文档视界 最新最全的文档下载
当前位置:文档视界 › 泊松回归模型

泊松回归模型

泊松回归模型
泊松回归模型

泊松回归模型

摘要:泊松分布在各个研究领域已经得到了非常迅速的发展和应用,对各学科和领域起到了重要作用。本文在介绍泊松分布的基础上,引入泊松回归模型的概念。对泊松回归模型进行了简单的介绍和实例的分析,说明了泊松回归模型作为统计学方法的重要作用。

关键词:泊松分布回归模型统计学

泊松回归模型是基于事件的计数变量建立的回归模型。该回归模型涉及的事件假设是独立的变量,而计数变量即事件变量发生的次数,它适用于分析观察效应近似服从泊松分布及流行病学中队列研究的资料。

1 为了说明泊松回归模型的过程,我们首先从泊松分布加以描述

泊松分布是概率论中常用的一种离散型概率分布。若随机变量只取非负整数值,取值的概率为:

记作P (k;λ),其中k可以等于0,1,2,则随机变量X的分布称为泊松分布,记作P(λ)。这个分布是泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

线性回归模型

线性回归模型 1.回归分析 回归分析研究的主要对象是客观事物变量之间的统计关系,它是建立在对客观事物进行大量试验和观察的基础上,用来寻找隐藏在那些看上去是不确定的现象中的统计规律性的方法。回归分析方法是通过建立模型研究变量间相互关系的密切程度、结构状态及进行模型预测的一种有效工具。 2.回归模型的一般形式 如果变量x_1,x_2,…,x_p与随机变量y之间存在着相关关系,通常就意味着每当x_1,x_2,…,x_p取定值后,y便有相应的概率分布与之对应。随机变量y与相关变量x_1,x_2,…,x_p之间的概率模型为 y = f(x_1, x_2,…,x_p) + ε(1) f(x_1, x_2,…,x_p)为变量x_1,x_2,…,x_p的确定性关系,ε为随机误差项。由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。 当概率模型(1)式中回归函数为线性函数时,即有 y = beta_0 + beta_1*x_1 + beta_2*x_2 + …+ beta_p*x_p +ε (2) 其中,beta_0,…,beta_p为未知参数,常称它们为回归系数。当变量x个数为1时,为简单线性回归模型,当变量x个数大于1时,为多元线性回归模型。 3.回归建模的过程 在实际问题的回归分析中,模型的建立和分析有几个重要的阶段,以经济模型的建立为例:

(1)根据研究的目的设置指标变量 回归分析模型主要是揭示事物间相关变量的数量关系。首先要根据所研究问题的目的设置因变量y,然后再选取与y有关的一些变量作为自变量。通常情况下,我们希望因变量与自变量之间具有因果关系。尤其是在研究某种经济活动或经济现象时,必须根据具体的经济现象的研究目的,利用经济学理论,从定性角度来确定某种经济问题中各因素之间的因果关系。(2)收集、整理统计数据 回归模型的建立是基于回归变量的样本统计数据。当确定好回归模型的变量之后,就要对这些变量收集、整理统计数据。数据的收集是建立经济问题回归模型的重要一环,是一项基础性工作,样本数据的质量如何,对回归模型的水平有至关重要的影响。 (3)确定理论回归模型的数学形式 当收集到所设置的变量的数据之后,就要确定适当的数学形式来描述这些变量之间的关系。绘制变量y_i与x_i(i = 1,2,…,n)的样本散点图是选择数学模型形式的重要手段。一般我们把(x_i,y_i)所对应的点在坐标系上画出来,观察散点图的分布状况。如果n个样本点大致分布在一条直线的周围,可考虑用线性回归模型去拟合这条直线。 (4)模型参数的估计 回归理论模型确定之后,利用收集、整理的样本数据对模型的未知参数给出估计是回归分析的重要内容。未知参数的估计方法最常用的是普通最小二乘法。普通最小二乘法通过最小化模型的残差平方和而得到参数的估计值。即 Min RSS = ∑(y_i – hat(y_i))^2 = 其中,hat(y_i)为因变量估计值,hat(beta_i)为参数估计值。 (5)模型的检验与修改 当模型的未知参数估计出来后,就初步建立了一个回归模型。建立回归模型的目的是应用它来研究经济问题,但如果直接用这个模型去做预测、控制和分析,是不够慎重的。因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。统计检验通常是对回归方程的显著性检验,以及回归系数的显著性检验,还有拟合优度的检验,随机误差项的序列相关检验,异方差性检验,解释变量的多重共线性检验等。 如果一个回归模型没有通过某种统计检验,或者通过了统计检验而没有合理的经济意义,就需要对回归模型进行修改。 (6)回归模型的运用 当一个经济问题的回归模型通过了各种统计检验,且具有合理的经济意义时,就可以运用这个模型来进一步研究经济问题。例如,经济变量的因素分析。应用回归模型对经济变量之间的关系作出了度量,从模型的回归系数可发现经济变量的结构性关系,给出相关评价的一些量化依据。 在回归模型的运用中,应将定性分析和定量分析有机结合。这是因为数理统计方法只是从事物的数量表面去研究问题,不涉及事物的规定性。单纯的表面上的数量关系是否反映事物的本质这本质究竟如何必须依靠专门学科的研究才能下定论。 Lasso 在多元线性回归中,当变量x_1,x_2,…,x_3之间有较强的线性相关性,即解释变量间出现严重的多重共线性。这种情况下,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘的效果变得很不理想。为了解决这一问题,可以采用子集选择、压缩估计或降维法,Lasso即为压缩估计的一种。Lasso可以将一些增加了模型复杂性但与模型无关的

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型, 但也有一些非线性回归模型却无法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 εβα+=L AK y 其中 L 和 K 分别是劳力投入和资金投入, y 是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型, 只要其中有一个方程是不能通过代换转化为线性, 那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 εβββ+=),,,;,,,(2121p k x x x f y ΛΛ 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)εββ++=x e y 10 (2)εββββ+++++=p p x x x y Λ2210 (3)ε+=bx ae y (4)y=alnx+b 对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y Λ22110 对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。加性误差项模型认为t y 是等方差的。从统计性质看两者的差异,前者淡化了t y 值大的项(近期数据)的作用,强化了t y 值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用加权最小二乘。

各种线性回归模型原理

一元线性回归 一元线性回归模型的一般形式:εββ++=x y 10 一元线性回归方程为:x y E 10)(ββ+= 当对Y 与X 进行n 次独立观测后,可取得n 对观测值 ,,,2,1),,(n i y x i i =则有i i i x y εββ++=10 回归分析的主要任务是通过n 组样本观测值,,,2,1),,(n i y x i i =对 10,ββ进行估计。一般用∧ ∧ 10,ββ分别表示10,ββ的估计值。 称x y ∧ ∧∧+=10ββ为y 关于x 的一元线性回归方程(简称为回归直线方程),∧ 0β为截距,∧ 1β为经验回归直线的斜率。 引进矩阵的形式: 设 ????????????=n y y y y 21,????????????=n x x x X 11121 ,????? ? ??????=n εεεε 21,??????=10βββ 则一元线性回归模型可表示为:εβ+=X y 其中n I 为n 阶单位阵。 为了得到∧ ∧ 10,ββ更好的性质,我们对ε给出进一步的假设(强假设) 设n εεε,,,21 相互独立,且),,2,1(),,0(~2n i N i =σε,由此可得: n y y y ,,,21 相互独立,且),,2,1(),,(~210n i x N y i =+σββ 程序代码: x=[]; y=[]; plot(x,y,’b*’) 多元线性回归 实际问题中的随机变量Y 通常与多个普通变量)1(,,21>p x x x p 有

关。 对于自变量p x x x ,,21的一组确定值,Y 具有一定的分布,若Y 的数学期望值存在,则它是Y 关于p x x x ,,21的函数。 12(,,,)p x x x μ是p x x x ,,21的线性函数。 212,, ,p b b b σ是与p x x x ,,21无关的未知参数。 逐步回归分析 逐步回归分析的数学模型是指仅包含对因变量Y 有显著影响自变量的多元线性回归方程。为了利于变换求算和上机计算,将对其变量进行重新编号并对原始数据进行标准化处理。 一、变量重新编号 1、新编号数学模型 令k x y αα=,自变量个数为1k -,则其数学模型为: 式中,1,2,3,,n α= (其中n 为样本个数) j x 的偏回归平方和为: k x :为k x α的算术平均值 j b :j x 的偏回归系数 jj c :为逆矩阵1-L 对角线对应元素 2 回归数学模型 新编号的回归数学模型为: 二、标准化数学模型 标准化回归数学模型是指将原始数据进行标准化处理后而建立的回归数学模型,即实质上是每个原始数据减去平均值后再除以离差

第二章(简单线性回归模型)2-3答案

拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) 二、单项选择题 1.已知某一直线回归方程的可决系数为,则解释变量与被解释变量间的线性相关系数为( B )。 A .± B .± C .± D .± 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。 A .2i i 2 i i ?Y Y Y Y ∑∑(-)(-) B .2i i 2 i i ?Y Y 1Y Y ∑∑ (-)-(-)

线性回归分析的基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下: ②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量

总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()2227 77100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。

如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计 、判断题 1. 使用普通最小二乘法估计模型时, 所选择的回归线使得所有观察值的残差和达到最小。 (F ) 2. 随机扰动项u i 和残差项e i 是一回事。(F ) 3. 在任何情况下 OLS 估计量都是待估参数的最优线性无偏估计。 (F ) 4. 满足基本假设条件下,随机误差项 i 服从正态分布,但被解释变量 Y 不一定服从正态分 布。 5. 如果观测值X i 近似相等,也不会影响回归系数的估计量。 二、单项选择题 D )。 丫? 一 Y 5.以Y 表示实际观测值,丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫?一 ?) 满足(A )。 A. (Y i — 丫i ) 一 0 B . (Y i — Y )2 - 0 C. (Y i — 丫)2-0 D . (丫— Y ) - 0 6. 按经典假设,线性回归模型中的解释变量应是非随机变量,且( 1. 设样本回归模型为 Y i =^0 ? X i +e i , 则普通最小二乘法确定的 ?的公式中, 错误的是 A. ?= 1— X i X Y i -Y X i X c. ?一 X i Y i -nXY X i 2-nX 2 ?_ 1 一 n X i Y i - X i Y i i n X i 2- X i 2 n X i Y i - X i Y i i 2 ?以Y 表示实际观测值, Y?表示回归估计值, 则普通最小二乘法估计参数的准则是使 (D )。 A. (Y i — Y i )=o c. (Y — £)=最小 3. Y 表示实际观测值, 丫?表示OLS 估计回归值,则下列哪项成立( D A. 4. 用OLS 估计经典线性模型 Y i 一 0 i X i + u i ,则样本回归直线通过点( D )。 A . (X, 丫) .(X , Y?) 2 x ?一

线性回归分析的数学模型

线性回归分析的数学模型 摘要 在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度. 本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测. 但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用. 关键词:线性回归;最小二乘法;数学模型 目录 第一章前言 (1)

第二章线性模型 (2) 第一节一元线性模型 (2) 第二节多元线性模型 (4) 第三章参数估计 (5) 第一节一元线性回归方程中的未知参数的估计 (5) 第二节多元线性回归模型的参数估计 (8) 第四章显著性检验 (13) 第一节一元线性回归方程的显著性检验 (13) 第二节多元线性回归方程的显著性检验 (20) 第五章利用回归方程进行点预测和区间预测 (21) 第六章总结 (26) 致谢 (27) 参考文献………………………………………………………………………… 第一章前言 回归分析是对客观事物数量依存关系的分析.是数理统计中的一个常用的方法.是处理多个变量之间相互关系的一种数学方法. 在现实世界中,我们常与各种变量打交道,在解决实际问题过程中,我们常常会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.常见的关系有两种:一类为“确定的关系”即变量间有确定性关系,其关系可用函数表达式表示.例如:路程s,时间t,与速度v之间有关系式:s=vt 在圆体给与半径r之间有关系式v= 另外还有一些变量.他们之间也有一定的关系,然而这种关系并不完全确定,不能用函数的形式来表达,在这种

经典线性回归模型自变量选择

§ 自变量选择 信息时代的一个重要特征是数据便宜信息值钱,我们经常要从海量数据中挖掘有用信息。比如影响产品质量的因素,从生产过程、员工培训过程到原材料供应过程,可能多达几百个,甚至上千个。对这些质量指标和影响因素制造商在日常生产管理过程中都有记录。现在的问题是如何从这众多的影响因素中找出影响产品质量的重要因素。有时只需判断一个自变量对因变量是否有重要影响,而不需要了解它们之间的精确定量关系。比如判断原材料供应对产品质量是否有重要影响比了解它们之间的精确定量关系更重要。线性回归模型的自变量选择就是用于有众多自变量时识别重要自变量的方法。用于线性回归模型自变量选择的方法可分为两类:全局择优法和逐步回归法。 一、全局择优法 全局择优法就是用衡量回归模型与数据拟合程度的准则,从全部可能的回归模型中选择对数据拟合最优的回归模型。对于一个包含P 个自变量的回归问题,全部 可能的回归模型有01 2P P P P P C C C +++=个,全局择优法要求出每个回归模型的准则 值,然后找出最优的回归模型。 回归模型对数据的拟合程度可用残差平方和来表示。残差平方和越小,模型拟合的越好。但残差平方和的大小与因变量的计量单位有关,因此我们定义了决定系数。决定系数越大,模型拟合的越好。决定系数不仅与因变量的计量单位无关,而且能说明在因变量的变异中,归功于自变量变化的部分所占比例。但不论是用残差平方和还是用决定系数来度量线性拟合模型拟合程度,都会得出模型中包含越多自变量拟合就越好的结论。但在样本容量给定的情况下,自变量越多,模型就越复杂,

模型参数估计就越不精确,导致模型应用的效果就越差。因此我们需要能综合用残差平方和表示的模型拟合精度和用模型中包含的自变量个数表示的模型复杂程度的准则,以便选择出最优的回归模型。回归分析中用于选择自变量的准则很多。由于残差平方和RSS p 和决定系数R 2只考虑模型拟合精度,因而只能作为自变量个数相 同时自变量选择的准则。残差均方s 2和修正决定系数2 adj R 是一个综合模型拟合精度 和模型复杂程度的准则。综合性准则除了残差均方和修正决定系数外,还有如下一些准则: ·Mallows C p 准则 )1(22 ++-= p n s RSS C p p 其中,s 2为包含全部自变量的拟合模型的残差均方,RSS p 为当前拟合模型的残差平方和,p 为当前拟合模型的自变量个数。 ·信息准则 信息准则根据公式 npar *k +logLik *2- 计算,其中logLik= -n{log(RSS/n)+log(2π)+1}/2为当前拟合模型的对数似然函数,npar 为当前拟合模型的参数个数,当k=2时称为AIC 准则,当k=log(n)时称为BIC 准则。在小样本情况下,AIC 准则的表现不太好,为此人们提出的修正AIC 准则AICc ,其计算公式为 1 -npar -n n npar *2 +logLik *-2AICc = ()()1/1*2--++=napr n npar npar AIC

经典经济计量模型线性回归模型

计量经济学(Ⅰ) 南开大学经济学院教授、数量经济学专业博士生导师张晓峒 一元线性回归模型 1.一元线性回归模型 有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t 上式表示变量y t 和x t之间的真实关系。其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。上模型可以分为两部分。(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。 图2.1 真实的回归直线 这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。 以收入与支出的关系为例。假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。所以在经济问题上“控制其他因素不变”是不可能的。 回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。 回归模型存在两个特点。(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。 通常线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。 在对回归函数进行估计之前应该对随机误差项u t做出如下假定。 (1) u t 是一个随机变量,u t 的取值服从概率分布。 (2) E(u t) = 0。 (3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = σ2。称u i 具有同方差性。

相关文档