文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论典型例题第4章

概率论典型例题第4章

概率论典型例题第4章
概率论典型例题第4章

第四章 大数定律与中心极限定理

例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。

分析:切比雪夫不等式:2{}DX

P X EX εε?≥≤或2{}1DX P X EX εε?<≥?,

显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。

解:由于 0)(=+Y X E ,

()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××?=,

故由切比雪夫不等式 1216

)(}6{2=+≤≥+Y X D Y X P 。 注:还是用到第三章数字特征的一些性质。 除了切比雪夫不等式本身,这也是另外的知识点。

例2.设()0(0)g x x ><<+∞,且为非降函数。 设X 为连续型随机变量且[()]E g X EX ?存在。 试证对任意0ε>,有

[()]

{}()E g X EX P X EX g εε??≥≤。

分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。

证明:设随机变量X 的概率密度为()f x ,则有

{}()x EX P X EX f x dx εε?≥?≥=

由于()0g x >,且非降,故当X EX ε?≥时,有

()()g X EX g ε?≥,()

1()g X EX g ε?≥,

所以

(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε?≥?≥??≥=

≤∫∫ 1()()()g X EX f x dx g ε+∞?∞

≤?∫ [()]

()E g X EX g ε?=。

注:这是切比雪夫不等式的推广。 当2()g x x =时,即为切比雪夫不等式。

例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分

布,则当n →∞时,21

1n

n i i Y X n ==∑依概率收敛于 。 (A ) 0 (B ) 12 (C ) 14

(D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。

解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为

2

22111()422i i i EX DX EX ??=+=+=????。 根据辛钦大数定律,当n →∞时,21

1n

n i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。

注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。

切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。 但是只有辛钦大数定律不要求方差存在。

同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不

要认为条件不满足的随机变量序列就一定不服从大数定律。

几个大数定律的适用场合:

伯努利大数定律仅适用于伯努利试验,讲的是频率收敛于概率。

切比雪夫大数定律用于独立序列且具有有界方差,比伯努利大数定律应用范围大为扩展。

辛钦大数定律用于独立同分布场合,最适宜于在数理统计中应用。

显然,伯努利大数定律是辛钦大数定律的特殊情形,但是辛钦大数定律不是切比雪夫大数定律的推广,因为它要求同分布。

例4.设随机变量12,,,n X X X L 相互独立,12n n S X X X =+++L ,则根据林德伯格-列维中心极限定理,当n 充分大时,n S 近似服从正态分布,只要12,,,n X X X L 满足 。

(A )有相同的数学期望。 (B )有相同的方差。

(C )服从同一指数分布。 (D )服从同一离散型分布。

分析:林德伯格-列维中心极限定理要求的条件是12,,,,n X X X L L 相互独立、同分布、方差存在,这时,当n 充分大时,n S 才近似服从正态分布。 根据条件分析选项即可。

解:显然选项A 与B 不能保证12,,,n X X X L 同分布,可排除。

选项C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布,方差肯定存在,故满足定理条件。

选项D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证方差一定存在,因此也应排除。 故选C 。

注:本例重在考察中心极限定理的条件。

例5.假定某电视节目在S 市的收视率为15%,在一次收视率调查中,从该市的居民中随机抽取5000户,并以收视频率作为收视率,试求两者之差小于1%的概率。

分析:这个抽样调查中的重要问题用伯努利概型作为数学模型是很自然的,所求的是0.01n

p n μ?<发生的概率,其中5000,0.15,n n p μ==为5000户中收视该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态分布为极限定理。

解:设n μ为5000户中收视该节目的户数,则~(,)n B n p μ,其中5000,0.15n p ==。 由棣莫弗-拉普拉斯中心极限定理,

近似服从

(0,1)N 分布,从而

0.01

n P p P n μ????<=

212(1.98)1?≈Φ?=Φ????

20.9761510.9523=×?=。

注:在实际工作中当然关心这个概率。 这是典型应用之一,即棣莫弗-拉普拉斯中心极限定理直接用于二项分布的近似计算,也用于频率与概率误差的计算,体现在下式:

21?n P p P n μεβ????<=≈Φ?=???????。 本例即应用了此式,解决的是三类常见问题之一:已知,,n p ε,求β。

例6.在例5中为使该节目收视频率与收视率之差小于1%的概率达到99%,则至少要抽多少户?

分析:模型没变,所以还是要用棣莫弗-拉普拉斯中心极限定理,只不过是问题的变形。

解:由例5知

1?P β?=,

则得 12

β?+Φ=???, 问题相当于已知0.01,0.15p ε==及0.99β=求n

,即

0.995?Φ=???。

反查标准正态分布表()1z ααΦ=?

,得0.9950.01 2.58z ==。 因此 22580.150.858487n =××≈。

注:这是棣莫弗-拉普拉斯中心极限定理典型应用之二:已知,,p εβ,求最小n 。

例7.设在某种重复独立试验中,每次试验事件A 发生的概率为14

,试问能以0.9997的概率保证在1000次试验中A 发生的频率与概率相差多少?此时发生的次数在哪个范围内?

分析:贝努利概型下,求解事件发生的频率与概率的误差,用到棣莫弗-拉普拉斯中心极限定理。

解:设A μ为在1000次试验中A 发生的次数,同时其频率与概率的绝对偏差为ε,则

10.999710004A P με???<=????

由棣莫弗-拉普拉斯中心极限定理得

1210.999710004A P με?????<≈Φ?=????????

, 即(73.03)0.99985εΦ=,

查标准正态分布表可得,73.03 3.62ε=,从而0.0496ε=。 此时事件A 发生的次数A μ满足

10.0496,200.4299.610004

A

A μμ?<<<。 因此事件A 发生的次数在201到300次之间。

注:这是棣莫弗-拉普拉斯中心极限定理典型应用之三:已知,,n p β,求ε,在p 未知时,利用1(1)4

p p ?≤

可得ε的估计式。

例8.据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机的抽取16只,设它们的寿命是相互独立的。 求这16只元件的寿命的总和大于1920小时的概率。

分析:题设为这16只元件的寿命独立且同为指数分布,典型的独立同分布场合,要求的是寿命总和的取值概率,这与林德伯格-列维中心极限定理的应用条件结论完全吻合。

解:设i X 表示第i 只元件的寿命(1,2,,16)i =L ,设T 为16只元件的寿命总和,则有161i i T X ==∑,由题设知2100,100i i EX DX ==,由林德伯格-列维中心

(0,1)N

分布,故所求概率为

{1920}1{1920}

11400P T P T P >=?≤??=?≈?Φ??

=1-0.7881=0.2119。

注:林德伯格-列维中心极限定理同棣莫弗-拉普拉斯中心极限定理一样,可类似引出三类计算问题。 由定理可知在n

足够大以后,有近似式

()()?n i i X EX P x x p ??????<≈Φ=?????

∑。 第一类问题:求p ;

第二类问题:求最小的n ; 第三类问题:求在一定概率下1n

i i X =∑的取值范围。

本例即解决的第一类问题。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

概率论题目

概率论感觉测试(答案) 1. 假设考试周为1个礼拜(周一到周日),且考试时间为均匀分布,假使你有3门考试,则最后一门考试大约在 A 周五 B 周六 C 周日 Answer: B. 一般的讲在[0,1]之间n个均匀分布的随机变量最大值期望为n/(n+1),也就是可以认为这n 个随机变量分别大约在1/(n+1),2/(n+1),...,n(n+1)。这道题那么算一下大概就是在周六的上午。 2. 如果你去参与一项赌博,每次的回报为正态分布,假设你赌了100把发现赢了10000块(明显是很小概率事件,但假设确实发生了),那么你觉得你最有可能是因为 A 有一把赢了巨多 B 一直在慢慢的赢 C 两种情况都有可能 Answer: B. 也许答案对很多人有些出乎意料。在这种情况下,可能有人觉得能够连续赢很多把很难,但是实际上赢一把大的更难。这个问题是随机问题中的长尾和短尾的问题。长尾的意思就是取大的值的概率不是很小,而短尾正好相反。但是题目中的正态分布属于短尾,因为密度函数是指数下降的,如果稍微改一下题目中的分布,则有可能是因为一次赢了很大而最后赢的。另外说一句,有一本书叫《长尾理论》,里面说明了现在的经济中有很多东西是长尾的,比如说一年销量排在100000名之后的歌曲仍然能占据市场的一部分。这是电子商务流行的很重要原因,因为不必支付储存这个长尾的cost。 3. 有一根密度不均匀的绳子,你想通过测量多点的密度来估计他的重量(你知道截面积)。则如果给你n 次测量密度的机会的话,如果n很大,(估算质量就通过这些点取平均然后乘以截面积) A 按规律等间隔选取测量点会测得准些 B 随机选取测量点会测得准些 C 两种方法差不多 Answer: A. 也许这个也略有些意外。对于一维的情况,方法A略好于方法B。但是在高维的情况下方法A就一般情况下不如方法B了,原因是要想获得相同的效果,这个“有规律的点”需要选取太多。这是所谓的Quasi-Monte Carlo Sampling 和Monte Carlo Sampling之间的关系 4. 台湾大选,假定马英九最终得到600000票,谢长廷得到400000票,如果一张一张的唱票,则过程中马英九一直领先谢长廷的概率为 A 0.1 B 0.2 C 0.3 D 0.4

概率论与数理统计总结之第四章

第四章 数学期望和方差 数学期望: 设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k … 若级数k k k p x ∑∞=1绝对收敛,则称级数k k k p x ∑∞ =1的和为随机变量X 的数学期望,记为 E(X),即E(X)=k k k p x ∑∞ =1 设连续型随机变量X 的概率密度为f(x), 若积分?∞∞-dx x xf )(绝对收敛,则称积分?∞ ∞-dx x xf )(的值为随机变量X 的数学期望,记为E(X),即E(X)=?∞ ∞-dx x xf )( 数学期望简称期望,又称为均值 数学期望E(X)完全由随机变量X 的概率分布所确定,若X 服从某一分布也称E(X)是这一分布的数学期望 定理 设Y 是随机变量X 的函数:Y=g(X)(g 是连续函数) 1)X 是离散型随机变量,它的分布律为,2,1,}{===k p x X P k k …,若k k k p x g )(1∑∞ =绝对收敛,则有[]==)(()(X g E Y E k k k p x g )(1∑∞ = 2)X 是连续型随机变量,它的概率密度为f(x )。若?∞ ∞-dx x f x g )()(绝对收敛,则有E(Y)=E[g(X)]=?∞ ∞-dx x f x g )()( 数学期望的几个重要性质:

1.设C 是常数,则有E(C)=C 2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X) 若A,B 相互独立,则有E(AB)=E(A)E(B) 3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y) 方差 设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为D(X)或Var(X),即D(X)=Var(X)=})]({[2X E X E - )(X D ,记为σ(X),称为标准差或均方差 对于离散型随机变量,k k k p X E x X D ∑∞=-=1 2)]([)( 对于连续型随机变量,dx x f X E x X D )()]([)(2?∞∞ --= 随机变量X 的方差计算公式:22)]([)()(X E X E X D -= 方差的几个重要性质: 1.设C 是常数,则D(C)=0 2.设X 是随机变量,C 是常数,则有)()(2X D C CX D = 3.设X,Y 是两个随机变量,则有 ))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+ 特别地,若X,Y 相互独立,则有 D(X+Y)=D(X)+D(Y) 4.D(X)=0的充要条件是X 以概率1取常数C ,即P{X=C}=1,显然这里C=E(X)

概率统计经典习题

立足概率基础 关注横向联系 诸暨中学 邵跃才 随着高考改革的深入,概率统计问题已经成为高考命题的一个重点内容。其考查的内容主要有:等可能性事件发生的的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,随机事件的分布列和数学期望等基本概念和求解方法。概率问题虽然常常以实际应用题的形式出现,但近几年也逐渐开始和传统知识及相关学科的交汇融合,形成一些背景新颖、结构精巧的综合题。 一、典型例题 1.等可能性事件发生的概率 例1 先后抛掷两枚均匀的正方形骰子(六个面上分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X ,Y 则满足1log 2=Y X 的概率为( ) A.16 B.536 C.112 D. 12 解: 满足1log 2=Y X 即Y=2X 的有序数对为(1,2),(2,4),(3,6) ∴231612 P == 故选C 例2 将1,2,…,9这9个数平均分成三组,每组的三个数成等差数列的概率为( ) A .561 B .701 C .3361 D .420 1 解:本题的关键是求“每组的三个数成等差数列”这一事件中的基本事件数,基本事件 总数为n=28033 333639=A C C C ,每组三数成等差数列的分法可按前两组的公差大小分类计数,则有(1,2,3)(4,5,6)(7,8,9); (2,3,4)(6,7,8)(1,5,9); (1,3,5)(2,4,6)(7,8,9); (4,6,8)(5,7,9)(1,2,3); (1,4,7)(2,5,8)(3,6,9)。 ∴m=5, 56 12805==P ,故选A 例3某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等 可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 . 解:“6位乘客按0,1,2,3的人数分配到4节车厢”这一事件中基本事件的个数,

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率学经典计算题

1. (袋中有红球6个, 白球4个, 从中取两次, 每次任取一个, 作不放回抽样. 设事件A 表示 “第一次取的是红球”, 事件B 表示 “第二次取的是白球”, 用B A ,表示下列事件, 并求其概率: 1)两个都是红球; 2)两球中,白球和红球各有一个; 3)第二次取的是红球. 解:1) 262101 ()3C P AB C ==................................................(5’) 2) 11462 108 ()15C C P AB C ==.....................................................(10) 3)1124662 103 ()5 A A A P B A +==......................................................(15’) 2.(7分) 某宾馆大楼有3部电梯,通过调查,知道某时刻T ,各电梯正在 运行的概率均为0.8,求:(1) 在此时刻恰有一台电梯运行的概率; (2) 在此时刻至少有一台电梯运行的概率. 解: (1) 096.02.08.032 =??=P 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(3’) (2) 992.02.013=-=P 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(7’) 3.(8分)某工厂有甲、乙、丙三个车间生产同一种产品,如果每个车间的次品率分别为6%,3%,2%,已知甲、乙、丙三个车间的产量分别占总产量的25%,25% ,50% 。现从全厂产品中任取一件产品,求取到的为次品的概率。 解:设123,,A A A 分别表示“取到的产品为甲、乙、丙车间生产的” B 表示“取到的产品为次品”,则 123()25%,() 25%,()50%P A P A P A === 123(|)6%,(|)3%,(|)2%P B A P B A P B A ===。 。。。。。。。。。。。。。。。。(3’) 由全概率公式,所求概率为 3 1()()(|) i i i P B P A P B A ==∑ 25%6%25%3%50%2%=?+?+? 3.06%=。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。(8’) 4. (8分) 设随机变量X 在区间],0[π上服从均匀分布,求随机变量

相关文档
相关文档 最新文档