文档视界 最新最全的文档下载
当前位置:文档视界 › 超导体物理-超导体

超导体物理-超导体

超导体物理-超导体
超导体物理-超导体

超导体物理-超导体

超导体教学目标

知识目标

了解超导体以及超导体在现代科学技术中的应用.

能力目标

通过超导体知识的学习,扩展知识面.

情感目标

知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神.

教学建议

教材分析

教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识.

进一步讲解超导的优点、缺点和目前科学家面临的问题.

教法建议

本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际.可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习.也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力.

教学设计方案

【教学过程设计】

方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益?

方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下

实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向.【板书设计】

1.超导体概念

超导现象

2.超导体的优缺点

3.我国的超导体的研究探究活动

【课题】超导现象的历史

【组织形式】个人或学习小组

【活动流程】

制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作.

【参考方案】

1、尝试总结超导体的发展现况.

2、讨论超导体的未来发展趋势.

【资料来源】

1、图书馆、互联网查找资料.

2、交流,发现共性和差异.

高温超导体基本特性的测量-物理试验

高温超导体基本特性的测量 1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。 一、实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。 二、实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器 三、实验原理 1.零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。所以总电阻可以近似表达为 R=Ri(T)+Rr (1) 当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。临界温度Tc是由物质自身的性质所确定参量。如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态

超导体复习题

超导物理复习题 1)简述超导体的基本性质。 2)为什么在T

物理前沿讲座——超导体

摘要:自1911年以来,陆续发现某些元素、合金、化合物或其他材料,当温度低于某临界温度T c以下时,电阻小到微不足道,这种现象称为超导电性。具有超导电下哦那个的材料成为超导体。1933年发现超导体具有抗磁性,这种现象称为麦斯纳(Meissner)效应。20世纪70年代发现的超导体主要是元素超导体(包括金属和半导体)和合金超导体,临界温度一般为几K,最高不超过30K,这些称为常规超导体。20世纪80年代以来陆续发现某些铜氧化物超导体,临界温度可达数十K甚至超过100K,这些称为高温超导体。由于高温超导体具有奇特特性和广阔的应用前景,因此,对高温超导现象的理论与实验研究有着重要意义,是当今凝聚态物理一个重要的前沿课题。 关键词:超导体迈斯纳效应BCS理论高温超导体 超导体的基本特征 1超导体的临界温度 我们把电阻突然消失的温度称为超导体的临界温度T C。到目前为止,人们发现周期表中相当一部分元素在各种条件下出现超导电性。 2超导体的临界磁场 用一个磁场加到超导体上之后,当磁场达到某一定值时,超导体就回复了电阻,回到了正常态。假如把磁场平行的加到一根细长的超导棒上,在一定的磁场强度下,棒的电阻突然恢复,使这个电阻突然恢复的磁场值称为临界磁场。 当外磁场强度增加到某一临界值H C时,超导体的导电性受到破坏,材料由超导态转为正常态,临界磁场H c与温度T有关,H c(T)的经验公式为 H C=H C(0)[1-(T/T C)2][1] (T≦T C) 3临界电流 实验发现,当对超导线通以电流时,无阻的超流态要受到电流大小的限制,

当电流达到某一临界值I C之后,超导体将恢复到正常态,对大多数超导金属元素正常态的恢复是突变的,我们称这个电流为临界电流。 二、迈斯纳效应 1933年德国物理学家Meissner和Ochsenfeld对锡单晶球超导体做磁场分布测量时在弱磁场中把金属冷却进入超导态时的磁感应线似乎一下子被排斥出,保持体内磁感应强度等于零。 当材料处在超导状态时,随着进入超导体内部的增加磁场速度衰减,磁场主要存在于超导体表面一定厚度的薄层内。对于宏观超导体,若把这个薄层看成趋近于零,则可近似认为超导体内部磁感应强度B=0超导体有完全抗磁性,我们称之为理想迈斯纳态,不能理想化的状态称之为一般迈斯纳态。 三、Josephson效应 作为超导载体的Cooper对能以一定几率贯穿能垒,称此为隧道效应。例如,在两层超导物质间夹有厚度为纳米量级的绝缘层,若通过连线导入电流,该电流则以电阻为零的状态流动。 BCS理论的创立 1955年,巴丁应德国出版的《物理学手册》的邀请,写了一篇关于超导理论的述评.这使巴丁对当时的超导研究有了更全面的了解.这时,巴丁已经明确了超导现象的产生涉及3个关键因素:一是电子~声子相互作用;二是能隙的存在:三是速度空间的凝聚. 要真正建立微观理论。关键是要对超导态有一个清晰的物理图像.1956年春天,库珀不负众望,迈出了关键的一步,提出了超导理论所需要的额图像.库珀利用量子场论方法,直接从动力学的角度考虑相互吸引的直接作用,得到了费米面近旁两个动量和自旋都大小相等而方向相反的电子能结合成对。这种电子对被称为“库珀对”。库珀对的提出成为Bcs理论成功的关键.

超导物理

超导物理 超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究,认识不断发展起来的,特别是20世纪50年代以来取得了一系列重大突破,引发了今天的"高温"超导电性机理及超导材料研究的热潮. "绝对零度先生"昂内斯发现了神奇的超导现象 .昂内斯于1853年9月21日生于荷兰的格罗宁根,29岁即1882年就被任命为荷兰莱顿大学物理学教授和实验室主任.晋升后不久,昂内斯受到他的同胞范德瓦尔斯研究的影响,决定在莱顿大学建一个当时在世界上规模最大的低温实验室, 并把全部研究项目都转到低温研究方面.由于有了较好的实验条件,昂内斯于1906年使用真空泵连续真空法,使低温气体获得最大限度的膨胀,这样,他获得了20.4k(零下252. 76℃)的低温,液化了氢气.由于有了大量液态氢,就为进一步液化氦气打下了坚实的基础. 1808年7月10日,液化氦气的关键性实验从凌晨5点半就开始了,经过漫长的13小时之后,实验室的工作人员才在人类科学史上第一次看到了液态的氦.当时,昂内斯激动得不得了,他激动地说:"当我看到了液氦时,那真有点像神话中的幻觉,一切都似乎是奇迹的显现."在实验过程中昂内斯获得了4.2k(零下268.9 6℃) 的低温. 过了两年,昂内斯进一步做了使氦固化的试验,但是没有成功.虽说氦没有固化成功,昂内斯意外地从中却获得了1.04k(零下272.12℃)的低温.这是人类向绝对零度大大逼近了一步.人们为了尊敬昂内斯的贡献,给他送了一个风趣的绰号叫"绝对零度先生".从此,昂内斯更加专心致志于探索物体在低温时表现出的特殊性质. 昂内斯和他的学生开始用汞作为测量对象,因为他认为金属材料纯净与否会大大影响测量.而汞可以用蒸馏法提炼得非常纯净.1911年4月的一天,昂内斯让他的学生霍尔斯特进行实验观察,在观察中发现当温度到4.2k以下时,电阻突然消失了,这使霍尔斯特大为惊讶.但是,昂内斯并不感到过分吃惊,因为这一实验结果与他的猜想相吻合.4月28日,昂内斯公布了他们的这一重要发现.同年11月25日,他又明确指出,"测量表明,从氢的熔点(14.02k)到氦的沸点(4.56k)之间,曲线显示出汞的电阻随温度下降而减小的速度与通常情形一样,是逐渐减小的;但到4.21k与4.19k之间,电阻减小的速度急剧加快;到4.19k时,电阻完全都消失了".就这样,低温超导现象被人类第一次发现. 为了进一步证明电阻真的减到零,昂内斯和他的学生把磁铁穿过水银环路,由于电磁感应产生的电流保持了好几天,这就充分证实了电阻完全消失后的超导现象:即只要超导体内有电流,由于没有电阻,所以原则上电流就会永远流动下去,不会停止.1913年,昂内斯首次在论文中使用了"超导电性"这个词. 美国物理学家巴丁,库珀,施里弗说明了超导现象的微观本质和机制,创立了BCS超导微观理论 超导现象虽说于1911年就发现了,但是直到20世纪40年代末,还只能建立起一个唯象的理论,仅仅只限于解释超导的宏观现象.一直到1957年,关于超导现象的微观本质和它的机制,才由美国物理学家巴丁,库珀和施里弗三人共同解决----他们合作创建了超导微观理论.他们三人创建的这套理论,取每人姓氏的第一个字母进行组合,即被称为"BCS"理论.这一理论提出后,迅即被大量理论研究和实验实践证明它是十分成功的----因为,这一理论能对超导电性作出正确的解释,并极大的促进了电性和超导磁体的研究和应用.所以如此,他们三人于1972年共同获得了诺贝尔物理学奖.

超导体的电磁学性质及热力学解释

超导体的电磁学性质及热力学解释 超导电是在低温下具有广泛性的现象,现在已知道,有二十多种元素,大量的化合物,都在一定的临界温度下,转入所谓超导电状态。超导体与温度、磁场、电流密度的大小密切相关,这些条件的上限分别称为临界温度(critical temperature, Tc)、临界磁场(critical magnetic field, Hc)和临界电流密度(critical electric current density, Jc)。超导电性有两个最基本的特性:完全导电性和完全抗磁性。常压下,元素中超导临界温度最高的是Nb(9.26K),最低的是Rh(0.0002K)。近年来人们始终在努力寻求临界温度更高的所谓高 Tc 超导材料,到目前为止,已经发现了三代高温超导材料,第一代为镧系高温超导材料,第二代为钇系高温超导材料,第三代为铋系、铊系及汞系高温超导材料。 1.超导体的电磁学性质 1.1 零电阻 1911年荷兰物理学家昂内斯(H.R.Onnes)在研究水银在低温下的电阻时,发现当温度降低至4.2K以下后,水银的电阻突然消失,呈现零电阻状态。昂内斯便把这种低温下物质具有零电阻的性能称为超导电性。 电阻是用灵敏电位计测量通过一定电流样品上的电压降而确定的,样品本身被浸在液氦中。当时发现 Hg 的电阻在 4.2K 左右陡然下降。实验证明,测量电流愈小,电阻变化愈尖锐,用足够小的测量电流能使电阻的下降集中发生在 0.01K 的狭窄范围内。在这个转变温度以下,电阻完全消失。 汞在液氦温度左右的电阻变化如下图所示。 上述检测方法由于仪器的灵敏度问题而受到质疑。Onnes利用“持久电流”实验解决了这个问题。在外磁场作用下,使环状的样品发生上述转变,然后撤去磁场,这时在环内产生感生电流。他发现当温度降到临界温度以下,用磁针在低温容器之外检验感生电流,结果在很长时间内,完全不能发现任何变化。而温度提高到临界温度以上时,电流立即消失。 总结大量的实验,可以认为已经完全确立,许多物质在一定的转变温度下,电阻完全消失,物质转变到所谓超导电状态。

超导物理与诺贝尔奖

超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究、认识不断发展起来的,特别是50年代以来取得了一系列重大突破,引发了今天的高温超导电性机理及超导材料研究的热潮。 昂内斯(中间白衣者)在他所创立的低 温实验室内 昂内斯(1853~1926) 荷兰低温物理 学家 1908年成功地液化了氦气,1911年 发现了某些金属在液氦温度下电阻 突然消失,即“超导电性”现象,于 1913年获奖。

巴丁(1908~1991) 美国物理学家 库珀(1930~) 美国物 理学家 施里弗(1931~) 美国物理学家 1957年巴丁、库珀和施里弗合作创建了超导微观理论,于1972年获奖。这一理论能对超导电性作出正确的解释,并极大地促进了超导电性和超导磁体的研究与应用。 用于电子对撞机的超导线圈,重达65吨。

。 约瑟夫森(1940~) 英国物理学家1962年预言存在超导电子对隧道电流,第二年这一预言被实验证实,并被命名为约瑟夫森效应,1973年获奖 贾埃弗(1929~) 挪威裔美国物理学家1957年完成了量子隧道效应实验,并于1963年完成了超导体隧道效应实验。于1973年获奖。 约瑟夫森和贾埃弗的发现,对于研制高性能的半导体和超导体元器件具有很高的应用价值,并导致超导电子学的建立。

K.A.缪勒(1927~) 瑞士物理学家 1983年缪勒和柏德诺兹合作进行超导研究,三年后发现了钡镧铜氧体系高温超导化合物。于1987年获奖。这一研究成果导致了多种液氮温区高温超导体材料的出现,并宣告了超导技术开发应用时代即将到来。 超导研究已长达近一个世纪,20年前超导应用在科学界还被认为是一种侈谈。而今天,它已在科研、医疗、交通、通信、军事、电力和能源等领域得到了应用。但这只是序幕,超导研究与应用在21世纪将为我们展现更加绚丽辉煌的前景。 柏德诺兹(1950~) 德国物理学家 应用超导体的磁悬浮列车实验装置

超导体物理教案

超导体物理教案 知识目标 了解超导体以及超导体在现代科学技术中的应用. 能力目标 通过超导体知识的学习,扩展知识面. 情感目标 知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神. 教学建议 教材分析 教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识. 进一步讲解超导的优点、缺点和目前科学家面临的问题. 教法建议 本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际. 可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习. 也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力. --方案 【教学过程设计】 方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益? 方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下 实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向. 【板书设计】

1.超导体 概念 超导现象 2.超导体的优缺点 3.我国的超导体的研究 探究活动 【课题】超导现象的历史 【组织形式】个人或学习小组 【活动流程】 制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作. 【参考方案】 1、尝试总结超导体的发展现况. 2、讨论超导体的未来发展趋势. 【资料来源】 1、图书馆、互联网查找资料. 2、交流,发现共性和差异. 感谢您的阅读。 祝语:还是那株山茶花,芬芳而美丽,那红色是天空的彩霞,是情人脸上的娇羞,是山谷中的胜景,是心里永远的秘密。

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

1 超导体的性质

超导理论 1911年夏天,当昂纳斯的两个研究生在做低温实验时,偶然发现某些金属在极低温环境中,金属的电阻突然消失了。这一发现轰动了全世界的科学家,大家纷纷想要揭开超导的奥秘,因为只有了解了超导现象的微观机理,才能使它为人类作出更大的贡献。1955年金秋季节,巴丁与他的研究生罗伯特·施里弗,以及另一位年轻的博士利昂·库珀组成了一个探索超导现象微观机理的研究小组,开始朝这一神秘的领域进发。最终创立一套完整的超导微观理论。他们三人荣幸地分享了1972年度的诺贝尔物理学奖。这一理论也以他们姓氏的头一个字母命名,称为“BCS理论”。 在很长一段时间内,超导材料的临界温度都在相当低的温度范围内徘徊,1986年,从瑞士苏黎士的IBM实验室传来了激动人心的消息:钡镧铜氧化物的临界温度达到30K。根据BCS理论,超导最高临界温度不会超过40K,而现在却早已远远地超过了这一极限,必须寻找新的理论。美国物理学家菲利普·安德森也提出了一个新的超导理论,他一反“库珀对”的常规,认为电子不是互相吸引而是互相排斥,正是这种排斥才使电子与电子挨近了,结合了。中国复旦大学的陶瑞宝也提出了一个超导的激子渗流理论,这一理论认为,处于超导态下的电子具有特殊的能带结构,这些电子形成的电子波在晶体中互相迭加,当在这晶体中通以电流时,电子就会绕过晶体中的点阵,沿电子波迭加的方向运动,不会产生阻力,由此便产生了超导现象。 超导现象真正的微观机理还是一个谜,解开这个谜将是人类的又一大进步。 1 超导体的性质 超导现象的发现 超导是某些金属或合金在低温条件下出现的一种奇妙的现象。 19世纪末,低温技术获得了显著的进展,曾一向被视为“永久气体”的空气被液化了。1877年氧气被首先液化,液化点也就是我们所说的常压下沸点是-183℃(90K)。随后人们又液化了液化温度是-196℃的氮气。1898年杜瓦(J.Dewar)第一次把氢气变成了液体氢,液化温度为-253℃,他并发明了盛放液化气的容器——杜瓦瓶。 最先发现这种现象的是荷兰物理学家卡麦林·昂纳斯。1908年卡麦林·昂纳斯液化氦(-259℃)成功,从而达到一个新的低温区(4.2K以下),他在这样的低温区内测量各种纯金属的电阻率。 1911年夏天,当昂纳斯的两个研究生在做低温实验时,偶然发现某些金属在极低温环境中,金属的电阻突然消失了。昂纳斯接着用水银做实验,发现水银在4.1K时(约相当于-269℃),出现了这种超导现象;不但纯汞,而且加入杂质后,甚至汞和锡的合金也具有这种性质。他把这种性质称为超导电性。他又用铅环做实验,九百安培的电流在铅环中流动不止,两年半以后仍旧毫无衰减。 1932年霍尔姆和卡茂林-昂尼斯都在实验中发现,隔着极薄一层氧化物的两块处于超导状态的金属,没有外加电压时也有电流流过。1933年荷兰的迈斯纳和奥森菲尔德共同发现了超导体的一个极为重要的性质。 超导体的基本性质 1、零电阻效应 在超导条件下,电阻等于零是超导体的最显著的特性。如果将一金属环放在磁场中,突然撤去磁场,在环内就会出现感生电流。金属环具有电阻R和电感L。由于焦耳热损耗,感生电流会逐渐衰减到零,衰减速度与L和R的比值有关,L/R的值越大,衰减越慢。如果圆环是超导体,则电阻为零而电感不为零;因此电流会毫不衰减地维持下去。这种“持续电流”已在多次实验中观察到。测量超导环中持续电流变化的实验给出,样品铅的电阻率小于3.6×10-2欧姆厘米,它比铜在室温下的电阻率1.6×10-6欧姆厘米还要小4.4×1016倍。这个实验结果表明超导体的电阻率确实是零。

物理超导报告

大学物理实验报告超导磁悬浮现象分析及其应用 姓名: 学号: 学院:信息学院 专业:计算机科学与技术 指导教师: 8年月日

超导磁悬浮现象分析及其应用 摘要:通过对超导磁悬浮现象的研究,分析后得出超导原理及超导磁悬浮现象的应用方法。 关键字:超导磁悬浮迈斯纳效应 【知识简介】 1911年,荷兰莱顿大学的卡末林—昂 内斯意外地发现,将汞冷却到-268.98°C时, 汞的电阻突然消失;后来他又发现许多金属 和合金都具有与上述汞相类似的低温下失 去电阻的特性,由于它的特殊导电性能,卡 末林—昂内斯称之为超导态。卡茂林由于他 的这一发现获得了1913年诺贝尔奖。 1933年德国物理学家迈斯纳 (W.Meissner)和奥森菲尔德 (R.Ochsebfekd)对锡单晶球超导体做磁场 分布测量时发现,在小磁场中把金属冷却进 入超导态时,体内的磁力线一下被排出,磁 力线不能穿过它的体内,也就是说超导体处 于超导态时,体内的磁场恒等于零。 超导体一旦进入超导状态,体内的磁通量将全部被排出体外,磁感应强度恒为零,且不论对导体是先降温后加磁场,还是先加磁场后降温,只要进入超导状态,超导体就把全部磁通量排出体外。 此外,超导体还是完全的抗磁体,外加磁场无法进入或(严格说是)大范围地存在于超导体内部,这是超导体的另一个基本特性。 【实验步骤】 1)备一个小型液氮容器,最好是模压泡沫容器(如:仪表包装衬套即可) 2)将小车下面垫上8mm左右的硬纸板放在磁性导轨上 3)取下小车上盖,将液氮倒入小型液氮容器,再倒入车体容器中(内有超导块),大约过 2-3分钟,使超导块充分冷却,盖上车盖,撤下硬纸板,小车悬浮在导轨上方 4)接上驱动变压器,将其电压调到4.5V左右,打开驱动开关(在导轨托板的前方) 5)用手给车一个驱动力,使小车顺着驱动器的转动放线运动,使小车受到一个向前的驱动 力的作用,车就会沿着磁性导轨持续运动起来

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

超导体物理-超导体

超导体物理-超导体 超导体教学目标 知识目标 了解超导体以及超导体在现代科学技术中的应用. 能力目标 通过超导体知识的学习,扩展知识面. 情感目标 知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神. 教学建议 教材分析 教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识. 进一步讲解超导的优点、缺点和目前科学家面临的问题. 教法建议 本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际.可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习.也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力. 教学设计方案

【教学过程设计】 方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益? 方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下 实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向.【板书设计】 1.超导体概念 超导现象 2.超导体的优缺点 3.我国的超导体的研究探究活动 【课题】超导现象的历史 【组织形式】个人或学习小组 【活动流程】 制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作. 【参考方案】 1、尝试总结超导体的发展现况. 2、讨论超导体的未来发展趋势. 【资料来源】

1、图书馆、互联网查找资料. 2、交流,发现共性和差异.

超导体的推测

有关超导体的几项推测 为什么超导在火焰加热时,能够浮在火焰之上,就像《阿凡达》中演得那样。有实图可见高中物理选修3——5 ①假设有一超导体做成的机器,在条件适合的情况下,它或许可以永动, ②假设,有一单质金属超导体则它发生光电效应时,逸出功几乎为零。但符合爱因斯坦光电效应方程。 ③合适电压,与磁场组成的复合场里,超导体会很容易且产生大量的等离子体。 .超导体的两大特性:电阻为零,磁感应强度为零。 超导体 超导是指导电材料在温度接近绝对零度的时候,物体分子热运动下材料的电阻趋近于0的性质;“超导体”是指能进行超导传输的导电材料。零电阻和抗磁性是超导体的两个重要特性。人类最初发现物体的超导现象是在1911年。当时荷兰科学家卡·翁纳斯等人发现,某些材料在极低的温度下,其电阻完全消失,呈超导状态。使超导体电阻为零的温度,叫超导临界温度。分享 简介 超导材料,又称为超导体(superconductor)。当某导体在一温度下,

可使电阻为零而称之。零电阻和抗磁性是超导体的两个重要特性。 发展史 1911年 1911年,荷兰科学家卡末林—昂内斯(Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K(﹣268.95℃)时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。 1933年 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。超导现象 1973年 1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K(﹣249.95℃),这一记录保持了近13年。

物理研究性学习--浅析超导体

浅析超导体学习设计方案 一、课题产生的背景和依据 所谓超导是指某些材料被冷却到低于某个转变温度时电阻突然消失的现象。处于这种状态的物体叫超导体。它是1911年荷兰科学家昂内斯首先发现的,经历了近90年的不平凡路程,超导技术正进入发展的大好时机。超导技术的进一步发展,必将带来一场与能源、电子、交通有关的工业革命。我们正悄然进入超导时代。 我们国家有着得天独厚的超导资源,在超导材料方面的研究也居世界先进行列,因此我们有着良好的学习和研究超导的氛围.很容易了解到相关信息,学生经常从各种媒体中看到有关超导新产品问世的消息,如我国的第一辆磁悬浮列车,长江三峡将要使用的超导发电机,美国研制每秒运算万次的超导计算机等。他们对此有着强烈的好奇心,并已具备一定的电磁学知识,完全有能力去探索超导世界的奥秘。 二、课题实施过程 l.准备阶段 (1)基本知识的准备 学生阅读相关物理资料或科普读物,了解有关超导体的物理概念、物理现象、物理实验,为以后的深入研究打好基础o (2)研究方法的准备 学生学会如何在图书馆有针对性地查找资料,如何在网上有效、快速搜索所需资料,如何进行正确的实验设计,如何翻译原版资料等。 (3)课题基本框架准备 ⑦基本理论学习,②物理学史回顾,③实验探索,④应用例举, ⑤总结。 2.实施阶段 在具体实施时,对超导体的研究又分为几个子课题。 课题1 研究超导体的基本特性学生对超导体的初步研究是通过阅读科普文章开始,如《科学探奇》、《2I世纪十万个早知道》、《金属新秀》等。他们了解到超导体除了零电阻现象外,还具有完全抗磁性,即超导体内部的磁感应强度等于零,磁感线作用于超导体时会统统被排斥,从超导体的旁 边绕过去。以上两种特性是对超导体的两个基本宏观判断,学生在本课题的实施过程中,将通过设计实验验证这两个基本特性。 实验一:研究低温下的导体电阻变化学生取用一个“25W,220V”灯泡中的钨丝,置于冰块中用数字电阻表测其电阻,发现其电阻未显著下降,设法用液氮(温度为如K左右)再次降温后,发现电阻大大下降,证明了温度降低导致导体阻值减小,但其电阻未减小至零,也证明超导现象须达到该金属的临界温度才行。只有将钨丝置于更低温环境—液氨(4K)中,才能使钨丝产生真正零电阻现象。 实验二:验证超导体的完全抗磁性(迈斯纳效应)在一浅平的锡盘中放入一个体积很小但磁性很强的永磁铁。当使温度降低到使锡出现超导性时,可以看到小磁铁从锡盘表面飘然升起很小一段距离后保持悬浮状,这是由于小磁铁的磁感线无法穿透处于完全抗磁状态的超导体.使得它的磁场发生了畸变,从而产生了一个向上浮力,被托起来。 课题2 超导的广阔应用 他们发现随着超导材料转变温度的不断提高,超导物质的不断发现和越来越容易获得,人们

超导体的物理特性

超导体的物理特性及其军事应用 作者:刘玉超, 李鹏 ,张强收录时间:2011-11-07 阅读次数: 221 关键词: 超导体,军事应用 摘要:介绍了超导体的物理特性及超导器件在国内外军事领域上的研究和应用进展。 随着电子技术的不断向高、新、尖发展,超导电子技术便应运而生。超导体具有两个突出的特点:一是超导电性。它可以传导大电流,在较大的空间产生很强的磁场,不消耗或只消耗极少的能量(强电效应);二是超导体器件对磁场或电磁辐射具有极高的灵敏度(弱电效应)。利用超导的强电效应特点,可以制成高效电动机和发电机、定向能武器、电磁炮、弹射器等。利用超导体对弱磁、弱电辐射的极高灵敏度特性,可以制成体积小、重量轻、超高速、特宽频带、低功耗、低噪声、抗干扰能力强的各种电子器件和系统。 1 超导体的物理特性 所谓超导体,是指电阻为零的物质。1911年德国物理学家海克·坎默林·奥尼斯首先发现世界上有超导物质存在,并认为所有金属都可能具有超导性,但是只有当它们冷却到几K,略高于绝对零度(-273℃)时,才具有超导性。经过科学家们不懈努力,目前,高温超导体发展迅速,已经走出了实验室,进入实际应用阶段。 1.1 零电阻效应 某物质在临界温度时,电阻消失的现象,就是零电阻效应。但是临界温度与物质种类有关,不同的超导体临界温度是不同的。同一物质有无外磁场的影响也是不同的,当物质在外磁场作用时,某临界温度要比没有磁场作用时要低。因此,随磁场的增强,临界温度将降低。只有外磁场小于某一量值时,物质才保持超导体的零电阻效应,这一磁场值称为临界磁场值。 1.2 迈斯纳效应 1933年迈斯纳(Meissenr)在实验中发现了下述事实:把在临界温度以上的锡和铅样品放人磁场中,这时样品内有磁场存在。当维持磁场不变而降低样品的温度转变为超导体后,结果其内部也就没有磁场了。这说明,在转变过程中,在超导体表面产生了电流,这电流在其内部产生的磁场完全抵消了原来的磁场,也就是说磁力线不能穿过超导体物质内部,也就是所谓的迈斯纳效应。这一效应表明,超导体具有绝对的抗磁性。 1.3 约瑟夫逊效应 1962年,约瑟夫逊(B.D.Josephson)发现,在两块超导体中间夹一薄的绝缘层就形成了一个约瑟夫逊结。按经典理论,两种超导材料之间的绝缘层是禁止电子通过的,这是因为绝缘层内的电势比超导体中的电势低得多,对电子的运动形成了一个高的“势垒”,绝缘体的电子能

超导物理前沿研究

超导物理前沿研究 中文摘要 本文回顾了超导描述的历史并介绍其最新进展。 我们首先介绍全息原理的基本概念及其的多方面应用,接着回顾超导现象;然后我们导出全息Fermi系统,并且构建全息超导模型;最后我们从其它方向讨论全息超导与及对它的总结和展望。 关键词:AdS/CFT对应,规范引力对偶,Fermi系统,超导 H H Y

Abstract In this thesis,we review the history of superconductivity and introduces its recent progress. Firstly,we introduce the basic concept of holographic principle and its application in many fields,then review the superconductivity.Then we derive the holographic Fermi system,and construct the holographic superconductor model.Finally, we discuss holographic superconductivity from other aspects, and summarize and Prospect. Keywords:AdS/CFT Correspondence,Gauge/Gravity Duality,Fermi System,Superconductivity

一、引言 基于Jacob Bekenstein和Stephen William Hawking关于黑洞熵的研究,人们发现了黑洞熵与黑洞的“表面积”成正比,于是不久,Gerard 't Hooft和L.Susskind提出了全息原理【1】.全息原理认为,一个系统原则上可以由它边界上的一些自由度完全描述。即,一个包括引力的动力学系统可以由其边界上的QFT(Quantum Field Theory)描述。一个引力全息性质的具体实现,AdS/CFT(An-de Sitter/Conformal Field Theory)对应,又名Maldacena猜想,最早由J.Maldacena 在【2】中提出,被(Horowitz和Polchinski)评价为:“We find it difficult to believe that,nature does not make use of it.”①,由此可以看出它的重要性。 通常,AdS/CFT对偶有三个版本:第一版本为时空的ⅡB型弦论等价于(3+1)维Minkowski时空中=4的U(N)超对称Y-M(Yang-Mills)规范理论。 第二版本为大N极限。即,保不变,令N→∞。弦耦合常数。此时,时空的ⅡB型弦论约化为半经典极限的情况。 第三版本是在第二版本基础上,考虑大λ。即,N→∞时λ不变。因为AdS 时空半径L有,所以,即,→0。这下AdS/CFT 对偶变为:时空的超引力理论等价于强耦合=4的SU(N)对称Y-M规范 理论。 引力全息性认为某些QFT等价于高一维的量子引力理论。因为量子引力于低能弱耦合极限下可由经典广义相对论描述。据全息对偶,即,要求所对应的边界场论耦合强度λ》1,且单位体积内的自由度N》1。所以,我们可用经典引力来研究一些非引力强耦合系统(全息超导)。 对偶两边理论相关物理量联系起来,即,全息字典。如场/算符对应(Gubser-Klebanov- Polyakov-Witten公式)【3,4】: (1,1) 其中O为场论的一个算符,为O的源。这是最强版本的AdS/CFT对偶,公式 左边表明如何计算算符关联函数,右边是时空中的超弦理论的配分函数——这说明,边界场论的某一个算符对应于其对偶引力理论中一个动力学场。全①“我们很难相信大自然会不去使用它。”

低温超导现象及特性

低温超导现象及特性 超导是某些金属或合金在低温条件下出现的一种奇妙现象,是由荷兰的物理学家卡麦林·昂纳斯最先发现的。 1908年,昂纳斯(1853—1926年)成功地液化了地球上最后一个"永久气体"──氦气,得到了接近绝对零度(0K=-273.15℃)的低温:4.25K~1.15K。之后,他把目标转向了"极低温下金属电阻随温度变化规律的研究"。昂纳斯先是用铂丝,接着用纯度更高的水银做实验,他吃惊的发现水银在温度降至氦的沸点即4.2K时(相当于-269℃),电阻竟意外地消失了。起初昂纳斯还以为是线路出现了故障,几经测定,最后他确信,水银在 4.2K下会产生一种新的导电特性──"零电阻性'或"超导电性"。1911年4月28日,昂纳斯公布了这一发现,并在随后几篇论文中明确指出,某些材料在一定温度下能进入一种电阻为零的新物态。他将这种新物态命名为"超导态",同时把具有从正常态(电阻不为零)转变为超导态能力的材料称作"超导体",把能使超导体从正常导电状态变为超导电状态时的转变温度称为"临界温度"。他进一步用铅环做实验,当铅变为超导态时,九百安培的电流在铅环中流动不止,两年半以后毫无衰减。

昂纳斯的这一发现轰动了全世界的科学家,大家纷纷实验,并且想要揭开超导的奥秘,因为只有了解了超导现象的微观机理,才能使超导为人类作出更大的贡献。 现在,科学家已发现有上千种元素和化合物在低温下可以转化为超导态。对所谓"零电阻性"也已有共识:超导体即使有电阻,它的电阻率必然小于10-26"欧·米,而且只对直流电适用,若给超导体通入交流电,它仍会出现类似于常规电阻的"交流损耗"。从这个意义上讲,超导体似乎可以说是一种直流理想导体。 高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。 超导现象的最直接、最诱人的应用是用超导体制造输电电缆。因为超导体的主要特性是零电阻,因而较小截面的电缆上输送较大的电流,而且基本上不发热和不损耗能量。据估计,我国目前约有15%的电能损耗在输电线路上,每年损失的电能达到900多亿千瓦时。如果改用超导体输电,就能大大节约电能,缓解日益严重的能源紧张。

《超导物理(双语)》教学大纲

《超导物理(双语)》教学大纲 课程编号:060252 开课院系:应用学院物理系 课程类别:本专业选适用专业:应用物理 课内总学时:36 学分:4 实验学时:0 课内上机学时:0 先修课程:高等数学、微分方程、电磁学、热力学 执笔:罗胜审阅:李杰 一、课程教学目的 通过学习该课程使学生掌握超导电性的基本原理、概念及物理图像,并了解超导材料在强电及弱电方面的应用现况及前景。 二、课程教学基本要求 1.课程重点: 超导体的基本性质、超导热力学、超导电动力学、BCS理论、G-L方程、超导隧道效应、两类超导体、超导材料的应用 2.课程难点: 超导微观理论 3.能力培养要求: 通过超导体基本性质及超导基本原理的学习,体会并学习前辈科学家进行科学研究的思路与方法 三、课程教学内容与学时 课堂教学(36学时) 1.超导电基本现象(4学时) 1.1掌握超导体的零电阻现象 1.2掌握超导体的迈斯纳效应 1.3 掌握超导材料的临界磁场和临界电流概念 2.超导热力学(4学时) 2.1 掌握二流体模型 2.2 掌握磁场中超导态的吉布斯自由能 2.3 了解超导体正常-超导态相变时的熵与比热 3.超导电动力学(4学时) 3.1 掌握伦敦方程的推导 3.2掌握超导体的磁场穿透深度概念 3.3 理解皮帕特非局域理论 4.超导微观理论简介(6学时) 4.1 掌握同位素效应的实验事实 4.2 掌握库柏对和超导能隙的概念

4.3 了解BCS理论的基本图像 5.金茨堡-朗道理论(4学时) 5.1 了解G-L方程 5.2 掌握界面能概念 5.3 掌握磁通量子化概念 6.两类超导体(4学时) 6.1 掌握磁通线模型 6.2了解磁通钉扎模型 6.3了解两类超导体 6.4 理解磁通流阻 7.超导隧道效应(4学时) 7.1 了解单电子隧道效应 7.2 了解约瑟夫森方程 7.3 理解超导量子干涉现象 8.超导材料的应用(4学时) 了解超导材料在强电及弱电方面的应用现况及前景 9.超导研究发展的启示(2学时) 回顾近一个世纪超导研究的发展历史,体会并学习前辈科学家进行科学研究的思路与方法。 四、教材与参考书 教材 1. 伍勇韩汝珊编,《超导物理基础》,北京大学出版社,1997年,第1版 参考书 1. 韩汝珊编,《高温超导物理》,北京大学出版社,1998年,第1版 2. 章立源张金龙崔广霁编,《超导物理》,电子工业出版社,1987年,第1版 3.M.Tinkham, 《Introduction to Superconductivity》,McGraw-Hill 1999, First Edition 4. David R Tilley. John Tilley, 《Superfluidity and Superconductivity》, Adam Hilger Ltd, 1986, Second edition 五、作业 每章节后有习题及文献查阅任务 六、说明 本课程为双语教学,使用多媒体教学

相关文档