺寸的孔洞等。

根据纳米结构体系构筑过程的驱动力是靠外因还是靠内因来划分,大致可分为两大类。1.人工纳米结构组装体系:按照人类的意志,利用物理和化学的方法人为的将纳米尺度的物质单元组装。排列构成一维、二维和三维的纳米结构体系。包括纳米有序阵列和介孔复合体系。

2.纳米结构自组装体系和分子自组装体系:是指通过弱的和较小方向性的非共价键,如氢键、范德瓦耳斯键、配位键和弱的离子键协同作用把原子、离子、分子或纳米结构单元连接在一起构筑成一个纳米结构或纳米结构的花样。

纳米结构的自组装体系的形成有两个重要的条件:(1)有足够数量非共价键或氢键存在(因为氢键和范德瓦耳斯键等非共价键很弱(0.1—5kcal /mol)只有足够量的弱键存在,才能通过协同作用构筑成稳定的纳米结构体系。

(2) 是自组装体系能量较低,否则很难形成稳定的自组装体系。

13.简单讨论纳米颗粒的组装方法

纳米团簇的组装方法可分为两类:1 胶态晶体法 2 模板法

胶态晶体法:是利用胶体溶液的自组装特性使纳米团簇组装成胶态晶体,得到二维或三

维的超晶格。因为组装过程中分子识别作用较弱,所以这类组装过程都较难控制,对组装条件的要求非常严格。但胶态晶体法可以组装成三维超晶格,这也是其他方法很难做到的。

金属胶体的自组装:经表面处理后的金属胶体表面嫁接了官能团,它可以在一定环境下形成自组装纳米结构。例如1996年美国普度大学的科学家首次将表面包有硫醇的纳米Au 微粒形成悬浮液,该悬浮液在高度取向的热解石墨,M o S2或SiO2衬底上构筑密排的自组织长程有序的单层阵列结构,Au颗粒之间通过有机分子链连接起来。再例如2000年IBM 的科学性家利用类似的方法在油酸等表面活性剂存在的环境中还原铂盐并分解羰基铁,制得到铂,铁合金纳米粒子。这些合金粒子组分稳定,尺寸由3到10nm 可调。在表面活性剂的作用下,它们自组织成三维的超晶格结构。此外,利用自组装方法也可以将金属纳米粒子嫁接到DNA的大分子上,这种DNA指导下的自组装是一种有潜力的纳米装配。通过电场控制的活性的DNA微阵列可能会用于纳米制作。这些DNA分子自身有可编程的自组装特性,并且可派生出大量的分子、电子和光子部件。由于表面两种互补DNA链相接,然后进一步组装成纳米粒子超晶格。DNA分子也可以与大的纳米结构连接,这些纳米结构可以是有机粒子、纳米管、纳米结构和单晶硅表面。原则上,活性的微电子阵列和DNA修饰的元件能使科学家和工程师们直接在硅片或有限的半导体结构中自组装二维和三维的分子电路及其装置。

半导体胶体粒子的自组装:Bawendi等将包覆TOPO(三辛基氧膦)和TOP(三辛基膦)的CdSe纳米团簇在一定温度和压力下溶解于辛烷和辛醇的混合溶液中,然后降低压力使沸点较低的辛烷逐渐挥发,由于包覆TOPO和TOP的CdSe 纳米团簇在辛醇中溶解度较小,就使得纳米团簇的胶态晶体从溶液中析出。经高分辨电镜分析,这样组装得到的超晶格其有序排列范围可达数微米尺寸。

模板法:是利用纳米团簇与组装模板间的识别作用来带动团簇的组装,由于选定的组装模板与纳米颗粒之间的识别作用,而使得模板对组装过程具有指导作用,组装过程更完善。可应用的模板有固体基质、单层或多层膜,有机分子或生物分子等。我们知道胶体具有组装的特性,而纳米团簇又很容易在溶剂中分散形成胶体溶液。因此只要具备适合的条件,就可以使纳米团簇组装起来形成有规则的排布。

一、固态高分子膜模板

微米量级粒子的三维组装

利用电子束在高分子薄膜上打出规则排布的孔洞。这些洞的深度和直径与被组装粒子相匹配。将这些高分子薄膜作为组装模板,对分散于溶液中的微米粒子进行组装,通过适当混合溶剂的选择和离子强度的调节而使得粒子一层一层沉积在模板上形成三维有序的结构。美国华盛顿大学的夏幼南教授进一步发展了该方法。

其采用的主要组装步骤:首先在玻璃衬底上制出两维的圆柱形孔洞的阵列,两块玻璃构成平行的小室,然后将分散了球形胶体粒子的溶液在其中缓慢浸湿,将单分散的微球限制到空洞中。通过调节孔洞和球径的比值D/d,以及孔洞高度H与球径d之比,实现孔洞中微球种类与数目的调控。

二、气泡做模板

此外,还有1、沸石分子筛做模板。将金属和半导体粒子组装在分子筛中有序的孔道或孔洞中。(尺寸太小)2、MCM-1或MCM-8等介孔材料做模板。MCM可分为两类材料:ⅰ有序介孔阵列:长度为纳米量级,ⅱ有序介孔通道阵列:长度为宏观尺度。

14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。

答:①模板法组装纳米结构:高分子模板技术与溶胶-凝胶技术结合起来可制出金属氧化物的纳米图案。②L-B技术表面压力组装纳米棒阵列:通过表面张力的递增,使原本无序排列的各向同性的纳米棒首先排列成二维向列性排布,继而排列成二维近晶性的有序结构,多层这种二维结构叠加在一起,最终得到三维排列的有序纳米棒的阵列,3D -向列。③电场驱动组装:在两电极间滴加一滴纳米棒液体,溶液中的纳米线在电场作用下自组装排列成平行的纳米线阵列。④催化剂的图案图化。⑤其他方法:加热ZnO,In2O3和石墨粉末的混合物在碳衬底或Si衬底上生长分级纳米结构。以ZnO,SnO2和石墨粉的混合物在多晶Al2O3衬底上分别得到了ZnO螺旋桨状纳米结构

ZnO纳米线直流发电机

纳米管收音机

15.简单讨论纳米材料的磁学性能。

答:顺磁体:指磁化率是数值较小的正数的物体,它随温度T成反比关系。χ=μ0 C/T C:常数原子磁矩不为零,具有永久磁矩

铁磁体:这类固体的磁化率是特别大的正数,在某个临界温度Tc以下纵使没有外磁场,材料中会出现自发的磁化强度,在高于Tc的温度它变成顺磁体。其磁化率服从居里—外斯定律:χ=μ0C/(T-Tc)

抗磁体:指磁化率是数值较小的负数的物体。M =χH 抗磁性物质在外磁场中感生一磁矩,其方向于外磁场方向相反

反磁体:指磁化率是数值较小的正数的物体。在温度低于某温度时,它的磁化率同磁场的取向有关,高于该温度其行为为顺磁性。同一晶格中,电子磁矩是同向排列,不同晶格中电子磁矩反向排列,两个晶格中自发M大小相同方向相反,整个晶体M = 0

纳米微粒的小尺寸效应、量子尺寸效应,表面效应等使他具有常规材料无法具的特异性:①超顺磁性:纳米材料的尺寸达到某一临界值时进入超顺磁状态。造成这种超顺磁性的原因为:在小尺寸条件下,当各项性能减小到于热运动可比拟时,磁化方向就不再固定在一个易磁化方向上,易磁化方向无规律的变化,结果导致超顺磁的出现;②矫顽力:纳米微粒的尺寸高于超顺磁临界尺度时出现较高的矫顽力,随着粒径减小而增加,随着温度的升高而下降;③居里温度:居里温度是磁性材料的重要参数,实验表明,随着磁性薄膜厚度的减小,居里温度在不断下降。对于纳米微粒而言,由于小尺寸效应和表面效应导致纳米粒子的本征和内禀的磁性变化,因此具有较低居里温度。④磁化率特性:纳米微粒的磁性和所含的总电子数有密切关系。电子数的奇偶就对磁化率影响各不相同。例如在高场下为包利顺磁性,纳米磁性的磁化率是常规金的20倍。

16.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理

答:十二烷硫醇的Ag粒子在庚烷中将其分散,这些粒子尺寸分散性比较大,为了降低这种多分散性,需要采用尺寸选择沉淀法。

具体做法:①包覆型Ag粒子在己烷中具有高的可溶性,而在吡啶中的可溶性差。先将包覆性Ag离子溶解在己烷中;

②如果将吡啶缓慢加到含有包覆型Ag粒子的己烷中,则当吡啶达到某一给定体积时,溶液将出现浑浊,并有沉淀出现,这相应于最大粒子的凝聚。这些粒子之间的范得瓦耳斯力比较大;

③离心分离沉淀,将大粒子收集起来,小粒子留在悬浮液中;(离心的转速要适当)

④将大粒子放入己烷中再分散形成均质清澈透明液体。

⑤将得到的溶液滴一滴到TEM的碳栅极,可得非常完整的组织。经高倍放大后,可看到,纳米粒子有两种不同的对称性排列。

17.简述光子晶体的概念及其结构。

答:将不同介电常数的介电材料构成周期性结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带,光子能带间出现的带隙叫做光子带隙,具有这种光子带隙的周期性介电结构就是光子晶体。

光子晶体结构分为一维、二维和三维的。胶体晶体,反蛋白结构和金刚石结构的光子晶体,一维介电棒组成的层状结构光子晶体。

光子晶体的基本特征:具有光子带隙,频率落在带隙中的电子波是禁止传播的。

18.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性能。

答:纳米结构单元:0维:团族、纳米颗粒、八面体、三角形、多面体等;

一维:纳米线、纳米棒、纳米带、纳米管和纳米锥等;二维:纳米片等。

复杂的纳米结构:嵌段共聚物有序的自组装成为超分子纳米结构;多层膜;自组装形成管状、球状、层状和蘑菇状的结构。在Ni基板上安排Xe原子组合成形成最小的文字IBM、用48个铁原子围成的量子围栏、在硅晶面上形成的最小文字—中国、利用AFM对DNA 生物分子进行操作在云母板上写出了三个字—DNA、铂表面上由CO分子排成的纳米人、蘑菇形状的高分子聚合体、胶体自组装生成的PtFe纳米粒子的超晶格、组装一维纳米线交叉网络。

纳米器件:ZnO纳米器线直流发电机、光子晶体、纳米棒逻辑敏电路、纳米管收音机、纳米线染料敏化太阳能电池。

19.简单论述单电子晶体管的原理。

答:单电子晶体管是依据库伦堵塞效应和单电子隧道效应的基本原理设计和制造的一种新型的纳米结构器件。

如图:在两个电极中间的绝缘层的中间再作一个电极Ⅱ,使之带半个电荷,两边的电极就会感应半个符号相反的电荷,系统将成为两个如图c的状态。因此可以通过电极Ⅱ上电压的变化来控制隧穿效应的发生。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

热门-《纳米技术就在我们身边》教学设计

《纳米技术就在我们身边》教学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 3.自主、合作探究“新奇”的具体体现。 4.领会纳米的神奇所在,培养爱科学、学科学的精神。 教学重点 1.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 2.自主、合作探究“神奇”的具体体现。 教学难点 1.培养学生通过各种渠道收集信息的能力。 2.有科学依据的大胆想象,培养学生的科学精神和创造能力。 第一课时 教学目标

1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写 “纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教学过程 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的 人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管 中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,纳米和纳米技术,对学生来说很陌生、很抽象。教师出示关于纳米和纳米技术的图片,可以增加直观感,能较好地激发学生的学习兴趣。 图2.纳米技术制作的中国地图(这是中国科学院化学 所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

纳米材料在现实生活中的应用

纳米材料属于纳米技术中的一种,是一种很特殊的材料。物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。纳米材料指的就是这种尺度达到纳米单位的、具备特殊性能的材料。它在现实生活中的应用广泛,包含以下几点: 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳

米材料的延展性的高性能陶瓷。 3、纳米传感器 纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。 4、纳米倾斜功能材料 在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。 5、纳米半导体材料 将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。 利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,然后生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能

纳米教学设计2

11、《新奇的纳米技术》导学案 教学目标: 1.能正确、流利地朗读课文。了解什么是“纳米技术”,以及纳米科技的广泛应用。 2.理解文章结构,能利用规律概括段落大意。 3.能收集相关资料,并根据文章内容提出自己的疑问。 4.会用关联词来介绍一样物品。 5.激发学生爱科学、学科学的热情。 教学时间 2课时 导学单: 1、这篇课文我已经读了()遍,自己认为读得(A.正确流利B.基本流利C.不太流利) 组内伙伴评价:(A.正确流利B.基本流利C.不太流利) 2、我已经会认读这些新词: 除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 3、我要提醒大家容易读错的词语有 4、读了课题《新奇的纳米技术》,你知道了什么?有哪些问题要与大家交流?导学学过程 基础部分 (学习程序:课前通过自己独立学习,完成基础部分及要点部分会做的内容,课内小组交流基础部分,后展示、点评。时间约10分钟) 一、谈话引入,激发兴趣 1.今天我们来学习一篇新课文《新奇的纳米技术》(板书课题)。 2.以前听说过“纳米技术”吗?“新奇”的意思?说说生活中你有没有遇到过新奇的事物。 二、通读课文,了解大意 1.检查课文朗读。 出示课文中的科技术语和句子。先组内相互听读纠正,然后全班交流。 词语:除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质

纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 句子:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 2.自由交流:读了课文,你知道了什么? 3.自学了课文后你有什么问题想问? 重点部分 (学习程序:先独立学习要点部分,再组内群学要点部分,时间约8分钟。然后根据各组疑问情况,安排小组大展示,点评,教师及时追问、点拨,时间约17分钟。) 三、细读课文,深入理解 (一)学习第一自然段。 1.齐读第一段,读了这一段你有什么问题吗?(微米、纳米是什么?)(二)学习第二自然段。 1.自读第二自然段,想想:课文这一段主要讲了什么呢?(纳米是一种很小的长度计量单位和什么是纳米技术。) 2.品读句子,感受说明方法。 纳米是非常非常小的长度度量单位,非常非常小。 纳米是非常非常小的长度度量单位,1纳米等于十亿分之一米。 你觉得哪句话写得更明白形象些?为什么?(用了列数字的方法) 文章中还有哪些句子也是生动地向我们介绍了纳米是很小的长度度量单位? 3、理解“顾名思义”的意思。(智能手机、平板电脑、混合动力汽车) 4、理解:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 你理解这句话吗?来说说哪些词语不懂?(纳米尺度、微观对象) 缩句练习。 5.你觉得这句话是围绕着哪句话来写的?从文中用——划出。分析总分段式的特点。根据规律,找到3、4、5的总起句,说出主要内容。 (三)学习第三自然段。 1、自读这本段,从文中找一找,作者举了哪些例子来说明纳米技术就在我们身边。(冰箱的涂层、纳米领带、纳米彩旗) 2、细读这些例子,说说运用了纳米技术后,有哪些神奇的效果。

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教学设计

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教 学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教具准备 课件: 教学设计 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,它们可以非常容易地予以清理,而不再用进行危险的开颅、开胸手术。)图2.纳米技术制作的中国地图(这是中国科学院化学所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

3.板书课题: 简述:这篇科学小品文向我们简单而准确地介绍了纳米、纳米技术等科学知识,展示了纳米技术美妙的前景。(板书:纳米技术就在我们身边) 4.出示目标。 二、初读课文,解决字词。 1.学生自读课文,要求:【出示课件3】 (1)正确、流利地读课文,读准字音,读通句子。 (2)遇到自己喜欢的语句,多读几遍。 2.自学课文生字词,可以用笔在文中圈出来,然后用合适的方法来解决生字词。 3.检查学习效果,相机指导。 (1)检查并指正读音 【出示课件4:本课生字新词】 乒乓球拥有杀菌防臭蔬菜癌症死亡率疾病病灶 纳米冰箱钢铁隐形健康细胞预防需要 自由读,指名读,齐读。 注意读准平舌音“灶”,翘舌音“杀臭疏”等。 (2)指导书写【出示课件5、6】 重点指导“臭蔬健康”。 “臭”上下结构,上面是个“自”下面是个“犬”,不要少写“自”里的一横和“犬”上的一点。 “蔬”上窄下宽,下面是“疏”,不要多写横撇下的一撇,也不要少写了撇折右边的一点。 “健”左窄右宽,注意中间是“廴”不是“辶”。 “康”半包围结构,注意里面的部分,最后四笔分别是:点、提、撇、捺。 (3)检查词语理解。 【出示课件7、8、9】 (1)微米:微米是长度单位。1微米相当于1米的一百万分之一。

无机纳米材料简介

无机纳米材料简介 无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。 无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。 一、纳米氧化物: 纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛 (T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。 纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。 纳米氧化物在催化领域的应用 纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。 2.1 石油化工催化领域 由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

常州纳米材料项目规划方案

常州纳米材料项目规划方案 xxx有限公司

摘要说明— 上世纪80年代末,我国政府开始重视纳米材料和技术的研究,90年代中期之后,从事纳米材料生产开发的公司不断增多,社会资金投入也不断增加,纳米材料应用产业兴起。进入二十一世纪,我国纳米材料产业进入稳定、健康的发展阶段,各种包括纳米材料在内的新材料产业法规、标准也陆续出台,纳米行业从业者的外部环境逐渐变好,竞争更加有序。 该纳米材料项目计划总投资16668.32万元,其中:固定资产投资12328.67万元,占项目总投资的73.96%;流动资金4339.65万元,占项目总投资的26.04%。 达产年营业收入34676.00万元,总成本费用27159.02万元,税金及附加309.23万元,利润总额7516.98万元,利税总额8863.03万元,税后净利润5637.73万元,达产年纳税总额3225.29万元;达产年投资利润率45.10%,投资利税率53.17%,投资回报率33.82%,全部投资回收期4.46年,提供就业职位770个。 纳米材料及其相应的制取、组合技术已成为21世纪世界科技发展中的主流方向,也是世界各国最主要的研究热点之一。当前,我国在纳米领域发表的SCI论文累计已经跃居全球第一,同时相关专利的申请量累计达20.9万件,占全球总量的45%。然而,在美国专利及商标局的专利统计数

据中,即使不计美国自身,我国大陆地区的专利数量也居于韩国、日本、 中国台湾地区之后,说明我国相关产业参与国际化竞争的程度仍然不够深。 报告内容:概述、背景、必要性分析、市场调研预测、建设规划方案、项目选址、土建工程、工艺可行性分析、环境影响分析、项目职业保护、 项目风险评估、节能概况、实施安排方案、项目投资方案、项目盈利能力 分析、项目结论等。 规划设计/投资分析/产业运营

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

纳米材料

绪论 1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。Richard Feynman:世界上首位提出纳米科技构想的科学家。 2、纳米材料 (1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因) (2)纳米尺度:1-100 nm范围的几何尺; 纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。 (3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等 (4)纳米材料的维度: ○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状) ○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构) ○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构) ○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成) (5)纳米材料的分类○1具有纳米尺度外形的材料 ○2以纳米结构单元作为主要结构组分所构成的材料 3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。 4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。分辨率达0.1~0.2 nm,可以直接观察和移动原子。 5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。可用于研究半导体、导体和绝缘体。 AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程 分支学科:纳米力学:研究物体在纳米尺度的力学性质 纳米物理学:研究物质在纳米尺度上的物理现象及表征 纳米化学:研究纳米尺度范围的化学过程及反应 纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制; 纳米医学:利用纳米科技解决医学问题的边缘交叉学科 纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。 成分:是影响性能的基础 结构:决定材料性能的关键材料 性能:各种物理或化学性质 效能:材料在使用条件下的表现

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米材料设计及电荷极化调控

纳米材料设计及电荷极化调控 材料创新是人类文明进步的重要动力,也是新兴产业发展的基础。近年来不断涌现出来的新型纳米材料表现出很多卓越性质,如高比表面积、多尺度的尺寸效应、界面效应、表面效应和量子限域效应等等,因而被广泛应用于能源、环境和半导体工业等重大领域中。 然而,纳米材料结构的复杂性为实验和表征带来了困难,很多复杂过程都难以被实验捕捉,这限制了对构效关系及工作机理的理解,制约着新型纳米材料的理性设计。随着近年来高性能计算的飞速发展和计算理论的不断完善,第一性原理理论计算从原子尺度和电子结构层次为材料解析提供了有力工具。 它能够帮助人们更好地进行理性设计并检验设计的可行性,且具有研发周期短、成本低廉、环境友好等优势。因此,理论计算结合实验表征已经成为新材料设计和研发的新潮流。 调控纳米材料的成分、尺寸和表界面形貌等都能有效调控材料的性质;此外,基于对构效关系的理解,理性设计材料复合也能达到协同增效的目的。这些设计思路,归根结底都是基于对电子的控制,以电子态为载体,通过电子激发、转移形成电荷极化,从而驱动相应的物理和化学过程。 本文基于第一性原理理论计算研究了一系列复杂体系的电子态结构和布居行为,从电荷极化形成与演变的角度阐述了复杂体系中的构效关系和协同机理(第三到五章)。此外,我们还探索性地提出了偶极矩可以作为复杂体系中电荷极化的描述子,用来研究电荷极化对材料表面化学反应的影响(第六章)。 本文共六章,各章简介如下:首章中,基于后面工作所涉及的领域及希望解决的问题,我们主要介绍了两方面的背景知识和研究现状。首先是纳米材料导电性

调控,我们分别以钒的氧化物家族和石墨烯为例,介绍了强关联体系和二维材料导电性调控的研究进展。 在钒的氧化物家族中,几何结构在导电性调控中扮演着重要角色,使得通过精确控制几何结构来调控电子结构成为可能。石墨烯可控带隙一直以来都是其在半导体领域应用的难点,尽管研究取得了很多进展,但在原子尺度下的精确调控还存在很多挑战。 此外,如何在调控带隙的同时保持石墨烯的固有优势如高载流子迁移率、高机械强度等,也是当前面临的一大难题。随后,我们对光催化领域的研究背景、主要过程和机理、材料筛选和复合进行了简要介绍。 传统的半导体材料存在许多不足,通过理性设计半导体-金属或半导体-半导体复合能打破单一材料的局限性,达到协同增效的目的。因此纳米复合材料逐渐受到越来越多的重视,成为当前光催化领域研究的焦点。 第二章中我们简单介绍了第一性原理密度泛函的发展历史,理论框架,常用近似和主流量化计算软件包。密度泛函理论(DFT)从量子力学出发,以体系的电子密度为基本研究量,通过Kohn-Sham方程将相互作用的多粒子体系问题转化为无相互作用的单粒子体系问题,并利用交换关联泛函进行近似来求解体系的基态电荷密度,进而得到包括体系基态能量在内的所有基本性质。 实际计算中,我们根据具体研究体系的特性和研究目的选择合适的交换关联泛函和量化计算软件包进行计算模拟。接着,我们针对材料内部、界面和表面的电荷极化效应及其对纳米材料性能的影响,对一系列复杂体系展开了研究,分别在第三、四和五章中作了详细阐述。 第三章介绍了通过掺杂和缺陷调控材料内电荷极化的两个例子:(1)氧空位

纳米材料

《功能金属材料》课程作业 一维氧化锌纳米材料应用与发展前景及课程感悟 班级:0610104 学号:061010418 姓名:刘广通

一、一维ZnO 纳米材料性能 ZnO 纳米材料以形态和尺度划分,包括零维ZnO纳米材料(ZnO 纳米颗粒)、一维ZnO 纳米材料(ZnO 纳米线、棒、丝、管和纤维等)、二维ZnO 纳米材料(ZnO 纳米薄膜)等。按成分划分,包括纯ZnO 纳米材料和掺杂ZnO 纳米材料,如In、Ga、Sn、Mn、Co等各种元素掺杂的n型掺杂纳米材料,P、N、Li等元素掺杂的p型掺杂纳米材料及多元素复合掺杂的掺杂ZnO 纳米材料。 一维ZnO 纳米材料在光学、电输运、光电、压电、力电、场发射、稀磁、光催化、吸波等性能上具有显著特点,在传感、光学、电子、场发射、压电、能源、催化等领域已经显示出良好的应用前景。目前,在一维ZnO 纳米材料研究领域,关注的重点包括一维ZnO 纳米材料的可控及高产率设备、结构与性能调控、纳米器件组装、纳米材料及器件的性能测试与评价、纳米效应及耦合效应、理论计算与模拟、安全服役与损伤等方面。[1] 目前来说,我们都希望电子器件能越小型越好,也就是通过不断缩小器件的尺寸来达到提高速度、减少功耗的目的,这种方法在过去几十年一直被运用而随着我们周围的生活电子产品的不断微型化而发展。所以要利用薄膜生长和光刻技术(电子束光刻、X射线光刻等)制备材料和器件。我们希望纳米线作为基本功能单位来组成电子电路。一维纳米材料的原理器件的研制可以完成这一使命。而ZnO 是一种具有压电和光电特性的半导体材料,它是典型的直接带隙宽禁带半导体,同时它的激子结合能高达60meV。因此ZnO 材料在紫外光电器件方面有巨大的应用潜力。ZnO有很高的导电、导热性能,化学性质非常稳定,作为短波长发光器件具有高的稳定性和较低的价格,有极大的应用价值。而在一维纳米材料中, ZnO 有三个主要的优点:首先,它既是半导体又有压电效应,这是做电动机械耦合传感器和变频器的基础;其次,ZnO 的生物安全性与相容性相对高,可以用在医学方面;最后,ZnO 的种类最丰富,如纳米线,纳米带,纳米螺旋结构等。因而有一系列的一维ZnO 纳米材料的新器件被不断地开发研制,如室温激光器、发光二极管、传感器、晶体管、场发射器等。 二、一维ZnO 纳米材料的应用及发展前景 一维ZnO纳米材料被用于光学器件。因为ZnO是一种宽禁带半导体,而且在室温下具有很高的激子束缚能,因此ZnO被认为是一种优异的蓝光到紫外波段发射的发光材料。在325nm的He-Cd激光激发下,ZnO纳米材料的室温发光谱中存在两个发射峰,分别是380nm左右的近带边的自由激子复合引起的紫外发射峰[2]和540nm左右的氧空位引起的绿光发射峰[3]。ZnO纳米材料的发光效率远高于块体材料,这主要是因为ZnO纳米线的单晶形态和小尺寸效应。小尺寸效应的影响是由于纳米材料非常微小,其尺寸与光波波长、传到电子的得布罗意波长及超导态的相干长度、透射深度等具有物理特征的尺寸相当或更小时,它的周期性边界将被破坏,使它原本所具有的声,光,电,磁,热力学等特性呈现出“另类”的现象。ZnO纳米的发光机制有以下几种:1)带间跃迁发光。即适当的光照射时,半导体的价带电子发生带间跃迁,也就是电子从价带跃迁到导带,而产生光生电子和空穴。而对纳米材料,器能带将会展宽,改变其性能。2)激子辐射复合发光。纳米结构ZnO有宽的禁带隙、大的比表面积、

纳米技术在工业设计中的应用

中国地质大学(武汉) 结课论文 题目纳米技术在工业设计中的应用 学生姓名 学号 专业 班级 指导教师 2015年12月

目录 摘要 (3) 第一章工业设计与材料的关系 (4) 第二章纳米技术及纳米材料的发展 (5) 第三章纳米材料在工业设计中的应用 (6) 结束语 (6) 参考文献 (7)

摘要:材料是一切工业设计的载体,工业设计与材料密不可分,优秀设计离不开适当的选材与合理的工艺。 形态、功能和材料是构成产品的三大要素,三者互为影响。新材料、新技术的出现以及创新性地运用材料对于产品发展产生过重要的影响。 而纳米技术和纳米材料的出现必将给工业设计注入新的活力。 关键词:工业设计、纳米技术、纳米材料、应用。

第一章工业设计与材料的关系 产品设计包括使用工艺,材料工艺,审美情趣,等三方面构成因素。 实用功能是首要的,它决定着产品造型的首要形式。 材料和工艺是保证产品造型付诸实现的物质技术条件,它是产品功能和艺术处理的具体体现。 产品造型的艺术处理,决定着形式的美观与否,表达了一定的思想感情和审美情趣。 这三个方面,存在着相互依存,相互作用的辩证统一关系,构成了不可分割的统一整体。不同的材料有不同的加工、成型方法。材料的工艺性是指材料适应各种工艺处理要求的能力。材料的工艺性包括成型工艺、加工工艺和表面处理工艺。 古埃及的法老王座因使用者的身份不同,座椅靠背上满是贴金,光满四射。 里特维尔德设计的红蓝椅有由质木条和层压板构成,十三根木条相互垂直,强调抽象的感受和亮感,以完美和简洁的物质形态反应风格派运动的哲学。 “高技术风格”、“机器美学”的轰动作品是由英国建筑师皮阿诺和罗杰斯于1972年和1976年建成的蓬皮社艺术中心,它是一座具有未来主义风格的建筑,整个建筑有纵横的玻璃管道、硕大的玻璃墙体和错综的钢架构成。 诚如世界是由物质构成的一样,一切的工制品都是有一定的材料组成的。最早的材料是从古代的旧石器说起,当人们以石头撞击火花或钻木取火时,人与材料就有了互为关系,材料一方面成为造物的物质基础和构成物品的基本内容,另一方面也成为人们实现自己心中理想中介物,对象与人形成密切的联系。 工业设计的定义是:就批量生产的产品而言,凭借训练、技术知识、经验及视觉感受而赋予材料、结构、形态、色彩、表面加工及装饰等新的品质和资格,叫做工业设计。 材料工艺与产品造型之间的关系是双向的。一是已知材料工艺求解产品造型特征,二是已知产品造型特征求解材料工艺的各种可能性。在产品造型的三要素中与工艺关系最密切,受工艺影响最大的是形态要素,质感要求次之,色彩要素在一般情况下与产品成型工艺无直接关系。一定程度上可以说人类的发展史就是材料的发展史,人类的设计史就是材料的使用史。大体来说,造型材料的发展经历了石器时代,陶器时代,青铜器时代,铁器时代,高分子材料时代以及材料复合时代,现代设计诞生于铁器时代以后。在现代社会中,已经由钢铁材料为住的局面向高分子材料、复合材料的局面过渡,出现了越来越多的人工合成材料和新材料,形成了一个规模宏大的互相渗透的材料体系。 21世纪新材料产品向着实现智能化、多功能化、环保、复合化、低成本化、长寿寿命及按用户进行订制的方向发展。

纳米材料论文

学院:机电工程学院 专业年级:2009级机械五班 学生姓名:刘威学号:20091347 指导老师:袁光明

纳米材料与应用 (中南林业科技大学机电工程学院机械专业20091347,湖南长沙,410004)摘要:简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。 关键词:纳米材料,性能,应用。 【Abstract】: Briefly introduces the classification of nanomaterials and its basic effect, explaining the nanometer material the special performance. A new energy nanomaterials analyzed in photoelectric conversion, hot conversion, super capacitors and battery electrodes nanometer material; Environmental purification of nanomaterials photocatalytic, adsorption, exhaust handling, etc.; The more specific about nano biological medicine materials nano ceramic material, nano carbon materials, nanometer high polymer materials, nano composite materials. 【Keywords】: nanomaterials, performance ,the application. 纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。 按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。 按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料)。 按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。 按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。 当纳米材料的结构进入纳米尺度调至范围时,会表现出小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。 表面效应是指纳米粒子表面原子数与总原子之比随粒径的变小而急剧增大后引起的性质上的变化。随着粒径的减小,纳米粒子的表面原子数、比表面积、表面能及表面结合能都迅速增大。表面原子处于裸露状态,周围缺少相邻的原子,有许多剩余键力,易与其他原子结合而稳定具有较高的化学活性。纳米材料中界面原子所占的体积分数很大,它对材料性能的影响非常显著。低温超塑性是纳米材料的一个重要特性,普通陶瓷只有在1 000℃以上,在小于一定的应变速率时才能表现出塑性,而许多纳米陶瓷在室温下就会发生塑性变形。这种纳米陶瓷增韧效应主要归因于大量界面的存在。而它的塑性变形主要是通过晶粒之间相对滑移而实现的。 而小尺寸效应纳米粒子的熔点可远低于块状本体,此特性为粉末冶金工业提供了新工艺,利用等离子共振频移随颗粒尺寸变化的性质,可通过改变颗粒尺寸,控制吸收边的位移,构造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。 对于量子尺寸而言,对于晶粒状态难以发光的间接带隙半导体,当其粒径减少到纳米量级时,会表现出明显的可见光发光现象,且随着粒径的进一步减少,发光强度逐渐增强,

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

相关文档
相关文档 最新文档