文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的基本效应

纳米材料的基本效应

纳米材料的基本效应

纳米材料的四个基本效应

转载▼

纳米材料由纳米离子组成,纳米离子一般是指尺寸在1-100纳米之间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统也非典型的宏观系统,是一种典型人界观系统,它具有如下四方面效应,并由此派生出传统固体不具有的许多特殊性质。

1、表面效应

粒子直径减少到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。

2、量子尺寸效应

指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象。这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。

3、体积效应

指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期的边界条件将破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。如光吸收显著增加并产生吸收峰的等粒子共振频移,由磁有序态向磁无序态,超导相向正常相转变等。

4、宏观量子隧道效应

宏观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,他们可以穿越宏观系统的势垒而产生变化,故称为宏观的量子隧道效应MQT(Macroscopic Quantum Tunneling)。这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间。

以上四种效应是纳米粒子与纳米固体的基本特性,它使纳米粒子和固体呈现许多奇异的物理性质、化学性质,出现一些反常现象,如金属为导体,但纳米金属微粒在低温由于量子尺寸效应会呈现电绝缘性;化学惰性的金属铂制成纳米微粒(箔黑)后,却成为活性极好的催化剂等。

纳米材料的表面界面问题

纳米材料的表面、界面问题 目录 摘要 (2) 1 纳米粒子和纳米固体的表面、界面问题 (3) 纳米微粒的表面效应 (3) 纳米固体的界面效应 (3) 纳米材料尺度效应导致的热学性能问题 (4) 纳米材料尺度效应导致的力学性能问题 (4) 纳米材料尺度效应导致的相变问题 (4) 2. 金属纳米材料的表面、界面问题 (5) 高性能铜(银)合金中的高强高导机理问题 (5) 金属复合材料的强化模型和物理机制问题 (5) 原子尺度上的Cu/X界面研究 (6) 3 纳米材料表面、界面效应的研究成果综述 (9) 参考文献 (11)

摘要 纳米材料包含纳米微粒和纳米固体两部分,纳米微粒的粒子直径与电子的德布罗意波长相当,并且具有巨大的比表面;由纳米微粒构成的纳米固体又存在庞大的界面成分。强大的表面和界面效应使纳米材料体现出许多异常的特性和新的规律,这些特性和规律使其展现出广阔的应用前景。其中,在宏观尺度上制造出具有纳米结构和纳米效应的高性能金属材料,并揭示这些材料的组织演化特征以实现功能调控,是金属材料学科面临的重大科学问题和需要解决的核心关键技术。本文将对纳米材料的表面、界面效应进行介绍并重点阐述金属纳米材料界面、尺度与材料塑变、强化关系的研究进展。 关键词:纳米材料;表面效应;复合材料 、

1 纳米粒子和纳米固体的表面、界面问题 纳米粒子是指颗粒尺度在范围的超细粒子,它的尺度小于通常的微粉,接近于原子簇。是肉眼和一般显微镜看不见的微小粒子[1]。只能用高倍的电子显微镜进行观察。最早日本名古屋大学上田良二教授给纳米微粒下了一个定义:用电子显微镜能看到的微粒被称为纳米微粒[2]。 纳米固体是由纳米微粒压制活特殊加工而成的新型固体材料,它可以是单一材料,也可以是复合材料。纳米固体最早是由联邦德国萨尔兰大学格莱特等人在80年代初首先制成的。他们用气相冷凝发制得具有清洁表面的纳米级超级微粒子,在超高真空下加压形成固体材料。 纳米微粒的表面效应 随着微粒粒径的减小,其比表面积大大增加,位于表面的原子数目将占相当大的比例。例如粒径为5nm时,表面原子的比例达到50%;粒径为2nm时,表面原子的比例数猛增到80%;粒径为1nm时,表面原子比例数达到99%,几乎所有原子都处于表面状态。庞大的表面使纳米微粒的表面自由能,剩余价和剩余键力大大增加。键态严重失配、出现了许多活性中心,表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价,导致了纳米微粒的化学性质与化学平衡体系有很大差别,我们把这些差别及其作用叫做纳米微粒的表面效应[3]。 从电镜研究中也可以看出,由于强烈的表面效应使得纳米微粒的微观结构处于不断地变化之中。 纳米固体的界面效应 由纳米微粒制成的纳米固体,不同于长程有序的晶态固体,也不同于长程无序短程有序的非晶态固体,而是处于一种无序状态更高的状态。格莱特认为,这类固体的晶界有“类气体”的结构,具有很高的活性和可移动性。从结构组成上看它是由两种组元构成,一是具有不同取向的晶粒构成的颗粒组元,二是完全无序结构各不相同的晶界构成的界面组元。由于颗粒尺寸小,界面组元占据了可以与颗粒组元相比拟的体积百分数。例如当颗粒粒径为5-50nm时构成的纳米固体,

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

纳米材料表面效应

纳米材料的表面效应 材料0701 李愿 学号:1002070101 参考文献: 1、卢柯、卢磊金属纳米材料力学性能的研究进展 金属学报 2000年8月第36卷第8期:785—789 摘要 金属纳米按体材料具有独特的力学性能如高强度、超高延展性等。近年来得到广泛深入的研究。在对其新进展进行简要评述的基础上,讨论了它的强度、塑性、弹性模量、应变强化、超塑性、蠕变及变形机理等相关问题。 2、吴锦雷纳米材料的电学、光学和光电性能及应用前景 真空电子学术 2002年第4期:23—27 摘要: 简要介绍了纳米材料的电学性能以及单电子器件的基本原理和应用;纳米材料的光学性能和光电性能,高的光吸收系数和光致荧光现象可使其应用于敏感元件,由于其光电特性具有超快响应速度,可望在超快光电子器件中得到应用。 3、齐卫宏、汪明朴纳米金属微粒表征量的基本关系 材料导报 2002年9月第16卷第9期:76—77 摘要: 在假定纳米微粒近似成球形的前提下,推导出了粒径、微粒原子数、表面原子百分数及比表面积之间的相互关系式,这些关系式对实验将会有一些指导作用。 4、梁海弋、倪向贵、王秀喜表面效应对纳米铜杆拉伸性能影响的原子模拟 金属学报 2001年8月第37卷第8期 833—836 摘要: 采用EAM势对纳米铜杆的拉伸力学性能进行零温分子动力学模拟。研究表面效应对原子能量、截面应力分布的影响模拟结果表明,表面原子弛豫降低了纳米杆初始阶段的拉伸弹性模量。表面效应明显影响截面应力的发展与分布。 5、黄丹、陶伟明、郭乙木分子动力学模拟纳米镍单晶的表面效应 固体力学学报 2005年6月第26卷第2期:241—244 摘要: 对单晶镍纳米丝、纳米薄膜零温准静态拉伸破坏过程进行了分子动力学模拟。模拟表明表面效应对单晶纳米材料的原子运动及整体力学行为有显著影响。自由表面增加纳米材料的塑

纳米材料的基本效应及应用

纳米材料的特异效应及应用 摘要:介绍了纳米材料所独有的小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效以及介电限域效应,这些效应使得它们在磁、光、电、敏感等方面呈现出常规材料不具备的特性。综述了纳米材料在催化、传感、磁性、食品、化妆品、生物医学等方面的应用,叙述了纳米材料在科学技术发展和社会进步中所起到的重要作用,并说明了它还将有更广阔的应用前景。 关键词:纳米材料;基本效应;应用 Nanostructured material’s special effects and its applications Abstract:The particular small size effect,surface effect,quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect with nanometer materials are presented . As a result of these effects,nanometer materials possess some special properties which normal materials do not have as far as magnetics ,optics ,electronics ,and sensitivity,ect . are concerned . The application of nanometer in the catalytics ,sensitivity ,magnetics,food ,cosmetics and biomedicine,and so on are summarized . And t he important role of nanometer material in science and technology development and social progress is described. The application prospect of nanometer materials is also illustrated. Key words:nanometer materials ;basic effect ;application 1984年德国科学家Gleiter首先制成了金属纳米材料,同年在柏林召开了第二届国际纳米粒子和等离子簇会议,使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议,标志着纳米科技的正式诞生;1994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。 纳米材料是指由纳米粒子构成的固体材料,其中纳米颗粒的尺寸最多不超过100nm,在通常情况下,应不超过l0nm。即这种材料是指其基本颗粒在l~100nm 范围内的材料。纳米粒子是处在原子簇和宏观物质交界的过渡区域,是一种典型的介观系统,包括金属、非金属、有机、无机和生物等多种颗粒材料。随着物质

纳米材料的表面效应

纳米材料微观结构至少在一维方向上受纳米尺度(1nm--100nm)调制的各种固体超细材料,它包括零维的原子团蔟(几十个原子的聚集体)和纳米微粒;一维调制的纳米多层膜;二维调制的纳米微粒膜(涂层);以及三维调制的纳米相材料。 纳米固体中的原子排列既不同于长程有序的晶体,也不同于长程无序、长程有序的"气体状"固体结构,是一种介于固体和分子间的亚稳中间态物质。因此,一些研究人员把纳米材料称之为晶态、非晶态之外的"第三态晶体材料"。 正是由于纳米材料这种特殊的结构,使之产生四大效应,即表面效应和界面效应、小尺寸效应、量子效应(含宏观量子隧道效应),从而具有传统材料所不具备的物理、化学性能,表现出独特的光、电、磁和化学特性。 (1)表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸

附气体等等。 (2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。 (3)量子尺寸效应 当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。 (4)宏观量子隧道效应

纳米材料的四大效应(科普知识)

The four effects of Nano material (scientific knowledge) 纳米材料的四大效应(科普知识) First, surface effect T he direct ratio exists between the surface area and diameter’s square of spherical particles, also exsits between its volume and cubic, so its specific surface area (surface area/volume) and is in inversely proportion to the diameter. With the diameter of particle becoming smaller, surface area will increases gradually, indicates the percentage of the surface atomic accounts for will dramatically increases. The surface effect of particle what the diameter is bigger than 0.1 microns could be ignored, when the size is less than 0.1 microns, the percentage of its surface atom will dramatically grows, even the sum of surface area of 1 g ultramicroparticles is 100 square meters, the surface effect will not be ignored at this time. The surface of ultramicroparticles is very different with the surface of the large object, if we take the television camera to the metal ultramicroparticles (diameter of 10 ^ 2 * 3 microns) by using the high-rate electron microscope, and you will found that the particles has no fixed form through the real-time observation , with the time’s changing,it will automatically forms into various shapes (such as cubic octahedron, ten surface body, with 20 ulrich, etc.),the body which is different from the general solid and liquid, is a quasi solid. under the radiation of electron beam of the electron microscope,the surface atomic looks like entering into the condition of "boiling", the unstability of particle structure could be seen when the size is bigger than 10 nanometer, then microparticle has the stable structure state.the surface of ultramicroparticles has high activity, the metal particles will be quickly oxidated and burnt in the air. We can use the surface coating or deliberately control the oxidation rate to prevent spontaneous combustion, make its slowly oxidated to generated a very thin and dens oxide layer to ensure the stabilizationof surface., because of the surface activity,the metal ultramicroparticles will become a new efficient catalyst ,gas storage materials and low melting point material

纳米材料的定义

纳米材料的定义 指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。 纳米技术 1)至少有一维处于0.1~100nm; (2)因具有量子尺寸效应、小尺寸效应、表面效应、或宏观量子隧道效应等引起光学、热学、电学、磁学、力学、化学等性质发生十分显著的变化。 .5 自然界的纳米技术 ★人体和兽类的牙齿 ★海洋中的生命粒子 ★蜜蜂的“罗盘”-腹部的磁性纳米粒子 ★螃蟹的横行-磁性粒子“指南针”定位作用的紊乱 ★海龟在大西洋的巡航-头部磁性粒子的导航 ★荷花出污泥而不染等 二、纳米材料性能 纳米材料的微粒特性 纳米微粒具有大的比表面积,表面原子数、表面能和表面张力随粒径的下降急剧增加, 小尺寸效应,表面效应、量子尺寸效应及宏观量子隧道效应等导致纳米微粒的热、磁、光敏感特性和表面稳定性等不同于常规粒子,这就使得它具有广阔应用前景。 2、量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低末被占据的分子轨道能级,这些能隙变宽现象均称为量子尺寸效应。 3、小尺寸效应 纳米材料中的微粒尺寸小到与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性边界条件将会被破坏;非晶态纳米粒子表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的小尺寸效应。 4、表面界面效应 纳米颗粒尺寸小,表面能高,位于表面的原子占相当大的比例。随尺寸减小,表面原子数迅速增加:表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合,例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应。 5、宏观量子隧道效应 微观粒子具有贯穿势垒的能力称隧道效应。 §2.2.1 热学性能 纳米材料是指晶粒尺寸在纳米数量级的多晶体材料,具有很高比例的内界面(包括晶界、相界、畴界等)。 由于界面原子的振动焓、熵和组态焓、熵明显不同于点阵原子,使纳米材料表现出一系列与普通多晶体材料明显不同的热学特性,如比热容升高、热膨胀系数增大、熔点降低等。 纳米材料的这些热学性质与其晶粒尺寸直接相关。 熔点下降的原因: 由于颗粒小,纳米微粒的表面能高、表面原子数多,这些表面原子近邻配位不全,活性大(为原子运动提供动力),纳米粒子熔化时所需增加的内能小,这就使得纳米微粒熔点急剧下降。

纳米知识点与答案讲解

第一章 1、纳米科学技术概念 纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。 2、纳米材料的定义 把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。“功能”概念,即“量子尺寸效应”。 3、纳米材料五个类(维度) 0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料 4、0、1、2维材料定义、例子 0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。 富勒烯、胶体微粒、半导体量子点 1维材料—线径为1—100 nm的纤维(管)。 纳米线、纳米棒、纳米管、纳米丝 2维材料—厚度为1 —100 nm的薄膜。 薄片、材料表面相当薄的单层或多层膜 5、纳米材料与传统材料的主要差别 尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。 比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。 性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。 比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。 6、金属纳米粒子随粒径的减小,能级间隔增大 7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比 8、纳米材料的四大基本效应 尺寸效应,介电限域效应,表(界)面效应,量子效应 9、什么是量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 10、什么是小尺寸效应 当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 11、什么是表(界)面效应 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的化学活性,催化活性,吸附活性。表面效应是指纳米粒子表(界)面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 12、什么是宏观量子隧道效应

纳米材料的基本效应

纳米材料的四个基本效应 转载▼ 纳米材料由纳米离子组成,纳米离子一般是指尺寸在1-100纳米之间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统也非典型的宏观系统,是一种典型人界观系统,它具有如下四方面效应,并由此派生出传统固体不具有的许多特殊性质。 1、表面效应 粒子直径减少到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。 2、量子尺寸效应 指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象。这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。 3、体积效应 指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期的边界条件将破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。如光吸收显著增加并产生吸收峰的等粒子共振频移,由磁有序态向磁无序态,超导相向正常相转变等。 4、宏观量子隧道效应 宏观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,他们可以穿越宏观系统的势垒而产生变化,故称为宏观的量子隧道效应MQT(Macroscopic Quantum Tunneling)。这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间。 以上四种效应是纳米粒子与纳米固体的基本特性,它使纳米粒子和固体呈现许多奇异的物理性质、化学性质,出现一些反常现象,如金属为导体,但纳米金属微粒在低温由于量子尺寸效应会呈现电绝缘性;化学惰性的金属铂制成纳米微粒(箔黑)后,却成为活性极好的催化剂等。

相关文档