文档视界 最新最全的文档下载
当前位置:文档视界 › 附表一泊松分布表

附表一泊松分布表

附表一泊松分布表
附表一泊松分布表

附录1泊松分布数值表

P{ξ=m}=

λλ-e m

m

!

λ

m

0.10.20.30.40.50.60.70.80.9 1.0 1.5 2.0 2.5 3.0

2 3 4

5 6 7 8 9

0 1 20.9048

0.0905

0.0045

0.0002

0.8187

0.1637

0.0164

0.0011

0.0001

0.7408

0.2223

0.0333

0.0033

0.0003

0.6703

0.2681

0.0536

0.0072

0.0007

0.0001

0.6065

0.3033

0.0758

0.0126

0.0016

0.0002

0.5488

0.3293

0.0988

0.0198

0.0030

0.0003

0.4966

0.3476

0.1216

0.0284

0.0050

0.0007

0.0001

0.4493

0.3595

0.1438

0.0383

0.0077

0.0012

0.0002

0.4066

0.3659

0.1647

0.0494

0.0111

0.0020

0.0003

0.3679

0.3679

0.1839

0.0613

0.0153

0.0031

0.0005

0.0001

0.2231

0.3347

0.2510

0.1255

0.0471

0.0141

0.0035

0.0008

0.0002

0.1353

0.2707

0.2707

0.1805

0.0902

0.0361

0.0120

0.0034

0.0009

0.0002

0.0821

0.2052

0.2565

0.2138

0.1336

0.0668

0.0278

0.0099

0.0031

0.0009

0.0002

0.0001

0.0498

0.1494

0.2240

0.2240

0.1681

0.1008

0.0504

0.0216

0.0081

0.0027

0.0008

0.0002

0.0001

m

3.5

4.0 4.556789101112131415

2 3 4

5 6 7 8 9

0 1 2 3 4

5 6 7 80.0302

0.1057

0.1850

0.2158

0.1888

0.1322

0.0771

0.0385

0.0169

0.0065

0.0023

0.0007

0.0002

0.0001

0.0183

0.0733

0.1465

0.1954

0.1954

0.1563

0.1042

0.0595

0.0298

0.0132

0.0053

0.0019

0.0006

0.0002

0.0001

0.0111

0.0500

0.1125

0.1687

0.1898

0.1708

0.1281

0.0824

0.0463

0.0232

0.0104

0.0043

0.0015

0.0006

0.0002

0.0001

0.0067

0.0337

0.0842

0.1404

0.1755

0.1755

0.1462

0.1044

0.0653

0.0363

0.0181

0.0082

0.0034

0.0013

0.0005

0.0002

0.0001

0.0025

0.0149

0.0446

0.0892

0.1339

0.1606

0.1606

0.1377

0.1033

0.0688

0.0413

0.0225

0.0113

0.0052

0.0023

0.0009

0.0003

0.0001

0.0009

0.0064

0.0223

0.0521

0.0912

0.1277

0.1490

0.1490

0.1304

0.1014

0.0710

0.0452

0.0264

0.0142

0.0071

0.0033

0.0015

0.0006

0.0002

0.0003

0.0027

0.0107

0.0286

0.0573

0.0916

0.1221

0.1396

0.1396

0.1241

0.0993

0.0722

0.0481

0.0296

0.0169

0.0090

0.0045

0.0021

0.0010

0.0001

0.0011

0.0050

0.0150

0.0337

0.0607

0.0911

0.1171

0.1318

0.1318

0.1186

0.0970

0.0728

0.0504

0.0324

0.0194

0.0109

0.0058

0.0029

0.0004

0.0023

0.0076

0.0189

0.0378

0.0631

0.0901

0.1126

0.1251

0.1251

0.1137

0.0948

0.0729

0.0521

0.0347

0.0217

0.0128

0.0071

0.0002

0.0010

0.0037

0.0102

0.0224

0.0411

0.0646

0.0888

0.1085

0.1194

0.1194

0.1094

0.0926

0.0728

0.0533

0.0367

0.0237

0.0145

0.0001

0.0004

0.0018

0.0053

0.0127

0.0255

0.0437

0.0655

0.0874

0.1048

0.1144

0.1144

0.1056

0.0905

0.0724

0.0543

0.0383

0.0255

0.0002

0.0008

0.0027

0.0071

0.0151

0.0281

0.0457

0.0660

0.0859

0.1015

0.1099

0.1099

0.1021

0.0885

0.0719

0.0551

0.0397

0.0001

0.0004

0.0013

0.0037

0.0087

0.0174

0.0304

0.0473

0.0663

0.0843

0.0984

0.1061

0.1061

0.0989

0.0865

0.0713

0.0554

0.0002

0.0006

0.0019

0.0048

0.0104

0.0195

0.0324

0.0486

0.0663

0.0828

0.0956

0.1025

0.1025

0.0960

0.0847

0.0706

9

0 1 2 3 4

5 6 7 8 9

0 1

0.00010.0004

0.0002

0.0001

0.0014

0.0006

0.0003

0.0001

0.0037

0.0019

0.0009

0.0004

0.0002

0.0001

0.0084

0.0046

0.0024

0.0013

0.0006

0.0003

0.0001

0.0161

0.0097

0.0055

0.0030

0.0016

0.0008

0.0004

0.0002

0.0001

0.0272

0.0177

0.0109

0.0065

0.0036

0.0020

0.0011

0.0005

0.0002

0.0001

0.0408

0.0286

0.0191

0.0122

0.0074

0.0043

0.0024

0.0013

0.0007

0.0003

0.0002

0.0001

0.0557

0.0418

0.0299

0.0204

0.0133

0.0083

0.0050

0.0029

0.0017

0.0009

0.0004

0.0002

0.0001

λ=20λ=30

m p m p m p m p m p m p 50.0001200.0889350.000710250.0511400.0139 60.0002210.0846360.000411260.0590410.0102 70.0006220.0769370.0002120.0001270.0655420.0073 80.0013230.0669380.0001130.0002280.0702430.0051 90.0029240.0557390.0001140.0005290.0727440.0035 100.0058250.0446150.0010300.0727450.0023 110.0106260.0343160.0019310.0703460.0015 120.0176270.0254170.0034320.0659470.0010 130.0271280.0183180.0057330.0599480.0006 140.0382290.0125190.0089340.0529490.0004 150.0517300.0083200.0134350.0453500.0002 160.0646310.0054210.0192360.0378510.0001 170.0760320.0034220.0261370.0306520.0001 180.0844330.0021230.0341380.0242

190.0889340.0012240.0426390.0186

λ=40λ=50

m p m p m p m p m p m p 15350.0485550.004325450.0458650.0063 16360.0539560.0031260.0001460.0498660.0048 17370.0583570.0022270.0001470.0530670.0036 180.0001380.0614580.0015280.0002480.0552680.0026 190.0001390.0629590.0010290.0004490.0564690.0019 200.0002400.0629600.0007300.0007500.0564700.0014

210.0004410.0614610.0005310.0011510.0552710.0010 220.0007420.0585620.0003320.0017520.0531720.0007 230.0012430.0544630.0002330.0026530.0501730.0005 240.0019440.0495640.0001340.0038540.0464740.0003 250.0031450.0440650.0001350.0054550.0422750.0002 260.0047460.0382360.0075560.0377760.0001 270.0070470.0325370.0102570.0330770.0001 280.0100480.0271380.0134580.0285780.0001 290.0139490.0221390.0172590.0241

300.0185500.0177400.0215600.0201

310.0238510.0139410.0262610.0165

320.0298520.0107420.0312620.0133

330.0361530.0081430.0363630.0106

340.0425540.0060440.0412640.0082

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

二项分布概念及图表和查表方法

目录 1定义 ?统计学定义 ?医学定义 2概念 3性质 4图形特点 5应用条件 6应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为 的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。 所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。 概念 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

卡方分布表

WORD格式 x 2 分布临界值表(卡方分布) P n' 0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.005 1 ????0.0 2 0.1 0.45 1.32 2.71 3.84 5.02 6.6 3 7.88 2 0.01 0.02 0.02 0.1 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.6 3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.3 4 12.84 4 0.21 0.3 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86 5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75 6 0.68 0.8 7 1.24 1.64 2.2 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55 7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28 8 1.34 1.65 2.18 2.73 3.4 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.96 9 1.73 2.09 2.7 3.33 4.17 5.9 8.34 11.39 14.68 16.92 19.02 21.67 23.59 10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19 11 2.6 3.05 3.82 4.57 5.58 7.58 10.34 13.7 17.28 19.68 21.92 24.72 26.76 12 3.07 3.57 4.4 5.23 6.3 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.3 13 3.57 4.11 5.01 5.89 7.04 9.3 12.34 15.98 19.81 22.36 24.74 27.69 29.82 14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32 15 4.6 5.23 6.27 7.26 8.55 11.04 14.34 18.25 22.31 25 27.49 30.58 32.8 16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.3 28.85 32 34.27 17 5.7 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72 18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.6 25.99 28.87 31.53 34.81 37.16 19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.2 30.14 32.85 36.19 38.58 20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40 21 8.03 8.9 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.4 22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.8 23 9.26 10.2 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18 24 9.89 10.86 12.4 13.85 15.66 19.04 23.34 28.24 33.2 36.42 39.36 42.98 45.56 25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93 26 11.16 12.2 13.84 15.38 17.29 20.84 25.34 30.43 35.56 38.89 41.92 45.64 48.29 27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.19 46.96 49.64 28 12.46 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99 29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34 30 13.79 14.95 16.79 18.49 20.6 24.48 29.34 34.8 40.26 43.77 46.98 50.89 53.67 40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.8 55.76 59.34 63.69 66.77 50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.5 71.42 76.15 79.49 60 35.53 37.48 40.48 43.19 46.46 52.29 59.33 66.98 74.4 79.08 83.3 88.38 91.95 70 43.28 45.44 48.76 51.74 55.33 61.7 69.33 77.58 85.53 90.53 95.02 100.42 104.22 80 51.17 53.54 57.15 60.39 64.28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 116.32 90 59.2 61.75 65.65 69.13 73.29 80.62 89.33 98.64 107.56 113.14 118.14 124.12 128.3 100 67.33 70.06 74.22 77.93 82.36 90.13 99.33 109.14 118.5 124.34 129.56 135.81 140.17 专业资料

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

二项分布概念及图表和查表方法

二项分布概念及图表 二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。 目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 二项分布公式 P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

二项分布概念及图表和查表方法

目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 中文名泊松分布外文名poisson distribution 分类数学时间1838年 台译卜瓦松分布提出西莫恩·德尼·泊松 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

二项分布表

附录2 附表 附表1 二项分布表 0{}(1)x k n k n P X x p p k k ?=?? ≤=????? ∑ p n x 0.001 0.002 0.0030.005 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 2 0 0.9980 0.9960 0.99400.9900 0.9801 0.96040.94090.90250.81000.72250.6400 0.5625 0.4900 2 1 1.0000 1.0000 1.00001.0000 0.9999 0.99960.99910.99750.99000.97750.9600 0.9375 0.9100 3 0 0.9970 0.9940 0.99100.9851 0.9703 0.94120.91270.85740.72900.61410.5120 0.4219 0.3430 3 1 1.0000 1.0000 1.00000.9999 0.9997 0.99880.99740.99280.97200.93930.8960 0.8438 0.7840 3 2 1.0000 1.0000 1.00001.00000.99990.99900.99660.9920 0.9844 0.9730 4 0 0.9960 0.9920 0.98810.9801 0.9606 0.92240.88530.81450.65610.52200.4096 0.3164 0.2401 4 1 1.0000 1.0000 0.99990.9999 0.9994 0.99770.99480.98600.94770.89050.8192 0.7383 0.6517 4 2 1.00001.0000 1.0000 1.00000.99990.99950.99630.98800.9728 0.9492 0.9163 4 3 1.00001.00000.99990.99950.9984 0.9961 0.9919 5 0 0.9950 0.9900 0.98510.9752 0.9510 0.90390.85870.77380.59050.44370.3277 0.2373 0.1681 5 1 1.0000 1.0000 0.99990.9998 0.9990 0.99620.99150.97740.91850.83520.7373 0.6328 0.5282 5 2 1.00001.0000 1.0000 0.99990.99970.99880.99140.97340.9421 0.8965 0.8369 5 3 1.00001.00001.00000.99950.99780.9933 0.9844 0.9692 5 4 1.00000.99990.9997 0.9990 0.9976 6 0 0.9940 0.9881 0.98210.9704 0.9415 0.88580.83300.73510.53140.37710.2621 0.1780 0.1176 6 1 1.0000 0.9999 0.99990.9996 0.9985 0.99430.98750.96720.88570.77650.6554 0.5339 0.4202 6 2 1.0000 1.00001.0000 1.0000 0.99980.99950.99780.98420.95270.9011 0.8306 0.7443 6 3 1.00001.00000.99990.99870.99410.9830 0.9624 0.9295 6 4 1.00000.99990.99960.9984 0.9954 0.9891 6 5 1.00001.00000.9999 0.9998 0.9993 7 0 0.9930 0.9861 0.97920.9655 0.9321 0.86810.80800.69830.47830.32060.2097 0.1335 0.0824 7 1 1.0000 0.9999 0.99980.9995 0.9980 0.99210.98290.95560.85030.71660.5767 0.4449 0.3294 7 2 1.0000 1.00001.0000 1.0000 0.99970.99910.99620.97430.92620.8520 0.7564 0.6471 7 3 1.00001.00000.99980.99730.98790.9667 0.9294 0.8740 7 4 1.00000.99980.99880.9953 0.9871 0.9712 7 5 1.00000.99990.9996 0.9987 0.9962 7 6 1.00001.0000 0.9999 0.9998 8 0 0.9920 0.9841 0.97630.9607 0.9227 0.85080.78370.66340.43050.27250.1678 0.1001 0.0576 8 1 1.0000 0.9999 0.99980.9993 0.9973 0.98970.97770.94280.81310.65720.5033 0.3671 0.2553 8 2 1.0000 1.00001.0000 0.9999 0.99960.99870.99420.96190.89480.7969 0.6785 0.5518 8 3 1.0000 1.00000.99990.99960.99500.97860.9437 0.8862 0.8059 - 262 -

二项分布临界值表

附表1 二项分布临界值表 在p=q=下,x或n–x(不论何者为大)的临界值 n 单侧检验()双侧检验()0.050.010.050.01 55———66—6—7777—8788—98989 10910910 119101011 1210111011 1310121112 1411121213 1512131213 1612141314 1713141315 1813151415 1914151516 2015161517 2115171617 2216171718 2316181719 2417191819

2518191820 2618201920 2719202021 2819212022 2920222122 3020222123

附表2 正态分布概率表 Z F(Z)Z F(Z)Z F(Z)Z F(Z) 0.000.00000.350.27370.700.5161 1.050.7063 0.010.00800.360.28120.710.5223 1.060.7109 0.020.01600.370.28860.720.5285 1.070.7154 0.030.02390.380.29610.730.5346 1.080.7199 0.040.03190.390.30350.740.5407 1.090.7243 0.050.03990.400.31080.750.5467 1.100.7287 0.060.04780.410.31820.760.5527 1.110.7330 0.070.05580.420.32550.770.5587 1.120.7373 0.080.06380.430.33280.780.5646 1.130.7415 0.090.07170.440.34010.790.5705 1.140.7457 0.100.07970.450.34730.800.5763 1.150.7499 0.110.08760.460.35450.810.5821 1.160.7540 0.120.09550.470.36160.820.5878 1.170.7580 0.130.10340.480.36880.830.5935 1.180.7620 0.140.11130.490.37590.840.5991 1.190.7660 0.150.11920.500.38290.850.6047 1.200.7699 0.160.12710.510.38990.860.6102 1.210.7737 0.170.13500.520.39690.870.6157 1.220.7775 0.180.14280.530.40390.880.6211 1.230.7813 0.190.15070.540.41080.890.6265 1.240.7850

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式(新)

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t分布、F分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定———— 伯努利试验) 2、

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

概率论与数理统计附表1 泊松分布表

附表1 泊松分布表 ()! m P X m e m λλ-==

390.0000070.000056 附录 附录A A1 正态分布函数表 2 2 ()e d(0) 2π t x x t x Φ -∞ =-≥ ? x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159 0.8413 0.8643 0.8849 0.90320 0.91924 0.93319 0.94520 0.95543 0.96407 0.97128 0.97725 0.98214 0.98610 0.98928 0.99180 0.99379 0.99534 0.99653 0.99745 0.99813 0.5040 0.5438 0.5832 0.6217 0.6591 0.6950 0.7291 0.7611 0.7910 0.8186 0.8438 0.8665 0.8869 0.90490 0.92073 0.93448 0.94630 0.95637 0.96485 0.97193 0.9778 0.98257 0.98645 0.98956 0.99202 0.99396 0.99547 0.99664 0.99752 0.99819 0.5080 0.5478 0.5871 0.6255 0.6628 0.6985 0.7324 0.7642 0.7939 0.8212 0.8461 0.8686 0.8888 0.90658 0.92220 0.93574 0.94738 0.95728 0.96562 0.97257 0.97831 0.98300 0.98679 0.98983 0.99224 0.99413 0.99560 0.99674 0.99760 0.99825 0.5120 0.5517 0.5910 0.6293 0.6664 0.7019 0.7357 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.90824 0.92364 0.93699 0.94845 0.95818 0.96638 0.97320 0.97882 0.98341 0.98713 0.99010 0.99245 0.99430 0.99573 0.99683 0.99767 0.99831 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7703 0.7995 0.8264 0.8508 0.8729 0.8925 0.90988 0.92507 0.93822 0.94950 0.95907 0.96712 0.97381 0.97932 0.98382 0.98745 0.99036 0.99266 0.99446 0.99586 0.99693 0.99774 0.99836 0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8531 0.8749 0.8944 0.91140 0.92647 0.93943 0.95053 0.95994 0.96784 0.97441 0.97982 0.98422 0.98778 0.99061 0.99286 0.99461 0.99598 0.99702 0.99781 0.99841 0.5239 0.5636 0.6026 0.6406 0.6772 0.7123 0.7454 0.7764 0.8051 0.8315 0.8554 0.8770 0.8962 0.91309 0.92785 0.94062 0.95154 0.96080 0.96856 0.97500 0.98030 0.98461 0.98809 0.99086 0.99305 0.99477 0.99609 0.99711 0.99788 0.99846 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.91466 0.92922 0.94179 0.95254 0.96164 0.96926 0.97558 0.98077 0.98500 0.98840 0.99111 0.99324 0.99492 0.99621 0.99720 0.99795 0.99851 0.5319 0.5714 0.6103 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 0.8997 0.91621 0.93056 0.94295 0.95352 0.96246 0.96995 0.97615 0.98124 0.98537 0.98870 0.99134 0.99343 0.99506 0.99632 0.99728 0.99801 0.99856 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.7549 0.7852 0.8133 0.8389 0.8621 0.8830 0.90147 0.91774 0.93189 0.94408 0.95449 0.96327 0.97062 0.97670 0.98169 0.98574 0.98899 0.99158 0.99361 0.99520 0.99643 0.99737 0.99807 0.99861 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

相关文档