文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论与数理统计附表1 泊松分布表

概率论与数理统计附表1 泊松分布表

概率论与数理统计附表1 泊松分布表
概率论与数理统计附表1 泊松分布表

附表1

泊松分布表 ()!

m

P X m e m λλ-==

390.0000070.000056

附录

附录A

A1 正态分布函数表

2

2

()e d(0)

t

x

x t x

Φ

-∞

=-≥

?

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0.5000

0.5398

0.5793

0.6179

0.6554

0.6915

0.7257

0.7580

0.7881

0.8159

0.8413

0.8643

0.8849

0.90320

0.91924

0.93319

0.94520

0.95543

0.96407

0.97128

0.97725

0.98214

0.98610

0.98928

0.99180

0.99379

0.99534

0.99653

0.99745

0.99813

0.5040

0.5438

0.5832

0.6217

0.6591

0.6950

0.7291

0.7611

0.7910

0.8186

0.8438

0.8665

0.8869

0.90490

0.92073

0.93448

0.94630

0.95637

0.96485

0.97193

0.9778

0.98257

0.98645

0.98956

0.99202

0.99396

0.99547

0.99664

0.99752

0.99819

0.5080

0.5478

0.5871

0.6255

0.6628

0.6985

0.7324

0.7642

0.7939

0.8212

0.8461

0.8686

0.8888

0.90658

0.92220

0.93574

0.94738

0.95728

0.96562

0.97257

0.97831

0.98300

0.98679

0.98983

0.99224

0.99413

0.99560

0.99674

0.99760

0.99825

0.5120

0.5517

0.5910

0.6293

0.6664

0.7019

0.7357

0.7673

0.7967

0.8238

0.8485

0.8708

0.8907

0.90824

0.92364

0.93699

0.94845

0.95818

0.96638

0.97320

0.97882

0.98341

0.98713

0.99010

0.99245

0.99430

0.99573

0.99683

0.99767

0.99831

0.5160

0.5557

0.5948

0.6331

0.6700

0.7054

0.7389

0.7703

0.7995

0.8264

0.8508

0.8729

0.8925

0.90988

0.92507

0.93822

0.94950

0.95907

0.96712

0.97381

0.97932

0.98382

0.98745

0.99036

0.99266

0.99446

0.99586

0.99693

0.99774

0.99836

0.5199

0.5596

0.5987

0.6368

0.6736

0.7088

0.7422

0.7734

0.8023

0.8289

0.8531

0.8749

0.8944

0.91140

0.92647

0.93943

0.95053

0.95994

0.96784

0.97441

0.97982

0.98422

0.98778

0.99061

0.99286

0.99461

0.99598

0.99702

0.99781

0.99841

0.5239

0.5636

0.6026

0.6406

0.6772

0.7123

0.7454

0.7764

0.8051

0.8315

0.8554

0.8770

0.8962

0.91309

0.92785

0.94062

0.95154

0.96080

0.96856

0.97500

0.98030

0.98461

0.98809

0.99086

0.99305

0.99477

0.99609

0.99711

0.99788

0.99846

0.5279

0.5675

0.6064

0.6443

0.6808

0.7157

0.7486

0.7794

0.8078

0.8340

0.8577

0.8790

0.8980

0.91466

0.92922

0.94179

0.95254

0.96164

0.96926

0.97558

0.98077

0.98500

0.98840

0.99111

0.99324

0.99492

0.99621

0.99720

0.99795

0.99851

0.5319

0.5714

0.6103

0.6480

0.6844

0.7190

0.7517

0.7823

0.8106

0.8365

0.8599

0.8810

0.8997

0.91621

0.93056

0.94295

0.95352

0.96246

0.96995

0.97615

0.98124

0.98537

0.98870

0.99134

0.99343

0.99506

0.99632

0.99728

0.99801

0.99856

0.5359

0.5753

0.6141

0.6517

0.6879

0.7224

0.7549

0.7852

0.8133

0.8389

0.8621

0.8830

0.90147

0.91774

0.93189

0.94408

0.95449

0.96327

0.97062

0.97670

0.98169

0.98574

0.98899

0.99158

0.99361

0.99520

0.99643

0.99737

0.99807

0.99861

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

二项分布概念及图表和查表方法

目录 1定义 ?统计学定义 ?医学定义 2概念 3性质 4图形特点 5应用条件 6应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为 的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。 所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。 概念 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

二项分布概念及图表和查表方法

二项分布概念及图表 二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。 目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 二项分布公式 P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

二项分布概念及图表和查表方法

目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

概率论与数理统计习题集及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 《概率论与数理统计》作业集及答 案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= ,

(3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已 知 , 2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地 抽一个签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒, 从中随机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂, 求(1)该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02, B 被误收作A 的概率为0.01,信息A 与信息B 传递的频繁程度为3 : 2,若接收站收到的信息是A ,问原发信息是A 的概率是多少? §1 .8 随机事件的独立性 1. 电路如图,其中A,B,C,D 为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。 A B L R C D 3. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 中文名泊松分布外文名poisson distribution 分类数学时间1838年 台译卜瓦松分布提出西莫恩·德尼·泊松 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

二项分布表

附录2 附表 附表1 二项分布表 0{}(1)x k n k n P X x p p k k ?=?? ≤=????? ∑ p n x 0.001 0.002 0.0030.005 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 2 0 0.9980 0.9960 0.99400.9900 0.9801 0.96040.94090.90250.81000.72250.6400 0.5625 0.4900 2 1 1.0000 1.0000 1.00001.0000 0.9999 0.99960.99910.99750.99000.97750.9600 0.9375 0.9100 3 0 0.9970 0.9940 0.99100.9851 0.9703 0.94120.91270.85740.72900.61410.5120 0.4219 0.3430 3 1 1.0000 1.0000 1.00000.9999 0.9997 0.99880.99740.99280.97200.93930.8960 0.8438 0.7840 3 2 1.0000 1.0000 1.00001.00000.99990.99900.99660.9920 0.9844 0.9730 4 0 0.9960 0.9920 0.98810.9801 0.9606 0.92240.88530.81450.65610.52200.4096 0.3164 0.2401 4 1 1.0000 1.0000 0.99990.9999 0.9994 0.99770.99480.98600.94770.89050.8192 0.7383 0.6517 4 2 1.00001.0000 1.0000 1.00000.99990.99950.99630.98800.9728 0.9492 0.9163 4 3 1.00001.00000.99990.99950.9984 0.9961 0.9919 5 0 0.9950 0.9900 0.98510.9752 0.9510 0.90390.85870.77380.59050.44370.3277 0.2373 0.1681 5 1 1.0000 1.0000 0.99990.9998 0.9990 0.99620.99150.97740.91850.83520.7373 0.6328 0.5282 5 2 1.00001.0000 1.0000 0.99990.99970.99880.99140.97340.9421 0.8965 0.8369 5 3 1.00001.00001.00000.99950.99780.9933 0.9844 0.9692 5 4 1.00000.99990.9997 0.9990 0.9976 6 0 0.9940 0.9881 0.98210.9704 0.9415 0.88580.83300.73510.53140.37710.2621 0.1780 0.1176 6 1 1.0000 0.9999 0.99990.9996 0.9985 0.99430.98750.96720.88570.77650.6554 0.5339 0.4202 6 2 1.0000 1.00001.0000 1.0000 0.99980.99950.99780.98420.95270.9011 0.8306 0.7443 6 3 1.00001.00000.99990.99870.99410.9830 0.9624 0.9295 6 4 1.00000.99990.99960.9984 0.9954 0.9891 6 5 1.00001.00000.9999 0.9998 0.9993 7 0 0.9930 0.9861 0.97920.9655 0.9321 0.86810.80800.69830.47830.32060.2097 0.1335 0.0824 7 1 1.0000 0.9999 0.99980.9995 0.9980 0.99210.98290.95560.85030.71660.5767 0.4449 0.3294 7 2 1.0000 1.00001.0000 1.0000 0.99970.99910.99620.97430.92620.8520 0.7564 0.6471 7 3 1.00001.00000.99980.99730.98790.9667 0.9294 0.8740 7 4 1.00000.99980.99880.9953 0.9871 0.9712 7 5 1.00000.99990.9996 0.9987 0.9962 7 6 1.00001.0000 0.9999 0.9998 8 0 0.9920 0.9841 0.97630.9607 0.9227 0.85080.78370.66340.43050.27250.1678 0.1001 0.0576 8 1 1.0000 0.9999 0.99980.9993 0.9973 0.98970.97770.94280.81310.65720.5033 0.3671 0.2553 8 2 1.0000 1.00001.0000 0.9999 0.99960.99870.99420.96190.89480.7969 0.6785 0.5518 8 3 1.0000 1.00000.99990.99960.99500.97860.9437 0.8862 0.8059 - 262 -

概率论与数理统计试题

《概率论与数理统计》期末试题(1) 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为. 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P . 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为 4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ,}1),{min(≤Y X P 5. 设总体X 的概率密度为 ?????<<+=其它, 0,10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为 二、单项选择题(每小题3分,共15分) 1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 ( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ?,则A 与C 也独立. 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ. 3.设随机变量X 和Y 不相关,则下列结论中正确的是 () (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =. 4.设离散型随机变量X 和Y 的联合概率分布为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) 1111 69183 X Y P αβ

概率论与数理统计试题及答案

一.选择题(18分,每题3分) 1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ) )(A 独立; )(B 不独立; )(C 相容; )(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。现任选4人,则4人血 型全不相同的概率为: ( ) )(A ; )(B 40024.0; )(C 0. 24; )(D 224.0. 3. 设~),(Y X ???<+=., 0, 1,/1),(22他其y x y x f π 则X 与Y 为 ( ) )(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数 学期望与方差分别为 ( ) 、 )(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ) )(A 32112110351?X X X ++=μ ; )(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 12n X i n i χμχ-= ∑=,其 拒域为(1.0=α) ( ) )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为??? ? ??-+c b a 4.01.02.043 21 ,则常数c b a ,,应满足的条件 ) 为 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

概率论与数理统计复习题带答案

;第一章 一、填空题 1. 若事件A ?B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。 2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为 0.8.求敌机被击中的概率为( 0.94 )。 3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为 (AB AC BC ++ )。 4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8, 0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。 5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为 ( 0.3456 )。 6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。 7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为 ( AB AC BC ) ; 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求 敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。 12. 若事件A ?B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =( S ) 15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为 ( ABC ABC ABC ++ ) 16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 ) 17. A、B为两互斥事件,则AB =( S ) 18. 保险箱的锁定若由四位数字组成,则一次就能打开保险箱的概率为( 1 10000 )。 二、选择填空题 1. 对掷一骰子的试验,在概率中将“出现偶数点”称为( D ) A、样本空间 B、必然事件 C、不可能事件 D 、随机事件

二项分布临界值表

附表1 二项分布临界值表 在p=q=下,x或n–x(不论何者为大)的临界值 n 单侧检验()双侧检验()0.050.010.050.01 55———66—6—7777—8788—98989 10910910 119101011 1210111011 1310121112 1411121213 1512131213 1612141314 1713141315 1813151415 1914151516 2015161517 2115171617 2216171718 2316181719 2417191819

2518191820 2618201920 2719202021 2819212022 2920222122 3020222123

附表2 正态分布概率表 Z F(Z)Z F(Z)Z F(Z)Z F(Z) 0.000.00000.350.27370.700.5161 1.050.7063 0.010.00800.360.28120.710.5223 1.060.7109 0.020.01600.370.28860.720.5285 1.070.7154 0.030.02390.380.29610.730.5346 1.080.7199 0.040.03190.390.30350.740.5407 1.090.7243 0.050.03990.400.31080.750.5467 1.100.7287 0.060.04780.410.31820.760.5527 1.110.7330 0.070.05580.420.32550.770.5587 1.120.7373 0.080.06380.430.33280.780.5646 1.130.7415 0.090.07170.440.34010.790.5705 1.140.7457 0.100.07970.450.34730.800.5763 1.150.7499 0.110.08760.460.35450.810.5821 1.160.7540 0.120.09550.470.36160.820.5878 1.170.7580 0.130.10340.480.36880.830.5935 1.180.7620 0.140.11130.490.37590.840.5991 1.190.7660 0.150.11920.500.38290.850.6047 1.200.7699 0.160.12710.510.38990.860.6102 1.210.7737 0.170.13500.520.39690.870.6157 1.220.7775 0.180.14280.530.40390.880.6211 1.230.7813 0.190.15070.540.41080.890.6265 1.240.7850

相关文档
相关文档 最新文档