文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料和纳米技术

纳米材料和纳米技术

纳米材料和纳米技术
纳米材料和纳米技术

纳米材料和纳米技术

纳米材料的使用古已有之。据研究认为中国古代字画之所以历经千年而不褪色,是因为所用的墨是由纳米级的碳黑组成。中国古代铜镜表面的防锈层也被证明是由纳米氧化锡颗粒构成的薄膜。只是当时的人们没有清楚的了解而已。纳米材料在近十几年的研究中,领域迅速拓宽,内涵不断扩展。目前,普遍接受的定义为基本单元的颗粒或晶粒尺寸至少在一维上小于100nm,且必须具有与常规材料截然不同的光、电、热、化学或力学性能的一类材料体系。纳米材料的奇异性是由于其构成基本单元的尺寸及其特殊的界面、表面结构所决定的。

纳米技术的灵感,来自于诺贝尔奖获得者Richard Feyneman于1959年所作的《在底部还有很大空间》的演讲。他以“由下而上的方法” 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”

纳米技术是面向尺寸在1~100nm之间的物质组成的体系的运动规律和相互作用以及在应用中实现特有功能和智能作用的技术问题,发展纳米尺度的探测和操纵。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深入至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等,这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。扫描隧道显微镜(STM)在纳米科技中占有重要的地位,它贯穿到七个分支领域中,以其为分析和加工手段所做的工作占一半以上。

纳米材料的研究最初源于十九世纪六十年代对胶体微粒的研究,二十世纪六十年代后,研究人员开始有意识得通过对金属纳米微粒的制备和研究来探索纳米体系的奥秘。2001年初,中国科技大学朱清时院士的研究组首次直接拍摄到能够分辨出化学键的C60单分子图像[2],这种单分子直接成像技术为解析分子内部结构提供了有效的手段,使科学家可以人工“切割”和重新“组装”化学键,为设计和制备单分子级的纳米器件奠定了基础。3月,美国佐治亚理工学院留美中国学者王中林教授的研究组利用高温固体气相法,在世界上首次合成了独特形态且无缺陷的半导体氧化物纳米带状结构[3]。这是继纳米管、纳米线之后纳米家族增加的新的成员。它有望解决纳米管在大规模生产时稳定性的问题,并在纳米物理研究和纳米器件应用上有重要的作用。6月,香港科技大学沈平教授的研究组在单根纯碳纳米碳管中观察到超导特性[4]。这一观察表明,当纳米碳管细到一定程度时,其材料性质将发生突变。从应用上来讲,纳米碳管超导性的发现,将有助解决电子在集成半导体器件中传输时的发热问题。

由上可见,在纳米基础研究领域,中国并不落后。自90年代初,科技部、国家自然科学基金委、中国科学院等单位就启动了有关纳米材料的攀登计划、国家重点基础研究项目等,投入数千万元资金支持纳米基础研究;中国的纳米科学家,在国际上取得了一系列令人瞩目的成果,相继在《Science》、《Nature》等权威杂志上发表了高水平的论文,使中国在纳米材料基础研究方面,尤其是纳米结构的控制合成方面,走在比较前沿的位置,继美、日、德之后,位居世界第四。

但是,在纳米器件上总体来说研究层次还不是很高,手段离国外还有很大的差距。

2.纳米技术的应用

在纳米材料中,由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏;纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等[5-7]。目前描述纳米材料中的基本物理效应主要是从金属纳米微粒研究基础上发展和建立起来的,要准确把握纳米科技中现象的本质,必须要在理论上实现从连续系统物理学向量子物理学的转变。当今科技的发展要求材料的超微化、智能化、元件的高集成、高密度存储和超快传输等特性为纳米科技和纳米材料的应用提供了广阔的空间。美国制定的“国家纳米技术倡议”(NNI)中所列纳米科学与技术涉及的领域很宽泛,但最基本的有三个,即纳米材料,纳米电子学、光电子学和磁学,纳米医学和生物学。

纳米粒子的宏观隧道效应确立了微电子器件微型化的极限。纳米电子学、光电子学及磁学微电子器件的极限线宽,以硅集成电路而言,普遍认为是70nm 左右。目前国际上最窄线宽已为130nm,在十年以内将达到极限。如果将硅器件做的更小,电子会隧穿通过绝缘层,造成电路短路。解决纳米电子电路的思路目前可分为两类,一类是在光刻法制作的集成电路中利用双光子光束技术中的量子纠缠态,有可能将器件的极限缩小至25nm。另一类是研制新材料取代硅,采用蛋白质二极管,纳米碳管作引线和分子电线。新概念器件的形成,单原子操纵是重要的方式。在新世纪,超导量子相干器件、超微霍尔探测器和超微磁场探测器将成为纳米电子学中器件的主角。利用纳米磁学中显著的巨磁电阻效应和很大的隧道磁电阻现象研制的读出磁头将磁盘记录密度提高30多倍,瑞士苏黎世的研究人员制备了Cu、Co交替填充的纳米丝,利用其巨磁电阻效应制备出超微磁场传感器。磁性纳米微粒由于粒径小,具有单磁畴结构,矫顽力很高,用作磁记录材料可以提高信噪比,改善图像质量。利用铁基纳米材料的巨磁阻抗效应制备的磁传感器已问世,包覆了超顺磁性纳米微粒的磁性液体也被广泛用在宇航和部分民用领域作为长寿命的动态旋转密封。

从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。遗传基因序列的自组装排列做到了原子级的结构精确,神经系统的信息传递和反馈等都是纳米科技的完美典范。生物合成和生物过程已成为启发和制造新的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级控制和操纵。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。目前已得到较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等。正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技。将直接应用于临床诊断,药物开发和人类遗传诊断。植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。

纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在隐身技术上的应用尤其引人注目。

在雷达隐身技术中,超高频(SHF,GHz)段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身材料加以研制。最近国外正致力于研究可覆盖厘米波、毫米波、红外、可见光等波段的纳米复合材料,并提出了单个吸收粒子匹配设计机理,这样可以充分发挥单位质量损耗层的作用。纳米材料在具备良好的吸波功能的同时,普遍兼备了薄、轻、宽、强等特点。纳米材料中的硼化物、碳化物,铁氧体,包括纳米纤维及纳米碳管在隐身材料方面的应用都将大有作为。

先进陶瓷材料在高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,然而,脆性是陶瓷材料难以克服的弱点。英国材料学家Cahn曾评述,通过改进工艺和化学组分等方法来克服陶瓷脆性的尝试都不太理想,无论是固溶掺杂的氮化硅、相变增韧的氧化锆要在实际中作为陶瓷发动机材料还不能实现。纳米陶瓷是解决陶瓷脆性的战略途径之一[8]。目前,纳米陶瓷粉体的制备较为成熟,新工艺和新方法不断出现,已具备了生产规模。纳米陶瓷粉体的制备方法主要有气相法、液相法、高能球磨法等。气相法包括惰性气体冷凝法、等离子法、气体高温裂解法、电子束蒸发法等。

目前我国纳米技术的应用成了热门。据2001年6月的一项调查,国内已有323家纳米企业,其中,以“纳米”字样注册的企业57家,三十多条纳米材料的生产线,社会投入资金约30亿元。然而纳米科技的产业化效果还不太理想:这是由于许多纳米技术项目研发时间仅有一年左右,属启动阶段。科研院所的纳米科技论文水平很高,潜心于后续的应用开发和技术支持显得力不从心。而大部分企业属于生产型,缺乏持续创新和应用开发能力,只能接受非常成熟的技术。二者接口的差异,导致纳米技术成果不能顺利转化。虽然国内已建立了几十条纳米材料和技术的生产线,但是产品主要集中在制备纳米粉体方面。市场上很多的“纳米商品”还不是真正意义上的“纳米产品”,急需国家制定一个指导性的纳米技术准入标准。由于纳米材料特殊的性能,将纳米科技和纳米材料应用到工业生产的各个领域都能带来产品性能上的改变或较大的提高。利用纳米科技对传统工业,特别是重工业进行改造会给传统产业带来新的机遇,其中存在很大的拓展空间,这已是国外大企业的技术秘密。

纳米技术的产业化较互联网经济更注重实业。基于纳米技术的生产过程有着极强的规模经济效应,尤其是这种生产的总成本大部分必须是一次性投入,故纳米技术产业化同样具有很大的投资风险。这种投资方式对资本市场提出了严峻的考验,对中国风高浪大的主板市场和犹抱琶琵半遮面的二板市场而言尤其如此。事实上,纳米技术刚走出实验室,才向产业化阶段迈出第一步。即便在美国,“NNI计划”也只是在年前才出台,要真正实现大规模应用,国内外专家普遍认为须有不少于20年的时间。

发展纳米科技存在科学理论、科学方法、科技创新和高风险等难点。以国家目标为导向,纳米器件的研制和集成是纳米科技的核心,纳米材料的制备和研究是工作的重点,“由上而下的方法”(top down)还将是目前主要的研究方法,用体制创新推动技术创新,使纳米科技的产业化得到健康的发展。相信通过中国科

技人员创造性的工作,我国一定会在已揭开战幕的纳米科技全球竞争中赢得令人瞩目的地位。

相关文档