文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的四大效应(科普知识)

纳米材料的四大效应(科普知识)

纳米材料的四大效应(科普知识)
纳米材料的四大效应(科普知识)

The four effects of Nano material (scientific knowledge)

纳米材料的四大效应(科普知识)

First, surface effect

T he direct ratio exists between the surface area and diameter’s square of spherical particles, also exsits between its volume and cubic, so

its specific surface area (surface area/volume) and is in inversely proportion to the diameter. With the diameter of particle becoming smaller, surface area will increases gradually, indicates the percentage of the surface atomic accounts for will dramatically increases. The surface effect of particle what the diameter is bigger than 0.1 microns could be ignored, when the size is less than 0.1 microns, the percentage of its surface atom will dramatically grows, even the sum of surface area of 1 g ultramicroparticles is 100 square meters, the surface effect will not be ignored at this time.

The surface of ultramicroparticles is very different with the surface of the large object, if we take the television camera to the metal ultramicroparticles (diameter of 10 ^ 2 * 3 microns) by using the high-rate electron microscope, and you will found that the particles has no fixed form through the real-time observation , with the time’s changing,it will automatically forms into various shapes (such as cubic octahedron, ten surface body, with 20 ulrich, etc.),the body which is different from the general solid and liquid, is a quasi solid. under the radiation of electron beam of the electron microscope,the surface atomic looks like entering into the condition of "boiling",

the unstability of particle structure could be seen when the size is bigger than 10 nanometer, then microparticle has the stable structure state.the surface of ultramicroparticles has high activity, the metal particles will be quickly oxidated and burnt in the air. We can use the surface coating or deliberately control the oxidation rate to prevent spontaneous combustion, make its slowly oxidated to generated a very thin and dens oxide layer to ensure the stabilizationof surface., because of the surface activity,the metal ultramicroparticles will become a new efficient catalyst ,gas storage materials and low melting point material

Second, small size effect

As the quantitative chang of particles size, in certain conditions , the properties of particle would change in quality. particle size becomes smaller will be in order to macro physical characters changes ,we called this phenominon as small size effect. For Ultramicroparticles, Its size becomes smaller,and the surface area will dramatically increases at the same time,then produces the following a series of novel properties

(1) The special properties of the optical: when gold was subdivided into the size that smaller than the wavelength of light wave, which means the gold loses their lusters of rich and honour and to be black. In fact, all of the metals are black in the state of ultramicroparticles.Size becomes smaller, the color is much more black, silver platinum (platinum) into platinum black, metallic chromium into chromium black.it shows the reflectivity of metal ultramicroparticles to the light is very low, usually less than l %, thickness of a few microns could completely extincts the light. Because of the property, it could be as converted materials with the high efficient sunlight and optoelectronics and other materials, could also change efficiently the solar energy into heat energy, electric power. In addition, it also may be applied in the infrared sensitive components, infrared stealth technology, etc.

(2) when the size of solid matter what has special thermal properties becomes bigger, its melting point is fixed, we will find its melting point significantly reduce after being super fined, the phenominon is very remarkable especially when particles are less than 10 nanometer magnitude. For example, the conventional melting point of gold is 1064 C ℃, when the size of particle reduces to 10 nanometer, the temperature would lower 27℃, the melting point is 327 ℃when the size is 2 nanometer; the conventional melting point of Silve is 670 ℃, and the melting point of superfine silver particles could be lower than 100℃. Therefore, the Conductive slurry what is made of ultrafine silver could sinter at the low-temperature, at this time ,the substrate of components could only use plastic not the high-temperature ceramic materials, the

strengths of using superfine silver size could make the film to be averaged thickness, and the covering area is large, not only does saving materials but high quality. The company of Japan kawasaki steel uses 0.1~1 micron copper, nickel ultramicroparticles to make conductive slurry what can be replaced precious metals, for example, silver,palladium and so on. The nature of the dropping melting point of the ultramicroparticles has a certain attraction for the powder metallurgy industry .For example,adding ultrastructure nickel particles at the ratio 0.1% ~ 0.5% in weight into the tungsten particles,which could decreased the sintering temperature from 3000 ℃ to 1200~1300℃,so that we can fire into the high power substratee of semiconductor pip under the low temperature

(3) People found the ultrastructure magnetic particles exsited in the organisms of the dove,dolphins,butterfly,bees and live in the water of magnetotactic bacterial,etc.because of the ultrastructure magnetic particles, this kind of biological could tell the direction under the magnetic field navigation,has the ability of return. The essence of magnetic ultramicroparticles is a biological magnetic compass,the magnetotactic bacteria what is living in the water relys on it ,and swam to rich nutrition near the bottom. The research through the electronic microscope shows that, the magnetic oxide particles in diameter with 2 '10-2 microns were contained in the body of magnetotactic bacteria. The ultrastructure magnetic particles with small size is significant different with the large material, the pure iron coercive force in large chunks is about 80 Ann/m, and when the particle size reduced to the below of 2 '10-2 microns, the coercive force can increase 1000 times, If further reduce its size, about less than 6'10-3 microns,the coercive force reduced to zero, presents Superparamagnetic. By using the characteristics of high coercive force of magnetic ultramicroparticles, the people has made the magnetic recording magnetic powder with the high storage density , what has widely applied to tape, disc, magnetic card and key,etc. taking the advantage of Superparamagnetic, people have already made magnetic ultramicroparticles into magnetic liquid what has extensive used in many fields.

(4) the special character of mechanics: ceramic materials are brittle in the normal condition, but the nano ceramic material what was squelched by the nanometer particles has good toughness. Because the nanometer material with large interface, the atomic arrangement is quite chaotic in he interface, the atoms is easy to migration when the external force deformed, which shows good toughness and certain ductility,and makes ceramic materials with novel mechanical properties. American researchers reported the nanometer material could bend but not break in the room tenperature. Research shows the truth why people's teeth are with very high strength is that it is made of the materials just like calcium phosphate,etc, the hardness of the metal nanoparticles is higher than theraditional coarse grain metal by 3~5 times.As for composite nanomaterials, just like ceramic and metal, could change the mechanical properties in a wider range, and its application foreground is very broad. small size effect of Superfine particles still behaves in the superconductivity, dielectric properties, acoustic properties and chemical properties, etc.

Third,the tunnel effect of macroscopic quantum

The atom of every kind of element has a specific spectra, such as sodium atom has yellow spectra. We have used the concept of energy to reasonally interpret the Atom model and the quantum mechanics, the energy of single atom would be combined into energy band when the countless atoms are made of solid, because the number of electronic is massive ,and the spacing of the energe level in energy band is small,so we can regard it as the state of continues. By using of the theory of the energy band ,we can successfully explain the relationship and difference between the large metal,semiconductor,and insulators. For the ultramicroparticles, what exsits in the middle of the atoms,molecules and the large solid, the continuous energy band of large materials will be split into dividable energy level; the Spacing of energy level would increases as the reduce of particle size decreases. A series of abnormal properties what are different from the macro object will appear When the spacing of heat energy, electric field or magnetic field is smaller than the average spacing, which we call quantum size effect. For example, the conductive metal can be changed into an insulator in the condition of ultramicroparticles, the distance of magnet is relevant

with the numble of electronic in the particles whether is oddnumble or even. specific heat will also take abnormal change, the spectra line would moves to the direction of the short wave long, this is macroscopic performance of the quantum size effect. Therefore, we must consider the quantum effect when the ultramicroparticles is at low temperature, the original macro regularity was no longer established. Electronic has the characteristic with volatility and particles, therefore, the tunnel effect exsits.

In recent years, people found some macro physical quantities, such as the magnetized strength of microparticles, the magnetic flux of quantum coherent devices also shows the tunneling effect,which we called the macroscopic quantum tunnel effect. Quantum size effect,macroscopic quantum tunnel effect will be the foundation of future microelectronics, optoelectronic devices, or it established the limitation of existing microelectronics devices taking the further miniaturization,we must consider the above quantum effect when microelectronics devices taking the further miniaturization.For example,on the condition of manufacturing semiconductor integrated circuit, electronic would overflows device through the tunnel effect when the size of the circuit is close to electronic wavelength, make the device does not work properly, the limited size of classic circuit is about 0.25 microns.The development of quantum resonance tunnel transistors is a new generation devices what is made by using the quantum effect at the present time.

Fouth, the effect of quantum size

The energy level of electronic what is near to the the energy level of the metal Fermi is from continues to dividable, and the energy gap of nano semiconductor particles grows wider, these phenomena are both called quantum size effect.

热门-《纳米技术就在我们身边》教学设计

《纳米技术就在我们身边》教学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 3.自主、合作探究“新奇”的具体体现。 4.领会纳米的神奇所在,培养爱科学、学科学的精神。 教学重点 1.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 2.自主、合作探究“神奇”的具体体现。 教学难点 1.培养学生通过各种渠道收集信息的能力。 2.有科学依据的大胆想象,培养学生的科学精神和创造能力。 第一课时 教学目标

1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写 “纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教学过程 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的 人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管 中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,纳米和纳米技术,对学生来说很陌生、很抽象。教师出示关于纳米和纳米技术的图片,可以增加直观感,能较好地激发学生的学习兴趣。 图2.纳米技术制作的中国地图(这是中国科学院化学 所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

纳米教学设计2

11、《新奇的纳米技术》导学案 教学目标: 1.能正确、流利地朗读课文。了解什么是“纳米技术”,以及纳米科技的广泛应用。 2.理解文章结构,能利用规律概括段落大意。 3.能收集相关资料,并根据文章内容提出自己的疑问。 4.会用关联词来介绍一样物品。 5.激发学生爱科学、学科学的热情。 教学时间 2课时 导学单: 1、这篇课文我已经读了()遍,自己认为读得(A.正确流利B.基本流利C.不太流利) 组内伙伴评价:(A.正确流利B.基本流利C.不太流利) 2、我已经会认读这些新词: 除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 3、我要提醒大家容易读错的词语有 4、读了课题《新奇的纳米技术》,你知道了什么?有哪些问题要与大家交流?导学学过程 基础部分 (学习程序:课前通过自己独立学习,完成基础部分及要点部分会做的内容,课内小组交流基础部分,后展示、点评。时间约10分钟) 一、谈话引入,激发兴趣 1.今天我们来学习一篇新课文《新奇的纳米技术》(板书课题)。 2.以前听说过“纳米技术”吗?“新奇”的意思?说说生活中你有没有遇到过新奇的事物。 二、通读课文,了解大意 1.检查课文朗读。 出示课文中的科技术语和句子。先组内相互听读纠正,然后全班交流。 词语:除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质

纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 句子:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 2.自由交流:读了课文,你知道了什么? 3.自学了课文后你有什么问题想问? 重点部分 (学习程序:先独立学习要点部分,再组内群学要点部分,时间约8分钟。然后根据各组疑问情况,安排小组大展示,点评,教师及时追问、点拨,时间约17分钟。) 三、细读课文,深入理解 (一)学习第一自然段。 1.齐读第一段,读了这一段你有什么问题吗?(微米、纳米是什么?)(二)学习第二自然段。 1.自读第二自然段,想想:课文这一段主要讲了什么呢?(纳米是一种很小的长度计量单位和什么是纳米技术。) 2.品读句子,感受说明方法。 纳米是非常非常小的长度度量单位,非常非常小。 纳米是非常非常小的长度度量单位,1纳米等于十亿分之一米。 你觉得哪句话写得更明白形象些?为什么?(用了列数字的方法) 文章中还有哪些句子也是生动地向我们介绍了纳米是很小的长度度量单位? 3、理解“顾名思义”的意思。(智能手机、平板电脑、混合动力汽车) 4、理解:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 你理解这句话吗?来说说哪些词语不懂?(纳米尺度、微观对象) 缩句练习。 5.你觉得这句话是围绕着哪句话来写的?从文中用——划出。分析总分段式的特点。根据规律,找到3、4、5的总起句,说出主要内容。 (三)学习第三自然段。 1、自读这本段,从文中找一找,作者举了哪些例子来说明纳米技术就在我们身边。(冰箱的涂层、纳米领带、纳米彩旗) 2、细读这些例子,说说运用了纳米技术后,有哪些神奇的效果。

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教学设计

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教 学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教具准备 课件: 教学设计 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,它们可以非常容易地予以清理,而不再用进行危险的开颅、开胸手术。)图2.纳米技术制作的中国地图(这是中国科学院化学所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

3.板书课题: 简述:这篇科学小品文向我们简单而准确地介绍了纳米、纳米技术等科学知识,展示了纳米技术美妙的前景。(板书:纳米技术就在我们身边) 4.出示目标。 二、初读课文,解决字词。 1.学生自读课文,要求:【出示课件3】 (1)正确、流利地读课文,读准字音,读通句子。 (2)遇到自己喜欢的语句,多读几遍。 2.自学课文生字词,可以用笔在文中圈出来,然后用合适的方法来解决生字词。 3.检查学习效果,相机指导。 (1)检查并指正读音 【出示课件4:本课生字新词】 乒乓球拥有杀菌防臭蔬菜癌症死亡率疾病病灶 纳米冰箱钢铁隐形健康细胞预防需要 自由读,指名读,齐读。 注意读准平舌音“灶”,翘舌音“杀臭疏”等。 (2)指导书写【出示课件5、6】 重点指导“臭蔬健康”。 “臭”上下结构,上面是个“自”下面是个“犬”,不要少写“自”里的一横和“犬”上的一点。 “蔬”上窄下宽,下面是“疏”,不要多写横撇下的一撇,也不要少写了撇折右边的一点。 “健”左窄右宽,注意中间是“廴”不是“辶”。 “康”半包围结构,注意里面的部分,最后四笔分别是:点、提、撇、捺。 (3)检查词语理解。 【出示课件7、8、9】 (1)微米:微米是长度单位。1微米相当于1米的一百万分之一。

常州纳米材料项目规划方案

常州纳米材料项目规划方案 xxx有限公司

摘要说明— 上世纪80年代末,我国政府开始重视纳米材料和技术的研究,90年代中期之后,从事纳米材料生产开发的公司不断增多,社会资金投入也不断增加,纳米材料应用产业兴起。进入二十一世纪,我国纳米材料产业进入稳定、健康的发展阶段,各种包括纳米材料在内的新材料产业法规、标准也陆续出台,纳米行业从业者的外部环境逐渐变好,竞争更加有序。 该纳米材料项目计划总投资16668.32万元,其中:固定资产投资12328.67万元,占项目总投资的73.96%;流动资金4339.65万元,占项目总投资的26.04%。 达产年营业收入34676.00万元,总成本费用27159.02万元,税金及附加309.23万元,利润总额7516.98万元,利税总额8863.03万元,税后净利润5637.73万元,达产年纳税总额3225.29万元;达产年投资利润率45.10%,投资利税率53.17%,投资回报率33.82%,全部投资回收期4.46年,提供就业职位770个。 纳米材料及其相应的制取、组合技术已成为21世纪世界科技发展中的主流方向,也是世界各国最主要的研究热点之一。当前,我国在纳米领域发表的SCI论文累计已经跃居全球第一,同时相关专利的申请量累计达20.9万件,占全球总量的45%。然而,在美国专利及商标局的专利统计数

据中,即使不计美国自身,我国大陆地区的专利数量也居于韩国、日本、 中国台湾地区之后,说明我国相关产业参与国际化竞争的程度仍然不够深。 报告内容:概述、背景、必要性分析、市场调研预测、建设规划方案、项目选址、土建工程、工艺可行性分析、环境影响分析、项目职业保护、 项目风险评估、节能概况、实施安排方案、项目投资方案、项目盈利能力 分析、项目结论等。 规划设计/投资分析/产业运营

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

纳米材料设计及电荷极化调控

纳米材料设计及电荷极化调控 材料创新是人类文明进步的重要动力,也是新兴产业发展的基础。近年来不断涌现出来的新型纳米材料表现出很多卓越性质,如高比表面积、多尺度的尺寸效应、界面效应、表面效应和量子限域效应等等,因而被广泛应用于能源、环境和半导体工业等重大领域中。 然而,纳米材料结构的复杂性为实验和表征带来了困难,很多复杂过程都难以被实验捕捉,这限制了对构效关系及工作机理的理解,制约着新型纳米材料的理性设计。随着近年来高性能计算的飞速发展和计算理论的不断完善,第一性原理理论计算从原子尺度和电子结构层次为材料解析提供了有力工具。 它能够帮助人们更好地进行理性设计并检验设计的可行性,且具有研发周期短、成本低廉、环境友好等优势。因此,理论计算结合实验表征已经成为新材料设计和研发的新潮流。 调控纳米材料的成分、尺寸和表界面形貌等都能有效调控材料的性质;此外,基于对构效关系的理解,理性设计材料复合也能达到协同增效的目的。这些设计思路,归根结底都是基于对电子的控制,以电子态为载体,通过电子激发、转移形成电荷极化,从而驱动相应的物理和化学过程。 本文基于第一性原理理论计算研究了一系列复杂体系的电子态结构和布居行为,从电荷极化形成与演变的角度阐述了复杂体系中的构效关系和协同机理(第三到五章)。此外,我们还探索性地提出了偶极矩可以作为复杂体系中电荷极化的描述子,用来研究电荷极化对材料表面化学反应的影响(第六章)。 本文共六章,各章简介如下:首章中,基于后面工作所涉及的领域及希望解决的问题,我们主要介绍了两方面的背景知识和研究现状。首先是纳米材料导电性

调控,我们分别以钒的氧化物家族和石墨烯为例,介绍了强关联体系和二维材料导电性调控的研究进展。 在钒的氧化物家族中,几何结构在导电性调控中扮演着重要角色,使得通过精确控制几何结构来调控电子结构成为可能。石墨烯可控带隙一直以来都是其在半导体领域应用的难点,尽管研究取得了很多进展,但在原子尺度下的精确调控还存在很多挑战。 此外,如何在调控带隙的同时保持石墨烯的固有优势如高载流子迁移率、高机械强度等,也是当前面临的一大难题。随后,我们对光催化领域的研究背景、主要过程和机理、材料筛选和复合进行了简要介绍。 传统的半导体材料存在许多不足,通过理性设计半导体-金属或半导体-半导体复合能打破单一材料的局限性,达到协同增效的目的。因此纳米复合材料逐渐受到越来越多的重视,成为当前光催化领域研究的焦点。 第二章中我们简单介绍了第一性原理密度泛函的发展历史,理论框架,常用近似和主流量化计算软件包。密度泛函理论(DFT)从量子力学出发,以体系的电子密度为基本研究量,通过Kohn-Sham方程将相互作用的多粒子体系问题转化为无相互作用的单粒子体系问题,并利用交换关联泛函进行近似来求解体系的基态电荷密度,进而得到包括体系基态能量在内的所有基本性质。 实际计算中,我们根据具体研究体系的特性和研究目的选择合适的交换关联泛函和量化计算软件包进行计算模拟。接着,我们针对材料内部、界面和表面的电荷极化效应及其对纳米材料性能的影响,对一系列复杂体系展开了研究,分别在第三、四和五章中作了详细阐述。 第三章介绍了通过掺杂和缺陷调控材料内电荷极化的两个例子:(1)氧空位

纳米技术在工业设计中的应用

中国地质大学(武汉) 结课论文 题目纳米技术在工业设计中的应用 学生姓名 学号 专业 班级 指导教师 2015年12月

目录 摘要 (3) 第一章工业设计与材料的关系 (4) 第二章纳米技术及纳米材料的发展 (5) 第三章纳米材料在工业设计中的应用 (6) 结束语 (6) 参考文献 (7)

摘要:材料是一切工业设计的载体,工业设计与材料密不可分,优秀设计离不开适当的选材与合理的工艺。 形态、功能和材料是构成产品的三大要素,三者互为影响。新材料、新技术的出现以及创新性地运用材料对于产品发展产生过重要的影响。 而纳米技术和纳米材料的出现必将给工业设计注入新的活力。 关键词:工业设计、纳米技术、纳米材料、应用。

第一章工业设计与材料的关系 产品设计包括使用工艺,材料工艺,审美情趣,等三方面构成因素。 实用功能是首要的,它决定着产品造型的首要形式。 材料和工艺是保证产品造型付诸实现的物质技术条件,它是产品功能和艺术处理的具体体现。 产品造型的艺术处理,决定着形式的美观与否,表达了一定的思想感情和审美情趣。 这三个方面,存在着相互依存,相互作用的辩证统一关系,构成了不可分割的统一整体。不同的材料有不同的加工、成型方法。材料的工艺性是指材料适应各种工艺处理要求的能力。材料的工艺性包括成型工艺、加工工艺和表面处理工艺。 古埃及的法老王座因使用者的身份不同,座椅靠背上满是贴金,光满四射。 里特维尔德设计的红蓝椅有由质木条和层压板构成,十三根木条相互垂直,强调抽象的感受和亮感,以完美和简洁的物质形态反应风格派运动的哲学。 “高技术风格”、“机器美学”的轰动作品是由英国建筑师皮阿诺和罗杰斯于1972年和1976年建成的蓬皮社艺术中心,它是一座具有未来主义风格的建筑,整个建筑有纵横的玻璃管道、硕大的玻璃墙体和错综的钢架构成。 诚如世界是由物质构成的一样,一切的工制品都是有一定的材料组成的。最早的材料是从古代的旧石器说起,当人们以石头撞击火花或钻木取火时,人与材料就有了互为关系,材料一方面成为造物的物质基础和构成物品的基本内容,另一方面也成为人们实现自己心中理想中介物,对象与人形成密切的联系。 工业设计的定义是:就批量生产的产品而言,凭借训练、技术知识、经验及视觉感受而赋予材料、结构、形态、色彩、表面加工及装饰等新的品质和资格,叫做工业设计。 材料工艺与产品造型之间的关系是双向的。一是已知材料工艺求解产品造型特征,二是已知产品造型特征求解材料工艺的各种可能性。在产品造型的三要素中与工艺关系最密切,受工艺影响最大的是形态要素,质感要求次之,色彩要素在一般情况下与产品成型工艺无直接关系。一定程度上可以说人类的发展史就是材料的发展史,人类的设计史就是材料的使用史。大体来说,造型材料的发展经历了石器时代,陶器时代,青铜器时代,铁器时代,高分子材料时代以及材料复合时代,现代设计诞生于铁器时代以后。在现代社会中,已经由钢铁材料为住的局面向高分子材料、复合材料的局面过渡,出现了越来越多的人工合成材料和新材料,形成了一个规模宏大的互相渗透的材料体系。 21世纪新材料产品向着实现智能化、多功能化、环保、复合化、低成本化、长寿寿命及按用户进行订制的方向发展。

部编版四年级语文下册《7、纳米技术就在我们身边》教学设计

7、纳米技术就在我们身边 【教学目标】: 1.会认“杀、菌”等12个生字,1个多音字,会写“亿、质”等15个生字。 2.初步感知文意,了解课文内容。 3.提出不懂的问题和同学交流解决。 4.学习结合课文,通过各种途径本资料的方法。 5.领会纳米技术的神奇所在,培养学科学、爱科学的精神,学习作者 用列数字、举例子的表达方式 【教学重点】: 1.学习结合课文,通过各种途径本资料的方法。 2.初步感知文意,了解课文内容。 3.领会纳米技术的神奇所在,培养学科学、爱科学的精神,学习作者用列数字、举例子的表达方式。 【教学难点】: 1.提出不懂的问题和同学交流解决。 2.领会纳米技术的神奇所在,培养学科学、爱科学的精神,学习作者用列数字、举例子的表达方式。 【课时安排】: 2课时 【教学过程】:

第一课时 一、激趣导入 谈话引入:你知道什么是纳米技术? 当你看到这个标题,你有什么疑问,你最想知道些什么呢? 二、出示学习目标 1.会认“杀、菌”等13个生字,会写“亿、质”等15个生字。 2.学习结合课文通过各种途径本资料的方法。(重点) 3.初步感知文意,了解课文内容。(重点) 三、初读感知 1.听范读,边听边画出文中的生字,注意生字的读音。 2.自读提示:请同学们自由朗读课文,注意读准字音,读通句子,难读的地方多读几遍。 3.出示我会认,指导学生识记生字。 4.出示多音字,指导学生识字多音字。 5.理解词语。 6.检查自读情况:指名读课文,同学互评:字音是否正确,句子是否通顺。 7.再读课文,想一想课文写了什么? 示例:这是一篇科普说明文,介绍了什么是纳米技术和它的特点。 8.出示会写字,组内合作识字,观察书写要点。教师指导重点字的写法: 拥:左窄右宽,“扌”的竖要长,“用”框稍宽,撇要直些,

小学语文四年级下册《新奇的纳米技术》教案设计

(封面) 小学语文四年级下册《新奇的纳米技术》 教案设计 授课学科: 授课年级: 授课教师: 授课时间: XX学校

教学目标: 1.能正确、流利地朗读课文。了解什么是“纳米技术”,以及纳米科技的广泛应用。 2.理解文章结构,能利用规律概括段落大意。 3.能收集相关资料,并根据文章内容提出自己的疑问。 4.会用关联词来介绍一样物品。 5.激发学生爱科学、学科学的热情。 教学时间2课时 导学单: 1、这篇课文我已经读了()遍,自己认为读得(A.正确流利B.基本流利C.不太流利) 组内伙伴评价:(A.正确流利B.基本流利C.不太流利) 2、我已经会认读这些新词: 除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 3、我要提醒大家容易读错的词语有 4、读了课题《新奇的纳米技术》,你知道了什么?有哪些问题要与大家交流? 导学过程 基础部分 (学习程序:课前通过自己独立学习,完成基础部分及要点部分

会做的内容,课内小组交流基础部分,后展示、点评。时间约10分钟) 一、谈话引入,激发兴趣 1.今天我们来学习一篇新课文《新奇的纳米技术》(板书课题)。 2.以前听说过“纳米技术”吗?“新奇”的意思?说说生活中你有没有遇到过新奇的事物。 二、通读课文,了解大意 1.检查课文朗读。 出示课文中的科技术语和句子。先组内相互听读纠正,然后全班交流。 词语:除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料 探测雷达波 句子:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 2.自由交流:读了课文,你知道了什么? 3.自学了课文后你有什么问题想问? 重点部分 (学习程序:先独立学习要点部分,再组内群学要点部分,时间约8分钟。然后根据各组疑问情况,安排小组大展示,点评,教师及时追问、点拨,时间约17分钟。) 三、细读课文,深入理解 (一)学习第一自然段。

纳米材料设计方案

纳米材料设计方案 时鹏 (南开大学化学学院分子科学与工程专业 1014007)基于我个人综述的题目“石墨烯在电池中的应用”,我考虑能否有其他纳米材料也可以起到与石墨烯相似的改善电池功能的作用。个人有两套设计方案,一是通过对石墨烯进行修饰,二是设计一种纳米多孔金属。 一、石墨烯与碳气凝胶形成的复合纳米材料 原理:气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络结构,孔隙中充满气态介质的高分散固体材料。碳气凝胶有着良好独特的导电性能(电导率一般为10-25s/cm),如果可以将石墨烯以特定方式与碳气凝胶进行组合(包裹在外面或者是镶嵌在其中),既利用石墨层片层双面储存Li+,又利用了碳气凝胶孔道储存Li+,双管齐下极大的扩充了电池储能量;另外二者都有着良好的导电性以及导热性,确保了使用中电流的稳定性。 可行性:由于表面张力的原因,单层石墨烯会打卷扭曲,所以应采用多层石墨烯的重叠以保证材料的形态稳定,便于组合。 二、纳米多孔金属(合金) 原理:金属具有良好的导电性,在此基础上,将金属(或者合金)制成拥有均匀开放式多孔结构的物质。制作这种纳米多孔金属的核心步骤就是脱合金技术,简单说,它就是指在一定腐蚀条件下,利用合金不同组分间电化学行为的差别,产生活泼组分的溶解和析出,而相

对稳定的组分得以富集的一个现象。在脱合金过程中,初始合金晶粒表面发生独立的原子尺度相分离,不断释放出的惰性原子沿着固液界面在原有晶格基础上发生定向聚集,从而可以很好的保留初始合金的结晶学特征。通过调控其结构,保证其结构的均匀,可以减少晶界、杂质等因素的影响,其结构的连续性、优异的导电导热性和高比表面积都是其作为新型电极材料的重要保证。 可行性:在技术层面上讲,J.Erlebacher研究组在2003-2005年发表了四篇关于脱合金技术的论文,可以说,这项技术已经比较成熟,应用于纳米多孔金属的制备是没有问题的。

新奇的纳米技术教学设计

《新奇的纳米技术》教学设计 学习目标 1.能准确、流利地朗读课文。 2.理清文章结构,学会概说课文。 3.学会几种说明方法感悟神奇。 4.使用提示的写作方法写关于纳米技术的小练笔, 5.激发学生爱科学、学科学的热情。 教学重点 掌握列数字、下定义、举事例的说明方法;学会概说课文。 ~ 教学难点 学会说明方法,并学会说明。 教学时间 1课时 教学过程 课前铺垫 1.谈话引入,激发兴趣 在数学课上,我们学到的最小的长度计量单位是(毫米)今天我们来学习一个比毫米还小的长度计量单位,下面我们一起来学习课文《新奇的纳米技术》(板书课题)。齐读课题,一起来看一看它究竟有多么新奇。 2.这是一篇科普说明文。(学生做笔记) (一)大声朗读课文,要求读准字音,读通句子。 { 检查课文朗读。 量单位这种大小的物质纳米自清洁技术碳纳米管纳

米管储氢气纳米吸波材料探测雷达波 句子: 纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 师:下定义,是一种用简洁明确的语言对事物的本质特征作概括的说明方法。上面的句子就是使用了这种方法。(学生做笔记)(二)概说课文: 根据课文篇章结构概说。 根据每段意思概说。 根据“因为……所以……”概说。 ( 活动二:我会说明 师:课文在介绍纳米和纳米技术应用时用了说明几种说明方法,很形象地说明了事物的特点,请同学们默读,在文章中找一找。(不动笔墨不读书) 1.课文主要用哪些方法让我们知道纳米很小很小 例:课文使用了_________方法,让我们知道纳米很小很小。 品读句子,感受说明方法。 纳米是非常非常小的长度度量单位,非常非常小。 纳米是非常非常小的长度度量单位,1纳米等于十亿分之一米。 你觉得上面哪句话写得更明白形象些为什么(用了列数字的方法) 文章中还有哪些句子也是生动地向我们介绍了纳米是很小的长度度量单位 2.课文课文使用了_________方法,说明了纳米技术的应用广泛。

纳米材料的基本效应及应用

纳米材料的特异效应及应用 摘要:介绍了纳米材料所独有的小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效以及介电限域效应,这些效应使得它们在磁、光、电、敏感等方面呈现出常规材料不具备的特性。综述了纳米材料在催化、传感、磁性、食品、化妆品、生物医学等方面的应用,叙述了纳米材料在科学技术发展和社会进步中所起到的重要作用,并说明了它还将有更广阔的应用前景。 关键词:纳米材料;基本效应;应用 Nanostructured material’s special effects and its applications Abstract:The particular small size effect,surface effect,quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect with nanometer materials are presented . As a result of these effects,nanometer materials possess some special properties which normal materials do not have as far as magnetics ,optics ,electronics ,and sensitivity,ect . are concerned . The application of nanometer in the catalytics ,sensitivity ,magnetics,food ,cosmetics and biomedicine,and so on are summarized . And t he important role of nanometer material in science and technology development and social progress is described. The application prospect of nanometer materials is also illustrated. Key words:nanometer materials ;basic effect ;application 1984年德国科学家Gleiter首先制成了金属纳米材料,同年在柏林召开了第二届国际纳米粒子和等离子簇会议,使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议,标志着纳米科技的正式诞生;1994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。 纳米材料是指由纳米粒子构成的固体材料,其中纳米颗粒的尺寸最多不超过100nm,在通常情况下,应不超过l0nm。即这种材料是指其基本颗粒在l~100nm 范围内的材料。纳米粒子是处在原子簇和宏观物质交界的过渡区域,是一种典型的介观系统,包括金属、非金属、有机、无机和生物等多种颗粒材料。随着物质

纳米材料的表面效应

纳米材料微观结构至少在一维方向上受纳米尺度(1nm--100nm)调制的各种固体超细材料,它包括零维的原子团蔟(几十个原子的聚集体)和纳米微粒;一维调制的纳米多层膜;二维调制的纳米微粒膜(涂层);以及三维调制的纳米相材料。 纳米固体中的原子排列既不同于长程有序的晶体,也不同于长程无序、长程有序的"气体状"固体结构,是一种介于固体和分子间的亚稳中间态物质。因此,一些研究人员把纳米材料称之为晶态、非晶态之外的"第三态晶体材料"。 正是由于纳米材料这种特殊的结构,使之产生四大效应,即表面效应和界面效应、小尺寸效应、量子效应(含宏观量子隧道效应),从而具有传统材料所不具备的物理、化学性能,表现出独特的光、电、磁和化学特性。 (1)表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸

附气体等等。 (2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。 (3)量子尺寸效应 当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。 (4)宏观量子隧道效应

纳米材料的四大效应(科普知识)

The four effects of Nano material (scientific knowledge) 纳米材料的四大效应(科普知识) First, surface effect T he direct ratio exists between the surface area and diameter’s square of spherical particles, also exsits between its volume and cubic, so its specific surface area (surface area/volume) and is in inversely proportion to the diameter. With the diameter of particle becoming smaller, surface area will increases gradually, indicates the percentage of the surface atomic accounts for will dramatically increases. The surface effect of particle what the diameter is bigger than 0.1 microns could be ignored, when the size is less than 0.1 microns, the percentage of its surface atom will dramatically grows, even the sum of surface area of 1 g ultramicroparticles is 100 square meters, the surface effect will not be ignored at this time. The surface of ultramicroparticles is very different with the surface of the large object, if we take the television camera to the metal ultramicroparticles (diameter of 10 ^ 2 * 3 microns) by using the high-rate electron microscope, and you will found that the particles has no fixed form through the real-time observation , with the time’s changing,it will automatically forms into various shapes (such as cubic octahedron, ten surface body, with 20 ulrich, etc.),the body which is different from the general solid and liquid, is a quasi solid. under the radiation of electron beam of the electron microscope,the surface atomic looks like entering into the condition of "boiling", the unstability of particle structure could be seen when the size is bigger than 10 nanometer, then microparticle has the stable structure state.the surface of ultramicroparticles has high activity, the metal particles will be quickly oxidated and burnt in the air. We can use the surface coating or deliberately control the oxidation rate to prevent spontaneous combustion, make its slowly oxidated to generated a very thin and dens oxide layer to ensure the stabilizationof surface., because of the surface activity,the metal ultramicroparticles will become a new efficient catalyst ,gas storage materials and low melting point material

相关文档
相关文档 最新文档