文档视界 最新最全的文档下载
当前位置:文档视界 › 图像分割实验报告

图像分割实验报告

图像分割实验报告
图像分割实验报告

实验报告

课程名称医学图像处理

实验名称图像分割

专业班级

姓名

学号

实验日期

实验地点

2015—2016学年度第 2 学期

050100150200250

图1 原图 3 阈值分割后的二值图像

分析:手动阈值分割的阈值是取直方图中双峰的谷底的灰度值作为阈值,若有多个双峰谷底,则取第一个作为阈值。本题的阈值取80。

%例2 迭代阈值分割

f=imread('cameraman.tif'); %读入图像

subplot(1,2,1);imshow(f); %创建一个一行二列的窗口,在第一个窗口显示图像title('原始图像'); %标注标题

f=double(f); %转换位双精度

T=(min(f(:))+max(f(:)))/2; %设定初始阈值

done=false; %定义开关变量,用于控制循环次数

i=0; %迭代,初始值i=0

while~done %while ~done 是循环条件,~ 是“非”的意思,此

处done = 0; 说明是无限循环,循环体里面应该还

有循环退出条件,否则就循环到死了;

r1=find(f<=T); %按前次结果对t进行二次分

r2=find(f>T); %按前次结果重新对t进行二次分

Tnew=(mean(f(r1))+mean(f(r2)))/2; %新阈值两个围像素平均值和的一半done=abs(Tnew-T)<1; %设定两次阈值的比较,当满足小于1时,停止循环,

1是自己指定的参数

T=Tnew; %把Tnw的值赋给T

i=i+1; %执行循坏,每次都加1

end

f(r1)=0; %把小于初始阈值的变成黑的

f(r2)=1; %把大于初始阈值的变成白的

subplot(1,2,2); %创建一个一行二列的窗口,在第二个窗口显示图像imshow(f); %显示图像

title('迭代阈值二值化图像'); %标注标题

图4原始图像图5迭代阈值二值化图像

分析:本题是迭代阈值二值化分割,步骤是:1.选定初始阈值,即原图大小取平均;2.用初阈值进行二值分割;3.目标灰度值平均背景都取平均;4.迭代生成阈值,直到两次阈值的灰

度变化不超过1,则稳定;5.输出迭代结果。

%例3 Laplacian算子和模板匹配法

I=imread('cameraman.tif'); %读入图像

subplot(1,3,1);imshow(I); %创建一个一行三列的窗口,在第一个窗口显示图像title('原图像'); %标注标题

H=fspecial('laplacian'); %生成laplacian滤波器

laplacianH=filter2(H,I); %以laplacian为模板对图像I进行锐化滤波subplot(1,3,2); %创建一个一行三列的窗口,在第二个窗口显示图像imshow(laplacianH); %显示图像

title('laplacian算子锐化图像'); %标注标题

H=fspecial('prewitt'); %生成Prewitt滤波器

prewittH=filter2(H,I); %以prewitt为模板对图像I进行锐化滤波

subplot(1,3,3); %创建一个一行三列的窗口,在第三个窗口显示图像imshow(prewittH); %显示图像

title('prewitt模板锐化图像'); %标注标题

图6原图像图7 laplacian算子锐化图像图8 prewitt模板锐化图像

分析:从结果图可以看出,laplacian算子对边缘的处理更明显,它是二阶微分算子,能加强边缘效果,对噪声很敏感,Prewitt算子是平均滤波的一阶的微分算子,不仅能检测边缘点,而且能抑制噪声的影响。

%例4 不同边缘检测方法比较

f=imread('cameraman.tif'); %读取图像

subplot(2,2,1);imshow(f); %创建一个二行二列的窗口,在第一个窗口显示图像title('原始图像'); %标注标题

[g,t]=edge(f,'roberts',[],'both'); %用roberts检测器对图像进行边缘检测,阈值自动选

取,检测边缘方向(双向)为both

subplot(2,2,2);imshow(g); %创建一个二行二列的窗口,在第二个窗口显示图像title('Roberts算子分割结果'); %标注标题

[g,t]=edge(f,'sobel',[],'both'); %用sobel检测器对图像进行边缘检测,阈值自动选取,

检测边缘方向(双向)为both

subplot(2,2,3);imshow(g); %创建一个二行二列的窗口,在第三个窗口显示图像title('Sobel算子分割结果'); %标注标题

[g,t]=edge(f,'prewitt',[],'both'); %用prewitt检测器对图像进行边缘检测,阈值自动

选取,检测边缘方向(双向)为both

subplot(2,2,4);imshow(g); %创建一个二行二列的窗口,在第四个窗口显示图像

实验六-图像分割教学文稿

实验六-图像分割

信息工程学院实验报告 课程名称:数字图像处理 实验项目名称:实验六图像分割实验时间:2016.12.16 班级:姓名:学号: 一、实验目的 1. 使用MatLab 软件进行图像的分割。使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。 2. 要求学生能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能。能够掌握分割条件(阈值等)的选择。完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。 二、实验内容与步骤 1.边缘检测 (1)使用Roberts 算子的图像分割实验 调入并显示图像room.tif图像;使用Roberts 算子对图像进行边缘检测处理; Roberts 算子为一对模板: (a)450方向模板(b)1350方向模板 图 1 matlab 2010的Roberts算子模板 相应的矩阵为:rh = [0 1;-1 0]; rv = [1 0;0 -1];这里的rh 为45度Roberts 算子,rv 为135度Roberts 算子。分别显示处理后的45度方向和135方向的边界检测结果;用“欧几里德距离”和“街区距离”方式计算梯度的模,并显示检测结果;对于检测结果进行二值化处理,并显示处理结果。 提示:先做检测结果的直方图,参考直方图中灰度的分布尝试确定阈值;应反复调节阈值的大小,直至二值化的效果最为满意为止。 (2)使用Prewitt 算子的图像分割实验

(a)水平模型(b)垂直模板 图2. Prewitt算子模板 使用Prewitt 算子进行内容(1)中的全部步骤。 (3)使用Sobel 算子的图像分割实验 使用Sobel (a)水平模型(b)垂直模板 图3. Sobel算子模板 (4)使用LoG (拉普拉斯-高斯)算子的图像分割实验 使用LoG (拉普拉斯-高斯)算子进行内容(1)中的全部步骤。提示1:处理后可以直接显示处理结果,无须另外计算梯度的模。提示2:注意调节噪声的强度以及LoG (拉普拉斯-高斯)算子的参数,观察处理结果。 (5) 打印全部结果并进行讨论。 下面是使用sobel算子对图像进行分割的MATLAB程序 f=imread('room.tif'); [gv,t1]=edge(f,'sobel','vertical');%使用edge函数对图像f提取垂直边缘 imshow(gv) [gb,t2]=edge(f,'sobel','horizontal');%使用edge函数对图像f提取水平边缘 figure,imshow(gb) w45=[-2 -1 0;-1 0 1;0 1 2];%指定模版使用imfilter计算45度方向的边缘 g45=imfilter(double(f),w45,'replicate'); T=0.3*max(abs(g45(:))); %设定阈值 g45=g45>=T; %进行阈值处理 figure,imshow(g45); 在函数中使用'prewitt'和'roberts'的过程,类似于使用sobel边缘检测器的过程。

图像处理实验-图像增强和图像分割

图像处理实验 图像增强和图像分割 一、实验目的: 掌握用空间滤波进行图像增强的基本方法,掌握图像分割的基本方法。 二、 实验要求: 1、测试图像1中同时含有均值为零的均匀分布噪声和椒盐噪声。用大小为5×5的算术均值滤波器和中值滤波器对图像进行处理,在不同窗口中显示原图像及各处理结果图像,并分析哪一种滤波器去噪效果好? 2、对测试图像2进行图像分割,求出分割测试图像2的最佳阈值。分别显示原图、原图的直方图(标出阈值)、和分割后的二值图。 实验内容: 1. 实验原理 1) 图像增强:流程图: 图像增强可以通过滤波的方式来完成,即消除一部分的噪声。滤波又可以分为均值滤波和中值滤波。 1. 中值滤波原理:中值滤波就是选用一个含有奇数个像素的滑动窗口,将该窗口在图像上扫描,把其中所含像素点按灰度级的升(或降)序排列,取位于中间的灰度值来代替窗口中心点的灰度值。

对于一维序列{N f }: 21,},...,,...,{-=∈=+-m u N i f f f M e d y u i i u i i 对于二维序列{ij F }:为滤波窗口W y ij F Med W ij }{= 2. 均值滤波原理:对于含噪声的原始图像g(s,t)的每一个像素点去一个领 域N ,用N 中所包含的相速的灰度平均值,作为领域平均处理后的图像f(x,y)的像素值,即: ∑∈=xy S t s t s g mn y x f ),(),(1),(? 2) 图像分割: 图像分割:依据图像的灰度、颜色等特征,将一幅图像分为若干个互不重叠的、具有某种同质特征的区域。

本实验中我们是根据灰度值,将灰度值大于阈值T的像素统一置为255,小于的则置为0。如何求出最合适的分割阈值,则需要用到迭代算法。 迭代法算法步骤: (1) 初始化阈值T (一般为原图像所有像素平均值)。 (2) 用T分割图像成两个集合:G1 和G2,其中G1包含所有灰度值小于T的像素,G2包含所有灰度值大于T的像素。 (3) 计算G1中像素的平均值m1及G2中像素的平均值m2。 (4) 计算新的阈值:T =(m1+m2)/2 。 (5)如果新阈值跟原阈值之间的差值小于一个预先设定的范围,停止循环,否则继续(2)-(4)步。 2.程序代码与分析: 1)图像增强: clear all;clc; %读入图像 I1=imread('Fig5.12(b).jpg'); %均值滤波模板 h1=ones(5,'uint8'); %获取分辨率 [a,b]=size(I1); %创建变量 I2=zeros(a+4,b+4,'uint8'); I3=zeros(a+4,b+4,'uint8'); %复制原始图像 for n=3:a+2 for m=3:b+2 I2(n,m)=I1(n-2,m-2); I3(n,m)=I1(n-2,m-2); end end

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

基于灰度图像的阈值分割改进方法 开 题 报 告

毕业设计开题报告基于灰度图像的阈值分割改进方法 系别: 班级: 学生姓名: 指导教师: 2011 年 11 月22日

毕业设计开题报告 附页:

基于灰度图像的阈值分割改进方法 一、研究的目的 通常人们只对图像的某个部位感兴趣,为了能够把感兴趣的部分提取出来,就得对图像进行分割。图像分割就是把图像分成一些具有不同特征而有意义的区域,以便进一步的图像分析和理解。图像增强就是突出人们感兴趣有用的部分,或者是改善图像的质量,使它尽可能的逼近原图像。本论文分析了传统的灰度阈值图像分割,即双峰法、迭代法和最大类间方差法在细节部分分割上的缺点,然后,结合图像增强中的微分梯度,对原有图像的细节进行锐化增强,然后在使用这三种方法进行分割,得到的分割结果和传统的分割方法得到的结果进行比较,该算法确实达到了改善分割后图像细节的效果。 本算法在matlab2008环境下进行了实现,实验结果表明,与传统的阈值分割方法相比,本文算法不仅克服了传统阈值分割方法的不足,而且还对复杂灰度图像的细节部分具有较好的分割效果,为图像分割方法的改进提供了技术支持。 二、研究背景与意义 数字图像处理的基础是图像分割,图像分割同时也是进行计算机自动识别和人工智能的桥梁,长期以来图像分割一直都是数字图像处理领域的一个经典难题。经典的图像分割算法,诸如:直方图分割与阈值分割的方法具有实现简单、计算量小、性能较稳定等特点。通常,它们是利用图像的灰度直方图的分布特征,找出灰度直方图分布的两波峰之间的波谷,选定恰当的阈值将图像分割开,然而这种分割方法依赖于图像灰度的分布,对灰度分布不呈双峰特征或复杂背景的图像,这种方法往往会造成错误,并且有些细节不能很好的显示出来。 所以论文提出了一种改进方法—图像增强的分割改进方法,通过图像增强中的微分梯度,对原有图像的细节进行锐化增强,从而达到改善分割后图像细节的效果。这对我们使用灰度阈值分割方法分割图像提供了技术支持,并且能很好地克服灰度阈值分割方法的缺点。 三.基于灰度图像的阈值分割方法 阈值处理是一种区域分割技术,将灰度根据主观愿望分成两个或多个等间隔或不等间隔灰度区间,它主要是利用图像中要提取的目标物体和背景在灰度上的差异,选择一个合适的阈值,通过判断图像中的每一个像素点的特征属性是否满足阈值的要求来确定图像中该像素点属于目标区还是应该属于背景区域,从而产生二值图像。

图像分割 实验报告

实验报告 课程名称医学图像处理 实验名称图像分割 专业班级 姓名 学号 实验日期 实验地点 2015—2016学年度第 2 学期

050100150200250 图1 原图 3 阈值分割后的二值图像分析:手动阈值分割的阈值是取直方图中双峰的谷底的灰度值作为阈值,若有多个双峰谷底,则取第一个作为阈值。本题的阈值取

%例2 迭代阈值分割 f=imread('cameraman.tif'); %读入图像 subplot(1,2,1);imshow(f); %创建一个一行二列的窗口,在第一个窗口显示图像title('原始图像'); %标注标题 f=double(f); %转换位双精度 T=(min(f(:))+max(f(:)))/2; %设定初始阈值 done=false; %定义开关变量,用于控制循环次数 i=0; %迭代,初始值i=0 while~done %while ~done 是循环条件,~ 是“非”的意思,此 处done = 0; 说明是无限循环,循环体里面应该还 有循环退出条件,否则就循环到死了; r1=find(f<=T); %按前次结果对t进行二次分 r2=find(f>T); %按前次结果重新对t进行二次分 Tnew=(mean(f(r1))+mean(f(r2)))/2; %新阈值两个范围内像素平均值和的一半done=abs(Tnew-T)<1; %设定两次阈值的比较,当满足小于1时,停止循环, 1是自己指定的参数 T=Tnew; %把Tnw的值赋给T i=i+1; %执行循坏,每次都加1 end f(r1)=0; %把小于初始阈值的变成黑的 f(r2)=1; %把大于初始阈值的变成白的 subplot(1,2,2); %创建一个一行二列的窗口,在第二个窗口显示图像imshow(f); %显示图像 title('迭代阈值二值化图像'); %标注标题 图4原始图像图5迭代阈值二值化图像 分析:本题是迭代阈值二值化分割,步骤是:1.选定初始阈值,即原图大小取平均;2.用初阈值进行二值分割;3.目标灰度值平均背景都取平均;4.迭代生成阈值,直到两次阈值的灰 度变化不超过1,则稳定;5.输出迭代结果。

图像分割实验报告

实验七图像分割 一、实验目的 利用光谱特征进行遥感图像的分割和分割后处理。 二、实验要求 1. 能够根据图像的特征,综合使用不同的方法分割出地物对象。 2. 熟练掌握图像直方图的应用。 3. 掌握彩色图像分割的基本方法 4. 掌握利用波段组合进行图像分割的工作流程 5. 熟悉数学形态学基本方法的应用。 三、实验准备 ●软件准备:ENVI软件 ●数据:兰花.jpg 文字测原始图像.bmp IKNOSm14 nj Hroad ●基本知识: ?图像分割的原则:(1)依据像素灰度值的不连续性进行分割。假定不同区域像素的灰度值具有不连续性,因而可以对其进行分割。(2)依据同一区域内部 像素的灰度值具有相似性进行分割。这种方法一般从一个点(种子)出发,将 其邻域中满足相似性测量准则的像素进行合并从而达到分割的目的。依据像素 的不连续性进行分割的方法只要是区域增长法。 ?图像分割的工作流程:(1)确定待分割的对象;(2)选择对分割对象敏感的波段;(3)选择分割方法进行分割;(4)将分割后的结果图像转为矢量图。 ?图像分割:(1)图像分割是指把图像分成各具特性的区域并提取出感兴趣的目标的技术和过程。从数学角度来看,图像分割是将数字图像划分成互不相交的 区域的过程。图像分割的过程也是一个标记的过程,即将属于同一个区域的像 素赋予相同的编号的过程。(2)目的:将一幅图像分为几个区域,这几个区域 之间具有不同的属性,同一区域中各像素具有某些相同的性质。 ?图像分割的方法:(1)灰度阀值法,它在目标与背景之间存在强对比时特别有效(直方图方法);(2)数学形态学方法,腐蚀、膨胀、开运算和闭运算; ?波段运算:ENVI Band Math是一个灵活的图像处理工具,其中许多功能是无法在任何其它的图像处理系统中获得的。由于每个用户都有独特的需求,利用 此工具用户自己定义处理算法,应用到在ENVI打开的波段或整个图像中,用 户可以根据需要自定义简单或复杂的处理程序。例如:可以对图像进行简单加、 减、乘、除运算,或使用IDL编写更复杂的处理运算功能。 ?波段运算实质是对每个像素点对应的像素值进行数学运算。

数字图像处理实验 图像分割

实验报告 实验名称实验四图像分割 课程名称数字图像处理A 姓名成绩 班级学号 日期地点 1.实验目的 (1)了解并掌握图像分割的基本原理; (2)编写程序使用Hough变换处理图像,进行线检测;

(3)编写程序使用阈值处理方法进行图像分割,根据实验结果分析效果; (4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。 2.实验环境(软件条件) Windws2000/XP MATLAB 7.0 3.实验方法 对256级灰度的数字图像camera.bmp(如图4.1所示)和car.bmp(如图4.2所示)进行如下处理: (1)对图像camera.bmp进行Hough变换进行线检测,显示处理前、后图像: 思考如何利用Hough变换进行圆检测; (2)对图像car.bmp分别利用不同的阈值处理方法进行图像中汽车及车牌的分割,显示处理前、后图像;思考不同的阈值处理算法对分割效果的影响? 4.实验分析 实验原理 Hough变换是最常用的直线提取方法,它的基本思想是:将直线上每一个数据点变换为参数平面中的一条直线或曲线,利用共线的数据点对应的参数曲线相交于参数空间中一点的关系,使直线的提取问题转化为计数问题。Hough变换提取直线的主要优点是受直线中的间隙和噪声影响较小。 思考: Hough变换对圆的检测: Hough变换的基本原理在于,利用点与线的对偶性,将图像空间的线条变为参数空间的聚集点,从而检测给定图像是否存在给定性质的曲线。 圆的方程为:222 ()() x a y b r -+-=,通过Hough变换,将图像空间(,) x y对应到参数空间(,,) a b r。 第一题结果图 图4.1 实验图像camera.bmp 图4.2 实验图像car.bmp

北航数字图象处理实验报告

数字图像处理实验报告 实验二图像变换实验 1.实验目的 学会对图像进行傅立叶等变换,在频谱上对图像进行分析,增进对图像频域上的感性认识,并用图像变换进行压缩。 2.实验内容 对Lena或cameraman图像进行傅立叶、离散余弦、哈达玛变换。在频域,对比他们的变换后系数矩阵的频谱情况,进一步,通过逆变换观察不同变换下的图像重建质量情况。 3. 实验要求 实验采用获取的图像,为灰度图像,该图像每象素由8比特表示。具体要求如下: (1)输入图像采用实验1所获取的图像(Lena、Cameraman); (2)对图像进行傅立叶变换、获得变换后的系数矩阵; (3)将傅立叶变换后系数矩阵的频谱用图像输出,观察频谱; (4)通过设定门限,将系数矩阵中95%的(小值)系数置为0,对图像进行反变换,获得逆变换后图像; (5)观察逆变换后图像质量,并比较原始图像与逆变后的峰值信噪比(PSNR)。 (6)对输入图像进行离散余弦、哈达玛变换,重复步骤1-5; (7)比较三种变换的频谱情况、以及逆变换后图像的质量(PSNR)。 4. 实验结果 1. DFT的源程序及结果 J=imread('10021033.bmp'); P=fft2(J); for i=0:size(P,1)-1 for j=1:size(P,2) G(i*size(P,2)+j)=P(i+1,j); end end Q=sort(G); for i=1:size(Q,2) if (i=size(Q,2)*0.95) t=Q(i); end end G(abs(G)

图像分割实验报告汇总

图像分割实验报告 一、实验目的 1. 掌握图像分割的基本思想,了解其分割技术及其计算策略; 2. 学会从图像处理到分析的关键步骤,掌握图像分割过程; 3. 了解图像分割的意义,进一步加深对图像分析和理解; 4. 掌握基本分割方法:迭代分割和OTSU图像分割,并编程实现。 二、实验原理 (一)迭代阈值分割选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似阈值作为初始阈值,一个较好的方法就是将图像的灰度均值作为初始阈值,然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值。迭代式阈值选取过程可描述如下: 1. 计算初始化阈值g0=(g max+g min) ; 2 2. 根据g0,将图像分为两部分,分别计算灰度值期望,取其平均值为g1; 3. 如此反复迭代,当|g n-g n?1|足够小时,停止迭代,取T=g n即为最终阈值。 (二)OTSU图像分割(最大类间方差法)是一种自适应的阈值确定的方法,是按图像的灰度特性,将图像分成背景和目标两部分。背景和目标之间的类间方差越大,说明构成图像的两部分的差别

越大, 当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。以最佳门限将图像灰度直方图分割成两部分,使两部分类间方差取最大值,即分离性最大。OTSU阈值选取过程可描述如下: 1.记T为目标与背景的分割阈值,目标点数占图像比例为w1,平均灰度为u1;背景点数占图像比例为w2,平均灰度为u1; 2.图像的总平均灰度为:u=w1*u1+w2*u2; 3.目标和背景图象的方差:g=w1*(u1-u)*(u1-u)+w1*(u2-u)*(u2-u)=w1*w2*(u1-u2)*(u1-u2); 4.当方差g最大时,可以认为此时前景和背景差异最大,此时的灰度T是最佳阈值。 二、实验内容 1. 利用C++编程实现迭代阈值图像分割算法; 2. 利用C++编程实现OTSU动态阈值图像分割算法。 三、实验框图

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

susan算子图像分割开题报告

西安邮电大学 毕业设计(论文)开题报告自动化学院专业级02班 课题名称:基于SUSAN算子的图像分割 学生姓名:学号: 指导教师: 报告日期: 2014年3月21日

1.本课题所涉及的问题及应用现状综述 图像分割就是指把图像分成各具特性的区域并提取感兴趣目标的技术和过程。它是图像处理、模式识别和人工智能等多个领域中的重要课题,也是计算机视觉技术中首要的、重要的关键步骤。图像分割的目的在于根据某些特征(如灰度级、频谱、纹理等)将一幅图像分成若干有意义的区域,使得这些特征在某一区域内表现一致或相似,而在不同区域间表现出明显的不同。图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域,如:工业自动化、在线产品检验、生产过程控制、文档图像处理、图像编码、遥感和生物医学图像分析、保安监视,以及军事、体育、农业工程等方面。在各种图像应用中,只需对图像目标行提取、测量等都离不开图像分割。虽然人们对图像分割已经进行了大量的研究,但还没一种适合于所有图像的通用的分割算法。所以,图像分割一直以来都是图像技术中的研究热点。 图像边缘是是图像的最基本的特征之一, 边缘是由灰度的不连续性所反映的,有方向和幅度两个特性。边缘中包含着有价值的目标边界信息, 这些信息可以用作图像分析、目标识别。边缘检测基本思想是先检测图像中的边缘点, 在按照某种策略将边缘点连接成轮廓,构成分割域。SUSAN算子是一种基于灰度的特征点获取方法, 适用于图像中边缘和角点的检测, 可以去除图像中的噪声, 它具有简单、有效、抗噪声能力强、计算速度快的特点。SUSAN 算子的模板与常规卷积算法的正方形模板不同, 它采用一种近似圆形的模板, 用圆形模板在图像上移动, 模板内部每个图像像素点的灰度值都和模板中心像素的灰度值作比较, 若模板内某个像素的灰度与模板中心像素(核)灰度的差值小于一定值, 则认为该点与核具有相同(或相近)的灰度。 本课题对基于SUSAN算子的图像分割进行研究,并进行仿真验证。

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验课程名称数字图像处理导论专业班级 _______________ 姓名 _______________ 学号 _______________ 电气与信息学院 和谐勤奋求是创新 实验题目图像分割实验 DSP室&信号室实验室实验时间实验类别设计同组人数 2 成绩指导教师签字: 一(实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法; 4. 掌握用阈值法进行图像分割的基本方法。 二(实验内容 1. 分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的不同之 处; 2. 设计一个检测图1中边缘的程序,要求结果类似图2,并附原理说明。 3. 任选一种阈值法进行图像分割. 图1 图2

三(实验具体实现 1. 分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的不同之 处; I=imread('mri.tif'); imshow(I) BW1=edge(I,'roberts'); figure ,imshow(BW1),title('用Roberts算子') BW2=edge(I,'sobel'); figure,imshow(BW2),title('用Sobel算子 ') BW3=edge(I,'log'); figure,imshow(BW3),title('用拉普拉斯高斯算子') 1

比较提取边缘的效果可以看出,sober算子是一种微分算子,对边缘的定位较精确,但是会漏去一些边缘细节。而Laplacian-Gaussian算子是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘的细节比较丰富。通过比较可以看出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。 2. 设计一个检测图1中边缘的程序,要求结果类似图2,并附原理说明。 i=imread('m83.tif');

图像分割开题报告

毕 业 设 计 (论文) 开 题 报 告 姓名: 学号: 学院: 专业: 通信工程 课题:图像分割算法研究及仿真导师: 时间:2016年2月13日

1.本课题研究的目的及意义: 图像分割是图像处理中最为基础和重要的领域之一,它是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。它是图像处理、模式识别和人工智能等多个领域中的重要课题,也是计算机视觉技术中的关键步骤。多年来,已经提出了许多不同类型的图像分割方法.经典的方法有灰度阈值分割法、边缘检测法和区域跟踪以及基于分水岭算法的分割方法等。有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,还没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。 然而,对图像分割的效果好坏或正确与否,还没有一个统一的评价判断准则。不同的分割方法对同一幅图像的分割效果是不同的,而且同一种分割方法对一幅图像在不同空间下的分割效果也是不同的。 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。以上说明本次的基于MATLAB图像分割算法研究对社会需求具有重要意义。本课题就是从这一起点出发,分别采用基于边缘分割和基于分水岭算法两种方法进行图形分割,并用MATLAB实现整个分割过程。 2. 本课题国内外同类研究现状: 图像分割的研究最早可以追溯到20世纪60年代,经过近四十年的研究,国内外学者已经提出了各种算法上千种,但目前还没有一种适合于所有图像的通用的分割算法,绝大多数算法都是针对具体问题而提出的。另一方面,给定一个实际应用要选择合用的分割算法仍是一个很麻烦的问题,由于缺少通用的理论指导,常常需要反复的进行实验。在已提出的这些算法中,较为经典的算法有灰度阈值分割法、

实验五图像分割及目标检测

电子科技大学 实 验 报 告 学生姓名: 学号: 指导教师:彭真明 日期: 2014 年 5 月 20 日 一、实验名称:图像分割及目标检测 二、实验目的:

1、了解图像边缘检测及图像区域分割的目的、意义和手段。 2、熟悉各种经典的边缘检测算子、图像分割方法及其基本原理。 3、熟悉各种图像特征表示与描述的方法及基本原理。 4、熟练掌握利用matlab 工具实现各种边缘检测的代码实现。 5、熟练掌握利用matlab 工具实现基本阈值分割的代码实现。 6、通过编程和仿真实验,进一步理解图像边缘检测、图像分割及其在目标检测、目标识别及跟踪测量应用中的重要性。 三、实验原理及步骤: 1、利用Soble算子进行图像的边缘检测 (1)原理与步骤 数字图像的边缘一般利用一阶/二阶差分算子进行检测。常用的差分算子包括:Roberts 算子(交叉对角算子),Prewitt 算子(一阶),Sobel 算子(一阶),Laplacian 算子(二阶),LoG 算子(二阶)及Canny 边缘检测算法等。其中,Soble 算子为常见的一类梯度算子(一阶梯度算子)。 其x, y 方向的梯度算子分别为: 一幅数字图像I(如图1)与Sx 和Sy 分别做卷积运算后(可采用多种方式,如conv2,filter2 及imfilter),可以求得x,y 两个方向的梯度图像Dx,Dy,然后,可以计算得到原图像的梯度幅度,即 或:

(2)进一步执行梯度图像D 的二值化处理(建议采用Otsu 阈值,也可考虑其他阈值分割),检测图像的二值化边缘。 (3)对于与步骤同样的输入图像I,利用matlab 工具的edge(I,’soble’)函数进行处理。试比较处理结果与步骤(2)的得到的结果的差异,并分析存在差异的原因。 (4)画出原图像、原图像的Dx, Dy 图,幅度图(D)及最后的二值化边缘检测结果图。 2、数字图像中目标区域的形心计算 (1)按如下公式计算原图像(图 2)的质心。 (2)对图 2 中的黑色形状目标进行阈值分割,得到二值化的图像; 图2 原始图像(240*240) (3)计算目标形状的面积(以像素表示); (4)计算图中黑色形状目标的形心位置,并在原图上进行位置标记(可用红色小圆圈)。 其中,M,N 为图像尺寸。x,y 为像素图像平面上的坐标。 (5)画出原图像、原图上叠加质心标记图;分割后的二值化图及分割图上叠加形心标记图。 四、程序框图

彩色图像快速分割方法研究【开题报告】

毕业论文开题报告 电子信息工程 彩色图像快速分割方法研究 一、课题研究意义及现状 图像分割是一种重要的图像技术,不论是在理论研究还是实际应用中都得到了人们的广泛重视。图像分割是我们进行图像理解的基础,是图像处理中的难点之一,也是计算机视觉领域的一个重要研究内容。把图像划分为若干个有意义的区域的技术就是图像分割技术,被划分开的这些区域相互不相交,而且每个区域也必须满足特定区域的一致性条件。 彩色图像反映了物体的颜色信息,比灰度图像提供的信息更多,因此,彩色图像的分割得到了越来越多人的关注,彩色图像分割方法的研究具有很大的价值。彩色图像分割一直是彩色图像处理中一个很重要的问题,它可以看作是灰度图像分割技术在各种颜色空间上的应用。 目前,图像分割的主要方法有:基于区域生长的分割方法、基于边缘检测的分割方法、基于统计学理论的分割方法、基于小波变换法、基于模糊集合理论的方法等多种方法。其中,JSEG算法是一种基于区域生长的图像分割方法,它同时考虑了图像的颜色和纹理信息,分割结果较为准确,受到了广泛的关注。但是JSEG算法要在多个尺度下反复进行局部J值计算和区域生长,同时还要进行基于颜色直方图的区域合并,这样,该算法就显得更为繁琐、复杂。针对这些不足之处,有学者提出了一种结合分水岭与JSEG的图像分割新算法。这种新算法在计算得到图像J后,通过引入分水岭算法直接对J图进行空域分割,然后通过形态后处理完成分割。与原JSEG算法比较,新算法能够得到良好的分割效果,有效的降低了JSEG算法的复杂度。 国内外也有很多学者对彩色图像的分割方法进行研究,也提出了许多有价值的彩色图像分割算法及改进的彩色图像分割算法,而多种分割算法的结合使用也改进了单一算法的不足之处,使得彩色图像的分割结果更加理想。但是从目前对彩色图像的研究来看,由于应用领域的不同、图像质量的好与坏以及图像色彩的分布和结果等一些客观因素引起的差异,我们还没有找到一种能够完全适用于所有彩色图像分割的通用的算法。因此,彩色图像的分割方法仍是一个尚未解决的难题,还需要图像处理领域的研究人员进一步的研究探索。 本研究是对基于JSEG的改进彩色图像分割算法的研究,该算法能够有效降低原JSEG算法的复杂度,提高图像分割效率,在图像分割领域有很重要的意义。该算法是在原JSEG算法的基础上,引入了分水岭算法,降低了原算法的计算量,降低了图像分割时间。 二、课题研究的主要内容和预期目标 主要内容:

数字图像处理实验报告——图像分割实验

实验报告 课程名称数字图像处理导论 专业班级 _______________ 姓名 _______________ 学号 _______________ 电气与信息学院 和谐勤奋求是创新

实验题目图像分割实验 实验室 DSP室&信号室实验时间 实验类别设计同组人数2 成绩指导教师签字: 一.实验目的 1.理解图像分割的基本概念; 2.理解图像边缘提取的基本概念; 3.掌握进行边缘提取的基本方法; 4.掌握用阈值法进行图像分割的基本方法。 二.实验内容 1.分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的不同之 处; 2.设计一个检测图1中边缘的程序,要求结果类似图2,并附原理说明。 3.任选一种阈值法进行图像分割. 图1 图2 三.实验具体实现 1.分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的不同之 处; I=imread('mri.tif'); imshow(I) BW1=edge(I,'roberts'); figure ,imshow(BW1),title('用Roberts算子') BW2=edge(I,'sobel'); figure,imshow(BW2),title('用Sobel算子 ') BW3=edge(I,'log'); figure,imshow(BW3),title('用拉普拉斯高斯算子')

比较提取边缘的效果可以看出,sober算子是一种微分算子,对边缘的定位较精确,但是会漏去一些边缘细节。而Laplacian-Gaussian算子是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘的细节比较丰富。通过比较可以看出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。 2.设计一个检测图1中边缘的程序,要求结果类似图2,并附原理说明。 i=imread('m83.tif'); subplot(1,2,1); imhist(i); title('原始图像直方图'); thread=130/255; subplot(1,2,2);

图像处理边缘提取与分割实验报告附源码

边缘提取与图像分割 理论、算法、源码与实例 1)理论 一、边缘检测的基本方法: 各种差分算子,主要有: 差分边缘检测方法 Roberts梯度模算子 前两种对垂直,水平,对角检测好。 Prewitt算子,Robinson算子(算八个方向的梯度最大值) Sobel算子(利用上下左右加权,可平滑噪声); Kirsch算子 Rosenfeld算子 Laplace算子(二阶导数算子,一般不用于检测,用于之后判别暗区与明区。) LOG算子,(高斯平滑后求导提取边界。) 主要思路用高斯函数对图像平滑滤波,然后再对图像进行拉普拉斯运算,算得的值等于零的点认为是边界点。 该算法高斯函数方差取值很重要,过大会导至精度不高。还容易产生虚假边界。但可以用一些准备去除虚假边界。对于灰度渐变图的效果也不太好。但大部份图片边缘提取效果还好。Canny边界检测算子 二、拟合曲面求导提取边界。 主要思路为在点的邻域各点拟合一个曲面,由曲面的求导代替离散点求差分,这种方法对于噪声比较不敏感。 三、统计判决法提取边界 以误判概率最小化设置门限,对边界检测算子作用后的每个像点判别/。统计判决法依赖于先验知识。 四、分裂—合并算法 按一定的均一化标准,将图片分成子图。合并满足均一性准则的子图。

五、跟踪技术 1)区域跟踪,基于区域的图像分割方法。 应用于直接提取区域。检测满足跟踪准则的点,找到这样的点,检测其所有邻点,把满足跟踪准则的任合邻点合并再重复。直到没有邻点满足检测准则。 2)曲线跟踪,基于边界的图像分割方法。 对整幅图扫描,对所有“现在点”的邻点检测,周围没有满足跟踪条件的点时,返回到上一个最近的分支处,取出另一个满足跟踪原则的现在点。重复根踪。 六、模型化与统计检验法检测边界 开始步骤为对图像划分成多块子图,每块子图进行曲面拟合。并应用误差的分析,构造F 统计量,判断此区域是否有边界的存在。 七、匹配检测技术 基于区域的一种分割方法。 1)归一化互相关测度匹配 类似于求相关系数。但是这种方法实用时不太理想,因为匹配模板的尺寸跟图上的尺寸差异,造成操作很难。 2)匹配滤波器 基于最大信噪比准则。 用一个滤波器对图像子图作卷积,当滤波器为子图旋转180度后的K倍时,功能与相关系数一样。此时称为匹配滤波器。 3)线检测 用匹配滤波器可以设计一些线检测器。对直线检测效果好。 八、利用模式识别某些技术进行图像分割 对每个像素提取特征,提取一个n维特征,如果特效果好,那么在特征空间里,像素点会表现出类聚。一般来说,特征是区域性的,一般是征对邻域或图像的各个子图提取特征。通常特征包含,灰度,空间关系(梯度,像素小块邻域平均灰度,纹理参数,颜色)等。 九、基于活动轮廓模型的边界提取算法 不同于经典的基于求导自下而上过程,而是一种基于总体和局部的自上而下和自下而上的处理过程。借助一些物理概念构造一个描述轮廓状态指标,将图像灰度分布,灰度梯度及轮廓形状约束等信息作为“外能”和“内能”构造活运轮廓的能量函数。将一个初始轮廓放在感兴趣的图像区域中,轮廓在外力和内力作用下变形,外力推动活动轮廓向着物体的边缘运动,而内力要使活动轮廓趋于光滑和保持其拓朴性。在达到平衡时,对应的能量最小,此时的活动轮廓即为要检测的边界。 十、基于视觉特性的边界提取方法 ——线性加权函数(LWF)在边界检测中的应用 视觉系统对亮度对比度的感知可以转化为数学中的微分算子的特征值问题,视觉的感觉响应类似于高斯函数与其拉普拉斯变换之和。基于生理学和数学导出的线性加权函数(LWF)是高斯函数与它的二阶导数的线性组合. 视觉处理过程是图像与一系列不同方差的高斯函数及其二阶导数的卷积过程。

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

相关文档
相关文档 最新文档