文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米材料综述

碳纳米材料综述

碳纳米材料综述
碳纳米材料综述

碳纳米材料综述

课程:纳米材料

日期:2015年12月

碳纳米材料综述

摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。

我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。

关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯

1.前言

从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。

碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。

2.常见的碳纳米材料

长期以来,人们只知道碳的同素异形体有三种:金刚石、石墨和无定形碳。自从1985年发现了零维碳纳米材料——富勒烯C60,1991年、1992年又相继发现了一维碳纳米材料碳纳米管和另外一种零维碳纳米材料洋葱碳。自此,碳有了第四种同素异形体,同时也开启了低维碳纳米材料研究的序幕。1999年,韩国科学家制备出了具有纳米级孔道结构的有序介孔碳纳米结构材料。2004年,英国曼彻斯特大学的科学家得到了单层、二维的碳原子晶体——石墨烯,又引起了碳材料研究的另一次热潮。这些新型碳材料的陆续发现在给科学界带来了一个又一个的惊喜的同时,其奇特的结构、良好的物理和化学稳定性、特殊的电子性质、表面性质、吸附特性、限域效应等也引起了科研工作者的广泛关注,并取得了一系列令人振奋的研究成果[3]

2.1零维碳纳米材料

碳纳米材料按其空间维度受纳米尺度的约束程度可以分为三类:零维,一维和二维碳纳米材料。零维碳纳米材料指的是三个维度均在纳米范围的碳材料,富勒烯、洋葱碳、碳包覆纳米金属颗粒以及纳米金刚石等是其中的典型代表。

2.1.1富勒烯(fullerene)

富勒烯C60是1985年英国波谱学家Kroto以及美国的Curl和Smally在研究石墨气化产物时发现的稳定的碳原子簇分子。结构研究表明,C60是一个由12个五元环和20个六元环组成的外形酷似足球的32面体,其直径大约为0.7nm。富勒烯的制备方法主要有:石墨激光气化法、石墨电弧放电法、太阳能加热石墨法、石墨高频电炉加热蒸发法、苯火焰燃烧法、有机合成法等,目前主要还是通过石墨电弧法来获得富勒烯[4]。

C60一经发现,化学家们就开始探索它们应用于催化剂的可能性。目前,富勒烯及其衍生物在催化材料领域的研究主要包括以下三方面:(1)富勒烯直接作为催化剂;(2)富勒烯及其衍生物作为均相催化剂使用;(3)富勒烯及其衍生物在多相催化剂中的应用。

由于富勒烯具有缺电子烯烃的性质,具有一定的亲电性,可以稳定自由基,使之吸附在富勒烯的表面,因此能够促进强化学键的断裂与生成。Hirschon等和Muradov研究了富勒烯在甲烷裂解制高碳烃和氢的反应中的活性和选择性。他们发现与活性炭和炭黑相比,以甲苯抽提含有12 %C60的烟灰具有更高的甲烷转化率和低碳烯烃的选择性,反应温度低于其他碳材料。

2.1.2 洋葱碳和碳包覆金属纳米颗粒

1992年Ugarte等用高强度电子束对碳棒长时间照射,发现了多层相套的巴基球,结构像洋葱,也被称为洋葱碳(onion-like carbon)。截至目前,制备洋葱碳的方法只有电子束辐照法、直流电弧法、催化热解法以及等离子体法等少数几种。

碳包覆纳米金属颗粒(carbon-encapsulated metalnanoparticles ,CEMNPs)是一种新型的零维纳米碳-金属复合材料。其结构特征是:有序排列的石墨片层紧密环绕中心金属纳米颗粒,形成类洋葱结构。由于碳壳的限域和保护作用,可以将金属粒子禁锢在很小的空间内,并使包覆其中的金属纳米粒子免受外界环境的影响而稳定存在。这种新型的零维碳-金属纳米材料具有奇特的光电磁性质,在医疗、磁记录材料、电磁屏蔽材料、锂电池电极材料和催化材料等领域具有十分广泛的应用前景。其制备方法主要有电弧放电法、化学气相沉积法、热解法和液相浸渍法等。Hu 等报道了一种磁可分的Pt催化剂的制备方法。通过非破坏性的自由基加成法将碳包覆镍颗粒表面修饰上大量的羧基,经过Pt盐的浸渍-还原后得到高

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.docsj.com/doc/678347262.html,;cxpan@https://www.docsj.com/doc/678347262.html, 个人网页:https://www.docsj.com/doc/678347262.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

碳纳米材料简介

碳纳米材料简介 第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切 生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%碳元素是元素周期表中IV A族中最轻的元素。它存在三种同位素:12C、13C、14c。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯( fullerenes ),一维的碳纳米管(carb on nano tubes ),二维的石墨烯(graphe ne),三维的金冈寸石(diam ond) 和石墨(graphite )等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子一一C6。。这一发现使得他们赢得了1996年的诺贝尔化学奖。G。由60个原子组成,包含20个六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备出来。G。的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多

优良的物理和化学性质(表1-1 ) 表 60的一些基本物理和化学性质 碳纳米管(carbon nano tubes )是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nano tubes ,MWNTs其直径从几百皮米到几十纳米, 而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引 起了科学界的广泛兴趣。1991年日本的Iijima 在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993 年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图 1-1 )。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管 被称为锯齿形(zigzag )单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形 (armchair )单壁碳纳米管;其他的均被称为手性(chiral )碳纳米管。单壁碳纳米管 的直径可以通过两个指数算出来。

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

纳米材料综述 论文

纳米材料综述 1 引言 纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。 1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。 2 纳米材料特性 一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 2.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。 2.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质: 1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

纳米材料研究综述

文章编号:1004-3888(2003)05-0397-04 纳米材料研究综述 Ξ 张万忠,李万雄 (湖北农学院环境工程系,湖北荆州434025) 摘 要:综述了纳米材料的研究概况,介绍了纳米材料的研究现状、特点、结构、特性、制备 方法及其应用状况。 关键词:纳米材料;结构与特性;制备与应用中图分类号:O157 文献标志码:A 纳米材料是指微观结构至少在一维方向上受 纳米尺度调制的各种固态材料[1],其晶粒或颗粒尺寸在1~100nm 数量级,主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m 3/10nm 晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子 结构互不相关,使得纳米材料成为介于晶态与非 晶态之间的一种新的结构状态[2]。此外,由于纳米晶粒中的原子排列的非无限长程有序性,使得通常大晶体材料中表现出的连续能带分裂为接近分子轨道的能级。高浓度界面及原子能级的特殊结构,使其具有不同于常规材料和单个分子的性质如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等,导致了纳米材料的力学性能、磁性、介电性、超导性光学乃至力学性能发生改变,使之在电子学、光学、化工陶瓷、生物、医药等诸多方面具有重要价值,得到了广泛应用[3,4]。 1 纳米材料研究的现状与特点 1.1 纳米材料研究的现状 上世纪70年代纳米颗粒材料问世,80年代 中期在实验室合成了纳米块体材料,80年代中期以后,成为材料科学和凝聚态物理研究的前沿热点。可大致分为3个阶段;第一阶段(1990年以前),主要是在实验室探索用各种手段制备各种材 料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能;第二阶段(1994年前),人们关注的热点是如何利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合纳米薄膜;第三阶段(从1994年到现在),纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。 1.2 纳米材料研究的特点 (1)纳米材料研究的内涵逐渐扩大 第一阶 段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象发展到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶)。 (2)纳米材料的概念不断拓宽 1994年以 前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间基体,因此,纳米结构材料内涵变得丰富多彩。 (3)基础研究和应用研究并重 目前,基础研究和应用研究出现并行发展的新局面,纳米材料的应用成为人们关注的热点,纳米材料进入实用阶段,纳米材料及相应产品开始陆续进入市场。 Ξ 收稿日期:2003206206 第一作者简介:张万忠(1965-),男,河南罗山县人,理学硕士,湖北农学院环境工程系副教授. 第23卷 第5期Vol.23No.5 湖 北 农 学 院 学 报 Journal of Hubei Agricultural College 2003年10月Oct.2003

纳米材料研究及检测.

纳米材料研究及检测 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地 概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征 前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义 和作用。 分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下

几种方法。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新

碳纳米管材料的研究现状及发展展望[英文]

Research status and development prospect of carbon nanotubes Abstract: Carbon nanotubes due to their unique structure and excellent physical and chemical properties, and has wide application prospect and huge commercial value. This paper reviewed the methods for preparing carbon nanotubes, structural properties, application and development trend of carbon nanotubes. Keywords: carbon nanotubes; preparation; antistatic; stealth; radar absorbing coating Nanometer material because of its size in the transition region junction of atomic clusters and macroscopic objects, with the quantum size effect, small size effect, surface effect and the macroscopic quantum tunnel effect and other characteristics, exhibit many unique physical and chemical properties. Nanometer material nineteen eighties early after the formation of the concept, the world have paid great attention. It has unique properties, physical, chemical, material research, biology, medicine and other fields with meters of new opportunities. 1, carbon nanotube preparation, structure and properties 1.1, the preparation of carbon nanotubes

相关文档