文档视界 最新最全的文档下载
当前位置:文档视界 › 最新随机过程练习(第二章)

最新随机过程练习(第二章)

最新随机过程练习(第二章)
最新随机过程练习(第二章)

随机变量巩固练习―――重点:“函数的函数”相关运算 定理 1 设X 为连续型一维随机变量,其概率密度函数为()X f x ,则对于Y =g(X)的概率密度函数,有下列结果:

(1)若g(x)是严格单调可微函数,则Y=g(X)的概率密度函数为

(())'(),()0,

X Y f h y h y y I f y y I ?∈?=????

其中h(y)是y=g(x)的反函数.

(2)若g(x)不是严格单调可微函数,则将g(x)在其定义与上分成若干个单调分支,在每个单调分支上应用(1)的结果得Y=g(X)的概率密度函数为

1122(())'()(())'(),()0,

X X Y f h y h y f h y h y y I f y y I ?++∈?=????

其中I 是在每个单调分支上按照(1)确定的y 的取值公共部分。

练习1 设~[,],tan 22X U Y X ππ-=,试求Y 的概率密度函数()Y f y .

练习2 设 随机变量X 在(0,1)区间内服从均匀分布,试求

(1)X

Y e =的概率密度函数

(2)2ln Y X =-的概率密度函数

随机过程巩固练习

1 设随机过程(),(0,),X t Vt b t b =+∈∞为常数,V 为服从正态分布N(0,1)的随机变量。求:X(t)的一维概率密度函数、均值和相关函数。

2 设随机变量Y 具有概率密度函数f(y),令

(),0,0Yt X t e t Y -=>>

求随机过程X(t)的一维概率密度函数、均值和相关函数。

3 设有随机过程()cos()sin()X t A wt B Wt =

+,其中w 为常数,A ,B 是相互独立的且服从正态分布2(0,)N σ的随机变量。求随机过程的均值和相关函数。

4 已知随机过程X(t)的均值函数()X m t 和协方差函数12(,),()X B t t t ?为普通函数,令()()()Y t X t t ?=+,求随机过程Y(t)的均值和协方差函数。

5 设随机过程()cos()X t A wt =+Θ,其中,A w 为常数,随机变量Θ服从(,)ππ-上

的均匀分布。令2()()Y t X t =

,求(,)Y R t t s + 6 设X(t)为实随机变量,x 为任意实数,令

1,()()0,()X t x Y t X t x ≤?=?>?

证明随机过程 Y(t)的均值函数和相关函数分别是X(t)的一维和二维分布函数。

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

最新随机过程练习(第二章)

随机变量巩固练习―――重点:“函数的函数”相关运算 定理 1 设X 为连续型一维随机变量,其概率密度函数为()X f x ,则对于Y =g(X)的概率密度函数,有下列结果: (1)若g(x)是严格单调可微函数,则Y=g(X)的概率密度函数为 (())'(),()0, X Y f h y h y y I f y y I ?∈?=???? 其中h(y)是y=g(x)的反函数. (2)若g(x)不是严格单调可微函数,则将g(x)在其定义与上分成若干个单调分支,在每个单调分支上应用(1)的结果得Y=g(X)的概率密度函数为 1122(())'()(())'(),()0, X X Y f h y h y f h y h y y I f y y I ?++∈?=???? 其中I 是在每个单调分支上按照(1)确定的y 的取值公共部分。 练习1 设~[,],tan 22X U Y X ππ-=,试求Y 的概率密度函数()Y f y . 练习2 设 随机变量X 在(0,1)区间内服从均匀分布,试求 (1)X Y e =的概率密度函数 (2)2ln Y X =-的概率密度函数

随机过程巩固练习 1 设随机过程(),(0,),X t Vt b t b =+∈∞为常数,V 为服从正态分布N(0,1)的随机变量。求:X(t)的一维概率密度函数、均值和相关函数。 2 设随机变量Y 具有概率密度函数f(y),令 (),0,0Yt X t e t Y -=>> 求随机过程X(t)的一维概率密度函数、均值和相关函数。 3 设有随机过程()cos()sin()X t A wt B Wt = +,其中w 为常数,A ,B 是相互独立的且服从正态分布2(0,)N σ的随机变量。求随机过程的均值和相关函数。 4 已知随机过程X(t)的均值函数()X m t 和协方差函数12(,),()X B t t t ?为普通函数,令()()()Y t X t t ?=+,求随机过程Y(t)的均值和协方差函数。 5 设随机过程()cos()X t A wt =+Θ,其中,A w 为常数,随机变量Θ服从(,)ππ-上 的均匀分布。令2()()Y t X t = ,求(,)Y R t t s + 6 设X(t)为实随机变量,x 为任意实数,令 1,()()0,()X t x Y t X t x ≤?=?>? 证明随机过程 Y(t)的均值函数和相关函数分别是X(t)的一维和二维分布函数。

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

随机过程习题第2章

2.1 设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<<ΛΛ121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n ΛΛ 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= ΛΛΛΛΛΛ 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n ΛΛΛΛ 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n ΛΛ 2.2 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章 随机过程汇总

第 2 章 随机过程 2.1 引言 ?确定性信号是时间的确定函数,随机信号是时间的不确定函数。 ?通信中干扰是随机信号,通信中的有用信号也是随机信号。 ?描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到 时间函数。 2.2 随机过程的统计特性 一.随机过程的数学定义: ?设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t) 是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。 随机过程举例:

二.随机过程基本特征 其一,它是一个时间函数; 其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。 随机过程具有随机变量和时间函数的特点。 ● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。 三.随机过程的统计描述 设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。 1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即 })({);(1x t g P t x P ≤= 2.2.1 2.一维概率密度函数:一维概率分布函数对x 的导数. x t x P t x p ??= ) ;(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布 })(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.3 4.二维分布密度定义为 2 12121221212) ,;,(),;,(x x t t x x P t t x x p ???= 2.2.4 四.随机过程的一维数字特征 设随机过程)(t g 的一维概率密度函数为),(1t x p . 1.数学期望(Expectation) dx t x xp t g E t g );()]([)(1?∞ ∞ -==μ 2.2.5 2.方差(Variance)

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数? ∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞ -=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = n p q DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX

随机过程(刘次华)第五章试题

第五章复习题 1. 证明泊松过程(){} ,0X t t ≥为连续时间齐次马尔可夫链。 证 先证泊松过程的马尔可夫性。泊松过程是独立增量过程,且()00X =,对任意 1210n n t t t t +<<<<<有 1111111121211111{()|(),,()} {()()|()(0),()(),,()()} {()()} n n n n n n n n n n n n n n n n P X t i X t i X t i P X t X t i i X t X i X t X t i i X t X t i i P X t X t i i ++++--++====-=--=-=--=-=-=-另一方面 111111{()|()} {()()|()(0)}{()()} n n n n n n n n n n n n n n P X t i X t i P X t X t i i X t X i P X t X t i i ++++++===-=--==-=- 所以111111{()|(), ,()}{()|()}n n n n n n n n P X t i X t i X t i P X t i X t i ++++====== 即泊松过程是一个连续时间马尔可夫链。 再证齐次性,当j i ≥时, (){()|()}{()()}()! j i t t P X s t j X s i P X s t X s j i e j i λλ--+===+-=-=- 当j i <时,因增量只取非负整数值,故(),0ij p s t =, 所以(),(,)()()! 0,j i t ij ij t e j i p s t p t j i j i λλ--?≥?==-??

《随机过程》第二章题目与答案

第二章 一、填空题 1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类. 2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度. 3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__. 4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__. 5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__. 二、计算题 1、已知Γ分布,X~Γ(α,β), 若 其中α,β>0,试求Γ分布的特征函数. 2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数. 3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.

4、设随机过程:0),sin()cos( )(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数. 5、设随机变量Y 具有概率密度f(y),令 )0,0(,)(>>=-Y t t X e Yt , 求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2). 6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从 N(0, )的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t }的均值函数m(t)和相关函 数R(s,t).

随机过程作业题及参考答案(第二章)

第二章 平稳过程 P103 2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。试证 (1)若t T ∈,而{}12T =,,,则(){}12X t t =,,, 是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){} 0X t t ≥,不是平稳过程。 证明: 由题意,U 的分布密度为:()1 0220u f u π π?<

随机过程习题第2章

设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

相关文档