文档视界 最新最全的文档下载
当前位置:文档视界 › 微纳粉体材料与技术方向课程指南

微纳粉体材料与技术方向课程指南

微纳粉体材料与技术方向课程指南

微纳粉体材料与技术方向课程指南

气固两相流

课程编码:01322020

英文名称:Gas-solid Two Phase Flow

课程类别:专业课

先修课程:流体力学泵与风机、热工过程与设备

开课学期:3

开课单位:材料科学与工程学院

计划学时:32

学 分:2

授课教师:段广彬、刘宗明、沈远胜等

课程简介:气固两相流这门课的开设,可以使学生能够了解气固两相流的基本概念、粉体性质目,提供与专业有关的气固两相流的基本知识和该领域的发展

动态,增加知识的储备。本课程将主要从以下部分展开:第一章首先阐

述气固两相流的基本参数、流型和基本方程,然后讨论如何计算它们的

压力降;主要将讨论颗粒的特性、作用在颗粒上的力,流动型式以及颗

粒在气力输送过程中所产生的压降及能量的消耗、流化床的一般原理等。

第二章将介绍气固两相流的研究方法;第三章将介绍气固两相的测量与

控制技术;第四章将介绍气固两相流的发展动态和实际应用。

教材资料:(一)教材

刘宗明,《气固两相流》,济南大学,2003年。

(二)参考教材

1.王文琪,《两相流动》,水利电力出版社,1988。

2.于荣宪,《工程流体力学》,东南大学出版社,1992年。

3.郑少华等,《粉体工程与设备》,化学工业出版社,2003。

4.黄标,《气力输送》上海科学技术出版社,1984年。

教师简介:

段广彬,男,博士,讲师;研究领域:主要从事流体与热工、流体机械

以及工程测试方面的研究。

刘宗明,男,博士,济南大学教授;研究领域:主要从气力输送、热工

窑炉诊断等方面的研究。

沈远胜,男,博士,副教授;研究领域:流体力学、数值计算、工业节

能以及测控方面的研究。

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

材料合成与制备

作业习题: 一、名词解释 1. 胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的重量可以忽略不计,粒子之间的相互作用主要是短程作用力。 2. 溶胶:是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸在1~100nm之间,这些固体颗粒一般由103~109个原子组成。 3. 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般在1%~3%之间。 4. 溶胶-凝胶法(Sol-gel):是采用具有高化学活性的含材料成分的液体化合物为前驱体(通常是金属有机醇盐或无机化合物),在液相下将这些原料均匀混合,并进行一系列的水解、缩聚化学反应,通过抑制各种反应条件,在溶液中形成稳定的透明溶胶体系,溶胶经过陈化,胶粒间缓慢聚合,形成了三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成了凝胶。凝胶再经过低温干燥,脱去其间溶剂而成为一种多孔空间结构的干凝胶或气凝胶,最后,经过烧结固化制备出分子乃至纳米亚结构的材料。 5. 多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 6. 水解度R:是水和金属醇盐物质的量比,即溶胶-凝胶反应过程中加水的量的多少。 二、填空题 1.溶胶通常分为亲液型和憎液型两类。 2. 材料制备方法主要有物理方法和化学方法。 3. 化学方法制备材料的优点是可以从分子尺度控制材料的合成。 4. 由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。 5. 溶胶稳定机制为胶体稳定的DLVO理论。 6. 计算颗粒间范德华力通常用的两种模型为平板粒子模型、球型粒子模型。 7. 溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。 8. 溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。 9. 溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。 10. 搅拌器的种类有电力搅拌器和磁力搅拌器。 11. 溶胶凝胶法中固化处理分为干燥和热处理。 12. 对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。 课后习题 一、名词解释 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、超临界流体:是指温度及压力都处于临界温度和临界压力之上的流体。在超临界状态下,物质有近于液体的溶解特性以及气体的传递特性:粘度约为普通液体的0.1~0.01;扩散系

粉体材料科学与工程培养方案

粉体材料科学与工程培养方案 一、专业简介 粉体材料科学与工程”专业依托“材料科学与工程”一级国家重点学科建设,设有博士点、博士后科研流动站,是国家特色专业和国家本科质量工程重点建设专业,是首批国家“卓越工程师”专业。本专业涉及金属或化合物粉末的制备、并以此为原料制备先进材料,研究材料成分、制备工艺、组织结构和性能之间相互关系,以满足航空航天、新能源技术、生物技术、微电子、汽车工业、国防军工等领域对关键新材料的迫切需求。本专业培养具有坚实的专业理论基础以及材料科学知识、较强的新材料研发能力和创新能力的粉末冶金技术高级专门人才。 二、培养目标 本专业秉承“厚基础、宽专业、高素质、强能力”的人才标准,培养政治思想正确、具有高度的社会责任感、优良的科学文化素养和创新精神、坚实的专业基础、较强的工程实践和工程创新能力、组织和管理能力以及良好国际化视野的高层次、复合型人才。能在材料科学与工程领域,特别是在粉末冶金基础理论、粉末冶金材料(如难熔金属与硬质合金、磁性材料、摩擦减磨材料、粉末高温合金、特种陶瓷材料、电工电子材料)等研究和制造领域从事科学研究与技术开发、工艺设计、材料加工制备、性能检测和生产经营管理、具有国际竞争力的高级专门人才。学生毕业后可在高等院校、科研院所和高新技术企业等从事教学、科研、生产、新材料与材料制备新技术开发以及相关管理方面的工作。 三、培养要求 1、知识要求 拥有良好的人文与社会知识、学科基础知识、专业基础与专业知识。 ①人文与社会知识:掌握一定的哲学、政治学、法学、社会学、心理学等知识。掌握一定的经济、管理等知识,满足工程应用中管理和交流的需要。 ②外语及计算机知识:掌握一门外国语,能顺利地阅读和翻译专业外文技术资料,有较强的听说读写能力;了解计算机基本原理,掌握一种以上计算机语言,能熟练应用计算机解决本专业问题。 ③学科基础知识:掌握材料科学与工程学科所需的数学、物理、化学等自然科学基础的知识

超细粉体概念与特性

超细粉体的概念 世界化工网_https://www.docsj.com/doc/781973746.html, 任何固态物质都占有相应的空间,并且具有一定的形状和大小,即具有一定的体积.通常我们所说的粉末或细颗粒,一般是指大小为1mm一下的固态物质.当固态颗粒的粒径在0.1~10μm之间时,可称为微细颗粒,或称为亚超细颗粒/而当粒径达到0.1μm以下时,则称为超细颗粒.因此,超细粉体材料即指粒径在1~100nm范围内介于院子,分子与宏观物体之间的粉体材料. 超细颗粒按其大小可以分为三个档次: 大超细颗粒:粒径在0.1~0.01μm之间; 中超细颗粒:粒径在0.01~0.002μm之间; 小超细颗粒:粒径在0.002μm以下; 超细粉体的特性 超细粉体是介于大块物质和院子或分子之间的中间物质,是处于原子簇和宏观物体交接的区域.从微观和宏观的观点看.它即不是典型的微观系统,也不是典型的宏观系统,是介于二者之间的介观系统.它具有一些列新异的物理化学特征.这里涉及到体相材料中所忽略的活根本不具有的基本物理化学问题.由于超细粉体保持了原有物质的化学性质,而在热力学上又是不稳定的,所以对它

们的研究与开发,是了解微观世界如何过渡到宏观世界的关键.随着研究手段,特别是电子显微镜的迅速发展,使得可以清楚的看到超细颗粒的大小和形状,对超细粉体的研究更加深入了. 超细颗粒具有熔点低,化学活跃性高,磁性强,热传导性,对电磁波一场吸收等特性,使它具有广阔的应用前景。 超细颗粒的直径越小,其熔点的降低越显著。例如,块状银的熔点是900℃,而银的超细颗粒的熔点可降至100℃以下,能溶于热水;块状金的熔点为1064℃,而粒径为0.002μm的超细金粉其熔点仅为327℃.超细粉体的熔点低使得在较低的温度下可以对金属,合金或化合物的粉末进行烧结,制造各种机械部件.这样不仅能节省能耗,降低制造工艺的难度,更重要的是可以得到性能优异的部件.如高熔点材料WC,SiC,BN,Si3N4 等作为结构材料,其制造工艺需要高温烧结,当使用超细颗粒时,就可以再很低的温度下进行,并且不需要添加剂就可以获得高密度烧结体.这对高性能无机结构材料的广泛应用提供了更具现实意义的制造工艺. 超细颗粒具有很高的化学活性.这是由于它的直径越小,其总表面积就越大,表面能相应增加,使其化学活性增大.据此特性可作为高校催化剂,用于火箭固体燃料的助燃添加剂.研究表明,以

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

材料科学与工程网址大全

中国材料研究学会 国际材料研究学会联合会成员,中国材料科学与工程领域国家级学会。https://www.docsj.com/doc/781973746.html, 中国硅酸盐学会 https://www.docsj.com/doc/781973746.html, 中国颗粒学会 含学会建设,学会会员,学会活动,科学普及。 https://www.docsj.com/doc/781973746.html, 中国科学院纳米科技网 从事纳米科技研究、开发的研究单位。 https://www.docsj.com/doc/781973746.html, 纳米科技基础数据库 中科院数据库网站,提供国内外纳米科技基础数据研究信息的平台。https://www.docsj.com/doc/781973746.html, 纳米科技网 含纳米新闻、纳米科技、纳米论坛、纳米产业等内容。https://www.docsj.com/doc/781973746.html, 纳米科技网 介绍纳米科技。 https://www.docsj.com/doc/781973746.html, 电子材料大市场 含电子材料新闻、资讯、科技、论文、产业等内容。 https://www.docsj.com/doc/781973746.html, 浙江纳米 提供纳米行业信息、科研发展动态。 https://www.docsj.com/doc/781973746.html, 中国超硬材料网 介绍人造金刚石原料、人造金刚石及其制品的行业信息。 https://www.docsj.com/doc/781973746.html, 中国电子材料网 提供信息产业基础产品及材料信息。 https://www.docsj.com/doc/781973746.html, 中国粉体工业信息网 介绍超细粉体研究、动态信息与工程技术开发。 https://www.docsj.com/doc/781973746.html, 中国功能材料网 主要报导中国功能材料领域的现状、动态与信息。 https://www.docsj.com/doc/781973746.html, 材料复合新技术信息门户 提供材料学科的各类文献资源以及导航。 https://www.docsj.com/doc/781973746.html, 材料与测试网 提供材料与测试领域的信息服务。

https://www.docsj.com/doc/781973746.html, 纳米数据中心 提供纳米科研成果信息、资源,查询、学术交流的平台。 https://www.docsj.com/doc/781973746.html, 奈米科学网 提供纳米科学相关新闻、活动、文献。 https://www.docsj.com/doc/781973746.html,.tw 中国玻璃工业网 提供行业信息。 https://www.docsj.com/doc/781973746.html, 中国激光玻璃 中国科学院上海光学精密机械研究所激光玻璃研究室,批量制造激光玻璃及相关玻璃的研究生产机构。https://www.docsj.com/doc/781973746.html, 中国纳米网 纳米技术的行业信息。 https://www.docsj.com/doc/781973746.html, 中国银 专门介绍纳米银、纳米技术、胶银、银溶液等产品及应用。 https://www.docsj.com/doc/781973746.html, 材料科学 介绍材料科学的基础知识。 https://www.docsj.com/doc/781973746.html,/bjkpzc/kjqy/clkx/index.shtml 材料科学 关于材料科学各方面的介绍。 https://www.docsj.com/doc/781973746.html,/gkjqy/clkx/index.htm 材料索引 提供世界各地25000多种材料的目录。 https://www.docsj.com/doc/781973746.html,/works/iii 放电等离子烧结 介绍放电等离子烧结工艺、机制及原理,提供国外放电等离子烧结相关研究部门的研究应用。https://www.docsj.com/doc/781973746.html, 广州市纳米技术信息中心 含新闻中心,广州纳米科技,纳米产业,纳米人才等。 https://www.docsj.com/doc/781973746.html, 贵州新材料信息网 材料新闻与科研动态,及贵州材料基地介绍。 https://www.docsj.com/doc/781973746.html, 华中科技大学材料科学与工程学院吴树森研究室 主要研究领域是材料成形工艺技术,材料成形过程的计算机模拟等。 https://www.docsj.com/doc/781973746.html, 华中师范大学纳米研究院(实验室) 承担完成了多项国家级重大项目。 https://www.docsj.com/doc/781973746.html,/spm 晶体论坛

《粉体科学与工程基础》教学大纲.doc

《粉体科学与工程基础》教学大纲 课程编号: 课程名称:粉体科学与工程基础/Fundamentals of Powder Science and Technology 学时/学分:32/2 (其中含实验0学时) 先修课程:无 适用专业:无机非金属材料工程 开课学院(部)、系(教研室):材料学院无机非系粉体工程研究所 一、课程的性质与任务 本课程为无机非金属材料专业的专业必修课程,材料科学与工程专业的专业选修课. 通过本课程的学习,使材料科学与工程专业的学生能够系统地掌握“粉体科学与工程” 的基本理论和基础知识,从而能根据材料的性能要求,从粉体科学的角度,对粉状原材料的颗粒儿何特性和表面物理化学性质进行正确的表征和合理的设计;并为进一步学习粉体制备与处理工艺及装备技术奠定基础,使学生能从粉体过程工程的层面,掌握正确、合理地运用粉体材料制备工艺和装备技术的技能。通过本课程的学习,使学生获得: 颗粒几何特性与表征 颗粒的堆积结构与致密堆积 粉体力学与流变特性 颗粒流体力学 粉体的物理特性 粉体的表面物理化学性质 等方面的基本概念和基木理论,以及正确、合理地应用专业基础知识解决粉体过程工程实际问题的能力和科学方法,为后继专业课学习奠定必要专业基础知识。在传授专业基础知识的同时,通过各章节所学内容与生产中实际问题的关联介绍,培养学生对专业课程的学习兴趣。 二、课程的教学内容、基本要求及学时分配 (―)教学内容 1.颗粒的几何特性与表征 颗粒的大小与分布:粒径和粒度的概念;单颗粒的4种粒径表征方法:轴径,球当量径, 圆当量径,定向径;颗粒群平均粒径的概念;平均粒径的计算方法。 粒度分布:粒度分布的概念;粒度分布的4种表征方法:列表法,作图法,矩值法,函数法;函数法的4种粒度分布方程:正态分布方程,对数正态分布方程,Rosin-Rammler 分布方程,Gates-Gaud in-Schumann分布方程。 颗粒的形状:形状系数的概念,形状系数的表征方法,形状指数的概念,形状指数的表征方法。 颗粒形状的数学分析法:Fourier级数分析法;分数维法:分形与分数维的概念,分数维的计算,颗粒形状的分数维表征。 粉体比表面积:颗粒的表血性状;粉体比表面积的概念;粉体比表面积的计算:基于单颗粒或颗粒群平均粒径的比表面积计算,基于粉体粒度分布的比表面积计算,几种粒度分布方程的比表面

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

粉体工程与设备

北方民族大学课程设计报告 院(部、中心)材料科学与工程学院 姓名王芳学号 专业材料科学与工程班级 082 同组人员王选、高稳成、闫晓展、代新、马海龙 课程名称粉体工程与设备 年产3000吨碳化硅微粉的生产线的项目名称 可行性研究报告 起止时间 2010-11-21至2009-12-3

成绩 指导教师王正粟祁利民 北方民族大学教务处制 录目 一、项目的目的和意义··············································二、工艺参数的计算··············································三、设备的选择依据··············································四、成本核算··············································五、效益分析··············································六、环境保护及措施··············································七、小节··············································八、参考文献··············································

一、目的及意义 碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过 电阻炉高温冶炼而成。 首先,其硬度介于刚玉和金刚石之间,机械强度高于刚玉,同时分解温度(2400℃)高、优良的化学稳定性,较强的韧性、良好的抗热震性、显著的电学性能和高导热性能等诸多优良特性,因而被广泛用磨具磨料、耐火材料、耐蚀材料、结构陶瓷等产品的生产原料,也可用作电热原器件、半导体器件等产品生产的原料。 其次,碳化硅微粉堆积密度高,耐磨能力强,硬度高,切削能力强,粒度分布集中并且均匀;具有耐高温,强度大,热膨胀系数小,导热性能良好,抗冲击,作高温间接加热材料.有四大应用领域:功能

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

材料科学与工程基础实验讲义全

华南农业大学材料与能源学院 现代材料科学与工程基础实验讲义 供材料科学专业本科生使用 胡航 2016-02-30

实验一 金属纳米颗粒的化学法制备 一、实验容与目的 1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。 2. 了解金属纳米颗粒的光学特征。 二、实验原理概述 化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。其中氧化还原法又包括热分解和辐照分解等。贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。 1. 胶体金属(Au 、Ag )的成核与生长 总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下: 2H O -42223222222Δ HAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......??→粒子 2. 硝酸银热分解法制备银纳米粒子 热分解法制备金属纳米颗粒原理简单,实验过程易操作。对制备数纳米到数十纳米尺寸围的纳米颗粒有较大优势。硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。 三、实验方法与步骤 (一)实验仪器与材料 硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱 (二)实验方法与操作步骤

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

粉体材料与工程专业培养计划(草稿)

粉体材料科学与工程专业培养计划 一、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美全面发展,并具有较好的社会科学基础和一定的人文、艺术基础,具有创新精神和实践能力,获得工程师基本训练的高级工程技术专门人才。毕业生具备粉体材料工程领域的基础知识,系统掌握粉体材料科学与工程的基本理论、基本的实验技能和科学创新的研究方法的高级应用型人才。 二、培养规格与要求: 本专业人才应具有以下知识、能力和素质: 1、知识结构要求 工具性知识:外语、计算机及信息技术应用等方面的知识。 人文社会科学知识:哲学、思想道德、政治学、法学、心理学等方面的知识。 自然科学知识:数学、物理学、化学等方面的知识。 工程技术知识:工程图学、机械基础、电工电子学等方面的知识。 经济管理知识:经济学、管理学等方面的知识。 专业知识:了解粉体材料科学与工程领域的一般原理和专业知识;掌握粉体材料合成制备、加工、结构与性能测定及应用等方面的基础知识、基本原理和基本实验技能;熟悉国家关于粉体材料科学与工程研究、开发及相关的产业政策、国内外知识产权等方面的法律法规;了解粉体材料科学与工程专业的理论前沿、应用前景和最新发展动态,以及粉体材料科学与工程产业的发展状况;具有研究、改进粉体材料性能、开发、设计新材料的初步能力。 2、能力结构要求 获取知识的能力:具有良好的自学能力、表达能力、社交能力、计算机及信息技术应用能力。 应用知识能力:具有综合应用知识解决问题能力、综合实验能力、工程实践能力。 创新能力:具有创造性思维能力、创新实验能力、科技开发能力。 3、素质结构要求 思想道德素质:热爱祖国,拥护中国共产党的领导,树立科学的世界观、人生观和价值观;具有责任心和社会责任感;具有法律意识,自觉遵纪守法;热爱本专业、注重职业道德修养;具有诚信意识和团队精神。 文化素质:具有一定的文学艺术修养、人际沟通修养和现代意识。 专业素质:掌握科学思维方法和科学研究方法;具备求实创新意识和严谨的科学素养;具有一定的工程意识和效益意识。 身心素质:具有较好的身体素质和心理素质。 三、主干学科:材料科学与工程,化学工程与技术 四、核心课程: 马克思主义基本原理、高等数学、大学物理、物理实验、大学计算机基础、大学英语、工程图学、电工与电子技术、无机化学、分析化学、有机化学、物理化学、纳米材料科学导论,材料科学基础、材料物理性能、材料研究与测试方法、粉体工程、材料合成与加工工程及热工过程及设备。 五、主要实践性教学环节: 基础实验、专业实验,机械制造(金工)实习、电工电子工艺实习、计算机上机、课程实习、创新设计、认识实习、生产实习、毕业实习、科技方法训练(工程设计训练)、毕业设计(毕业论文)等集中实践周共44周。 六、主要指标: 课内(普通教育和专业教育)总学时2496(其中实验232学时、上机120学时、听力64学时),集中实践环节共44周;普通教育和专业教育总计200学分,综合教育40学分。 七、学制:四年 八、授予学位:工学学士

超细粉体在材料领域的应用

超细粉体在材料领域的应用 超细粉体在国民经济及社会生活各个领域中都具有举足轻重的作用,下面对超细粉体在材料领域的应用进行简单介绍。 超细颗粒表面能高,表面原子数多,这些表面原子近邻配位不全,活性大,因此超细颗粒熔化时所需的内能较小,这使其熔点急剧下降,一般为块状材料熔点的30%一50%,这种性质可使其烧结温度显著降低,又由于超细粉体具有流动性大、渗透力强、烧结收缩磁性大等烧结特性,可以作为烧结过程的活性剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度,例如普通钨粉需在3000℃高温时烧结,而当加入0.1%-0.5%的超细镍粉后,烧结成型温度可降低到1200-1311℃。 超细粉体可以显著改善陶瓷材料的显微组织,优化其性能。通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。超细颗粒压成块材后,由于颗粒之间界面的高能量,在较低温度下烧结就能达到致密化的目的,且性能优异,因此特别适用于电子陶瓷的制备,所制备的陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨等性能,而且还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这将成为超细材料开拓应用的一个崭新领域。 超细粉体可制成特种功能材料,例如,将超细三氧化二铝和超细二氧化错烧结制成的材料,具有高硬度、超耐磨等特性,广泛用于特种模具行业及轴瓦和耐磨件的内衬。装甲材料通常是采用各种合金来提高其抗冲击性能和韧性,以防御炮弹的攻击,将超细 金属材料采用新工艺烧结后,可制成新型高强度超硬材料,用于装甲防护。用超细材料制成的耐高温、散热、导电、防腐涂层可广泛用于宇航飞行器、机场、军用码头、军用油库、弹药库、舰船等特种场合的防护。 超细粉体具有高比表面积、高活性、特殊物理性质,致使它对外界环境(如温度、光、湿气等)十分敏感,外界环境的改变会迅速引起其表面或表面离子价态和电子运输的变化,即引起其阻值的显著变化,超细粉体的这种特有性能使之成为在传感器方面最有应用前途的材料,可研制出响应速度快、灵敏度高、选择性好的各种不同用途的传感器。仅需微量的超细颗粒就可分发挥很大的作用。利用铁、钴、镍等金属超细离子制备高密度磁带,记录密度可达107- 108位/in(in=25.4mm),降低噪音,提高信噪比。利用超细颗粒对光强烈的吸收能力,可做防紫外线、防雷达的隐身材料,电磁波、光波吸收材料等。 在特种材料领域,超细粉体也有十分重要的应用。如赤磷是强可燃物,但超细赤磷可以制成发火点低、灵敏度高的高性能燃烧剂和烟火剂。当赤磷超细化到l0um以下后可以和其他有关的有机物合成高性能阻燃材料。硫磺超细化后可以作为农药载体,提高农药在水中的悬浮性,制造高性能的农药;用在制糖工业作处理剂时,可以制得性能更好的白糖。炸药超细化后可使燃料或爆炸性能更敏感更好,当以炸药作为燃气发生器的气源时,颗粒越小,发火和起爆就越容易,这样可以确保汽车行驶过程发生事故时气囊能及时充气,确保驾乘人员安全。强氧化剂高氯酸氨是固体火箭推进剂的一种重要成分,当其颗粒直径在100--200 u m时,固体推进剂的燃烧速度达10-20 mm/s;而当其颗粒超细化到粒径小于2um 时,在相同条件下固体推进剂的燃速可达80-100 mm/s 。 超细粉体的特殊的光学性质和光学化学性质,在口常生活和高科技领域也具有广泛的应用前景。己有的研究表明,利用半导体超细粉体可以制备出光电转化效率更高的,即使在阴雨天也能正常工作的新型太阳能电池,这种新型的太

材料合成与制备

材料合成与制备 《材料合成与制备》课程教学大纲一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006

2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013 1 二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。

[材料科学,工程,专业]材料科学与工程专业转型的实践研究

材料科学与工程专业转型的实践研究 材料科学与工程专业是我校专业综合改革、深度转型发展的五个试点专业之一。专业转型的目的就是使专业教育更好地满足人才培养目标实现的需要,为培养高质量的人才提供合适的软、硬环境。近几年来,我们从人才培养的目标定位、体制机制建立、培养模式探索、培养方案设计、教学内容与方法改革、师资队伍建设、实训基地建设等诸多方面,进行了较为系统的研究与实践,取得了较好的成效。 1人才培养目标 采取宽口径、强能力、重应用的模式,立足常德、面向湖南、辐射全国,培养和造就能适应国民经济发展,具备包括无机非金属材料、高分子材料科学与工程领域的基础知识和基本技能,能在各种材料的制备、加工成型、材料结构与性能测试等领域从事科学研究、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展高层次、高素质的科学研究与工程技术应用性创新人才。 2体制机制改革 2.1建立以就业为导向的校企合作材料人才培养机制 我院材料科学与工程专业设置的基本宗旨就是要为地方经济发展服务,因而专业发展方向应与区域产业集群发展趋势相适应。近些年来,湘西北地区在材料加工制备方面发展很迅速,形成了高分子通用纤维与高分子特种纤维、塑料管道、复合型材、过滤器件、各类无机粉体材料、陶瓷等方面的集群产业。以地方经济发展需要为导向,确立材料科学与工程专业对应的人才培养方向,因此,我院的材料科学与工程专业确立了有机高分子材料、无机非金属材料两个培养方向。 利用我院与地方40多家相关企业签署的产学研合作协议,建立了不同层次、不同类型的实习实训基地,构筑了以学校为主社会参与的新的人才培养体系,打破了制约应用型创新人才培养的瓶颈,将产业一专业一就业(即三业)三者密切关联起来,形成了以就业为导向的、高素质应用型创新人才培养为目标的校企合作人才培养机制,同时,在校企供需合作中真正形成了资源共享、利益共赢的多赢局面。 2.2建立双师型教师队伍的培养机制 培养和造就一支双师型教师队伍是材料专业转型发展的基本保证。然而,我院材料科学与工程专业招聘的博士基本上从学校直接到学校,企业中实践经验不足。为此,需要建立双师型教师队伍的培养机制,即要求每位专业课的老师联系一到两个企业,并不定期地到企业中参与生产实践,保证每位专业教师每年在企业的时问不低于2个月,为企业解决生产中存在的实际问题。同时,丰富教师的实践经验,提高课堂教学质量。此外,还聘用了一批企业工程技术人员为学生上课,特别是为学生上实践训练课,指导学生设计、创新,与师生一道研究解决生产实际问题。 3人才培养模式改革

相关文档
相关文档 最新文档