文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米磁性材料的制备方法上比较与应用.

纳米磁性材料的制备方法上比较与应用.

纳米磁性材料的制备方法上比较与应用.
纳米磁性材料的制备方法上比较与应用.

纳米磁性材料的制备方法上比较与应用

作者:王庆禄, 张志刚, WANG Qing-lu, ZHANG Zhi-gang

作者单位:王庆禄,WANG Qing-lu(唐山师范学院,教务处,河北,唐山,063000, 张志刚,ZHANG Zhi-gang(唐山师范学院,物理系,河北,唐山,063000

刊名:

唐山师范学院学报

英文刊名:JOURNAL OF TANGSHAN TEACHERS COLLEGE

年,卷(期:2008,30(5

被引用次数:0次

参考文献(20条

1.徐小玉.赵玉涛.戴起勋磁性复合材料的制备技术与研究进展[期刊论文]-材料导报 2005(07

2.张立德.牟季美纳米材料与纳米结构 2001

3.阂娜.陈慧敏.李四年碳纳米管在磁性材料中的应用[期刊论文]-湖北工学院学报 2004(01

4.王美婷.尹衍升.许风秀磁性纳米流体制备方法及其应用简介[期刊论文]-山东轻工业学院学报 2004(04

5.程敬泉.高政.周晓霞磁性纳米材料的制备及应用新进展[期刊论文]-衡水师专学报 2007(03

6.徐春旭.李茹民.景晓燕超微铁氧体磁性材料的制备技术[期刊论文]-应用科技2004(03

7.徐慧显.李民勤葡聚糖磁性威力固定化 1996(06

8.张密林.王君.辛艳凤羟基纤维磁性微球的制各[期刊论文]-应用科技 2000(06

9.邱广亮.金质兰磁性复合微球的制备[期刊论文]-精细化工 1999(01

10.张津辉.蒋中华磁性微球的制各 1997(09

11.武淑艳.吴明忠.李洪波化学共沉淀法制备钛酸钡陶瓷粉体的工艺研究[期刊论文]-《新技术新工艺》·材料与表面处理技术 2007(12

12.文加波.商丹磁性纳米Fe3O4的研究进展[期刊论文]-中国钼业 2007(04

13.蔡梦军.朱以华.杨晓玲磁性Fe3O4明胶复合纳米粒子的制备与表征[期刊论文]-华东理工大学学报(自然科学版 2006(03

14.张修华.王升氮化铁的制备及其在磁记录和磁流体中的应用进展[期刊论文]-湖北大学学报 2003(03

15.张咀.王少青稀土纳米材料的研究现状[期刊论文]-内蒙古石油化工 2005(06

16.符秀丽.李培刚大规模制备纳米线阵列及其磁学性质 2005(05

17.赵强.庞小峰纳米磁性生物材料研究进展及其应用[期刊论文]-原子与分子物理学报 2005(02

18.陈晓青.张俊山双层表面活性剂分散制备水基磁流体[期刊论文]-无机化学学报 2003(05

19.沙菲.宋洪昌纳米Fe2O3的制备方法及应用概况[期刊论文]-江苏化工

2003(05

20.王慧荣.李代禧.刘珊林纳米超顺磁性铁氧体的制备与研究[期刊论文]-材料导报 2007(05

相似文献(10条

1.学位论文颜世峰纳米磁性材料的制备及磁性能研究2005

本文采用溶胶-凝胶法、溶胶-凝胶自燃烧法、微乳液法等多种手段成功合成NiZnCu,MnZn,NiZn类尖晶石型铁氧体

(Ni0.65Zn0.35Cu0.1Fe1.9O4,Mn0.65Zn0.35Fe2O4和Ni0.5Zn0.5Fe2O4纳米粒子和W型Ba(CoxZn1-x2Fe16O27六角铁氧体纳米粒子以及尖晶石型铁氧体和二氧化硅(或聚苯胺

(Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2,Mn0.65Zn0.35Fe2O4/SiO2,Ni0.5Zn0.5Fe2O4/SiO2和NiZn铁氧体/聚苯胺的纳米复合材料。采用TGA-DTA、IR和Raman光谱、XRD、TEM、SEM、Mossbauer谱、VSM和SQUID研究了化学反应、结构、相变、粒径和磁学性质等方面的变化规律。

首次以PVA为配体,以价廉的金属硝酸盐为铁氧体前驱体的溶胶-凝胶法制备NiZnCu铁氧体纳米粒子。该工艺具有成本低、工艺简单、便于工业化生产的优点,制得的纳米粒子因为能有效降低烧结温度而成为多层片式电感方面优良的介质材料;尖晶石型铁氧体/SiO2(或聚苯胺纳米复合材料的制备有效减轻了不希望的晶粒粗化和粒子团聚现象。通过改进的以柠檬酸作为络合剂的溶胶-凝胶自燃烧法成功合成了高质量的均相MnZn铁氧体/SiO2纳米复合材料,克服了传统的溶胶-凝胶法中形

成凝胶过程过长以及制备高铁氧体含量的复合材料时不可避免地形成α-Fe2O3杂

质等缺点,该工艺具有成本低、高效、不需高温设备、便于放大生产的优点;微乳液法制备的铁氧体纳米粒子分散均匀,晶粒尺寸均匀,粒度和形态可控,并且易于实现对纳米铁氧体粒子的均相包覆。首次用透射电镜观察了微乳液法合成铁氧体纳米粒子的工艺过程,该手段直观生动地揭示了微乳液法合成NiZn铁氧体纳米粒子的每一步骤,有助于验证和更深入地理解微乳液法制备纳米粒子的基本原理;用两步微乳液法首次合成了具有新颖的类西瓜瓤结构NiZn铁氧体/SiO2纳米复合材料,因其两步合成法便于选择特定的核以获得期望的磁响应,可望在生物医学的磁性操纵方面有潜在应用。首次用微乳液法对合成的NiZn铁氧体磁流体进

行包覆以合成既导电又有磁性的核/壳结构的聚苯胺/NiZn铁氧体纳米复合材料,该复合材料兼有无机和有机材料的优异性能,在光、电和磁等领域展示了巨大的应用前景。

对合成的纳米磁性材料的磁性能研究表明:合成方法的不同、热处理温度和SiO2含量变化等对纳米晶形态、晶粒大小和铁氧体纳米粒予在SiO2基体中的分散状况等有着重要的影响,并最终影响样品的磁学性能。随着铁氧体粒子粒径的增大,样品由超顺磁性向亚铁磁性过渡,饱和磁化强度逐渐增大,矫顽力在粒径约等于单畴尺寸时达最大值。铁氧体粒子的磁性能还与测量温度有关,在阻截温度上下可能有截然不同的两种磁学性质。包覆后的铁氧体纳米粒子的磁学性能有一定改变,阻截温度向低温移动。

2.期刊论文盛国定.沈良.张义建.高建军La掺杂Co-Fe-O纳米磁性材料的制备

和表征-科技通报2003,19(3

以Fe(NO33·9H2O,Co(NO3 2·6H 2O和La2O3为原料,首先制备出晶粒细小的盐渍化碱式碳酸盐前驱体,在400℃、500℃、600℃、700℃、800℃分别烧结1 h,制备出CoFe 2O 4和LaCo 0.4Fe 0.6O 3纳米磁性材料,并用XRD、SEM和IR对样品进行表征,研究了不同的烧结温度和La掺杂对物相的形成及颗粒大小的影响.

3.学位论文成翠兰纳米磁性材料的制备及其在水处理中的应用2008

纳米粉体在诸多工业领域中有广泛的应用前景,Fe<,3>O<,4>作为一种具有磁性的功能材料,具有广泛的应用,Fe<,3>O<,4>颗粒的纳米化,使四氧化三铁的应用功能更为强大,因此,有关纳米Fe<,3>O<,4>的研究得到越来越多的重视。纳米二氧化硅是一种无机功能材料,由于它具有较低的密度、较大的比表面积、优良的化学和热稳定性、无毒性以及与其它材料良好的兼容性被广泛应用于许多领域。

本文采用共沉淀法制备纳米Fe<,3>O<,4>,选用NaOH作为沉淀剂,加入到

Fe<'3+>和Fe<'2+>的混合溶液中,制得了纳米磁性Fe<,3>O<,4>。以纳米

Fe<,3>O<,4>颗粒作吸附剂,研究其用量、粒径、吸附温度以及pH值几个因素对Hg<'2+>吸附效果的影响,考察了纳米Fe<,3>O<,4>颗粒对水中Hg<'2+>的吸附性能,并对吸附结果的重现性和吸附机理进行了研究。确定了最佳的吸附条件:纳米Fe<,3>O<,4>的用量0.06g、粒径6nm;纳米Fe<,3>O<,4>对

Hg<'2+>吸附的最佳温度为19℃、最佳pH值为3.5,此pH值不需要经过酸或碱调节,便于控制;纳米Fe<,3>O<,4>颗粒对水中Hg<'2+>的吸附去除率随其用量的增加、粒径的减小而增大。实验的重现性良好;纳米Fe<,3>O<,4>颗粒吸附水中

Hg<'2+>以物理吸附为主。该吸附过程符合Freundlich吸附方程,显示了很强的纳米效应,是一种具有较好应用前景的Hg<'2+>吸附剂。

鉴于一般模板法存在的问题以及Pickering乳液法制备复合粒子的优点,研究了纳米Fe<,3>O<,4>粒子稳定的Pickering乳液为模板合成磁性空心二氧化硅微球。通过SEM、TEM和XRD等手段对磁性空心二氧化硅球进行了表征,结果表明:产品为空心结构,分散性良好,大小在2-3微米左右,壁厚约为90-100nm,每个空心球都具有较强的磁性。这非常有利于用外加磁场对磁性空心二氧化硅进行分离。研究表明2-甲基吡啶的用量、硅烷偶联剂的用量及硅源对合成的磁性空心球结构和外貌有重要影响。研究表明磁性空心SiO<,2>对水中的Hg<'2+>具有较强的吸附作用,以聚甲基三乙氧硅烷为硅源制备的空心球对汞离子的吸附能力优于以正硅酸乙酯为硅源制备的空心球的吸附能力.本文还初步研究了纳米磁性材料对水中的重金属铬离子以及含有苯酚的有机污染水的吸附。处理效果与重金属汞离子相比,具有一定的差距,有待于进一步的研究,寻求吸附的最优化实验条件。

4.期刊论文高银浩.张文庆.GAO Yin-hao.ZHANG Wen-qing纳米磁性材料的制备及应用的新进展-广州化工

2009,37(5

介绍了纳米磁流体、纳米磁性颗粒、纳米磁性微晶及纳米磁性复合材料的制备方法并比较了各种方法的优缺点.并对纳米磁性材料的应用进行了概述,对其研究前景进行了展望.

5.学位论文郑重碳纳米管基纳米磁性材料的制备及表征2006

纳米磁性材料强大的生命力和广阔的应用前景使其成为物理、化学、材料等诸多学科领域的研究前沿。碳纳米管(CNTs由于其独特的管状结构和物理化学性质成为纳米领域研究的热点。在CNTs的基础上发展制备纳米磁性材料的新方法,开拓新的体系是一个十分重要的研究课题。

本文首次通过化学镀的方法在CNTs表面进行磁性复合镀层的涂覆,包括:Ni-P、Co-P、Co-Ni-P、Co-Fe-P复合镀层,以期获得一种新颖的一维纳米磁性材料,从而在磁记录材料、吸波材料、隐身材料等方面得到应用。在考察CNTs前处理的基础上,探讨了在CNTs表面获得致密均匀的镍、钴、铁镀层及其复合镀层的实验方法及工艺。同时,开展了镀覆条件及其工艺对镀层成分、结构、镀层均匀性的影响研究。考察了热处理镀层结构及其磁性能的相互关系,并采用多种先进的现代化仪器(透射电镜、扫描电镜、X-射线光电子能谱、振动磁强检测仪等对样品进行了表征,获得以下结论,其中一些创新性的结果对碳纳米管的进一步应用具有重要的现实意义。

(1采用化学镀的方法在CNTs表面进行磁性金属的涂覆,方法简单可行。可得到连续、均匀的镀层,使碳纳米管保持其原有的性质的同时又产生更加理想的磁学性质;

(2碳纳米管的前处理、高密度的活化点、较低的沉积速率、最佳的装载比及分散方式是得到连续包覆层的关键;

(3施镀温度、溶液的pH值和镀液金属主盐摩尔比对镀层的磁性能是重要的影响因素。特别应在施镀过程中控制镀液中金属主盐摩尔比,它决定着化学镀层组成元素含量比,进而决定镀层的磁性能;

(4采用诱发活化法,可以在CNTs表面获得较均匀致密化学镀镍层。但起镀慢,与活化敏化法相比不易掌控;

(5镀后矫顽力和比饱和磁化强度比镀前提高了很多。特别是镀钴磷的CNTs,矫顽力比镀前提高近5倍。镀钴磷和镀钴镍磷的CNTs,和薄膜镀层、粗粉及大块合金相比,矫顽力有不小的增幅,这是纳米尺寸所带来的新效应。

(6热处理后镀层连续、致密、光滑,对镀层磁性影响较大。

6.学位论文杨永斌磁畴观测系统研究及近场光学探针的制备2009

目前,纳米磁性材料的应用非常广泛,已经从传统的技术领域发展到高新技术领域,从单纯磁学范围,拓展到与磁学相关的交叉学科领域,其广度和深度比其他功能材料都要大得多。磁畴结构及其运动规律直接决定了磁性材料的物理性质和应用方向,因此纳米尺度的磁畴检测是进行纳米磁性材料研究的前提条件。与此同时,现有的磁畴检测技术都存在一定的不足之处,如分辨率较低、灵敏度较低、装置比较复杂或者昂贵等。因此对纳米磁性材料的进一步研究,需要一个更加完善的磁畴检测技术。

近场光学探针是扫描近场光学显微镜的核心器件。现有的近场光学探针制备技术都存在一定的缺点,如制备探针的重复性较差,制备的探针的分辨率较低或通光效率较低或者装置较复杂等。因此发展一种装置比较简单且制备探针的重复性较高的近场光学探针制备技术从而制备出分辨率和通光效率较高的探针,并进一步拓宽扫描近场光学显微镜的应用范围具有重要意义。

本论文的主要目的是设计和搭建一种分辨率和灵敏度较高、装置比较简单且便宜的磁畴观测系统,以及一种装置比较简单且制备探针的重复性较高并能制备高分辨率和通光效率的近场光学探针的装置。本论文的内容主要包括三部分。第一部分是新的磁畴观测系统的设计与搭建。第二部分是静动结合化学腐蚀法制备近场光学探针的理论分析。第三部分是新的近场光学探针制备装置的设计与搭建。

首先,我们利用巨磁阻磁头设计并搭建了一个新的磁畴观测系统。该系统主要由计算机、控制机箱、巨磁阻磁头、数字源表、离子风机、xy向扫描器、z向扫描器、电控位移台、四维调整架和光学显微镜及CCD摄像头组成。系统中的巨磁阻磁头是商用的,其中的巨磁阻薄膜的尺寸仅为几十纳米,因此其极易被静电损坏。我们着重研究了其被静电损坏的机制。根据静电产生的三种模式,分别采取了一些措施,解决了巨磁阻磁头极易被静电损坏的问题。利用我们搭建的这个系统,我们进行了记录在纳米磁性材料上的磁畴观测,得出了初步的实验结果。此外,我们还利用磁力显微镜观测了这些记录在纳米磁性材料上的磁畴,且将我们的系统所得的初步结果与磁力显微镜所得结果进行了比较,比较后的结果证实了我们系统的可行性。

其次,我们对静动结合的化学腐蚀法制备近场光学探针的原理进行了理论分析。首先,根据光纤移动速度对氢氟酸腐蚀液面的影响情况,我们具体分为了五种情况详细的分析了该法制备近场光学探针的过程,并得出了各种情况下,制备的近场光学探针的长度及锥角的函数表达式;然后我们又数值模拟并分析了腐蚀时间及光纤移动速度对所制备的近场光纤探针的长度及锥角的影响情况。根据上述分析,我们得出了该法制备探针的机理,即先由静态部分将光纤腐蚀成一个锥台的形状;在此彤状的基础上,再利用光纤的移动速度对氢氟酸腐蚀液面的影响情况,将光纤制备成各种结构的光纤探针。

最后,我们设计并搭建了一个自动化腐蚀法制备探针的装置。该装置主要由计算机、控制电路板、步进电机、手动平移台、精密平移台、横梁、支架、光纤夹、聚四氟乙烯烧杯、米勒钳、底座及带孔的盖子组成。利用该装置,我们进行了近场光学探针的实验制备,制备出了各种结构的光纤探针。然后我们用磁控溅射法在光纤探针表面进行了金属银的镀膜,并将镀膜后的光纤探针利用扫描电镜进行了观察。扫描电镜所得出的结果证实了我们搭建的这

所得结果基本一致。 7.会议论文李正南生物分子筛法制备纳米磁性材料 2002 本文介绍一种利用生物去铁蛋白自成形结构制备纳米金属材料的方法,我们称之为生物分子筛法.与传统的分子筛或微孔固体、介孔固体不同,去铁蛋白球体分散在水中形成一种胶体溶液系统.蛋白球体内有一直径约为8nm的空腔,该内腔通过16个分布在球壳上的,直径约为0.5nm的孔径道与外界相通.溶液中的目的金属离子被引入蛋白球体的内腔后,经还原而析出,形成包裹在蛋白球体内的纳米金属或纳米合金微粒.我们的实验室正在进行用上述生物分子筛法制备纳米Fe、Co、Ni和纳米FeNi的研究. 8.学位论文胡文斌钴纳米磁性材料的合成及性能研究 2009 钴纳米磁性材料以其优良的性能被广泛地应用于硬质合金、电池、永磁材料、金刚石工具制造等行业,粒度小分散性好且稳定的钴纳米磁性材料可以显著地提高材料的性能,本论文通过相关研究,制备出多种形貌新颖、粒径均匀、分散性好且性能优良的钴纳米磁性材料。运用各种分析和表征方法,对钴纳米磁性材料的性质进行表征。采用飞利浦Cu Ka射线衍射计(XRD对钴纳米磁性材料进行定性分析,以确定其物相组成和晶格参数;采用JEOL JSM-6700F型场发射扫描电子显微镜(FESEM 和H-800型透射电子显微镜(TEM观察钴纳米磁性材料的粒径大小、分散性及形貌;采用超导量子干涉仪 (SQUID对产物进行磁学性质测定。本研究以CoCl2溶液为原料,通过NaOH调节pH值,采用水合肼作为还原剂,在配位剂的帮助下制备钴纳米磁性材料。通过选择还原剂、挑选配位剂、调节各反应组分的摩尔配比,研究制备钴纳米磁性材料的最佳配方,并研究反应过程中的反应温度、反应时间、反应物浓度以及产物后期处理等因素的变化对制备工艺的影响。研究得到的最佳的实验条件是反应时间为2h,反应温度为180℃,当V水合肼/V乙二胺为2:5时,反应所得产物是由几个剑状花瓣从中心呈放射状分布的花状钴微晶,这些花瓣有锋利的尖端和突出的中轴线,其长度为0.5-1.5um,宽度为400nm,厚度为100nm,整个花状钴微晶的大小为3um左右;而当V水合肼/V乙二胺变化为1:1时,反应所得产物的形貌和尺寸大小发生了很大的变化,反应所得的产物是由几十个片状花瓣从中心呈放射状分布的花椰菜状钴微晶,这些片状花瓣有的有尖端,有的呈现六方片状,其长度为0.5-2um,宽度为1um左右,厚度为100nm,整个花状钴微晶的大小已经增长为7um左右。当使用聚乙烯吡咯烷酮(PVP作为配位剂

时,制备出粒径均匀且分散性好的树枝晶状钴纳米磁性材料。乙二胺在三维花状形态的形成中扮演了至关紧要的作用。三维花状的钴纳米磁性材料相对于大块的钴在室温条件下的矫顽力显著增强。另外,从不同温度下的测试结果中可以看出,在2K条件下,所测得的饱和磁化力(Ms和剩余磁化力(Mr的数值与300K条件下所测值没发生明显变化,但是矫顽力 (Hc却发生了明显的变化,从1030e(300K跃升至2270e(2K,可见,温度对产物的矫顽力产生了重大影响。 9.期刊论文刘献明.吉保明.LIU Xian-ming.JI Bao-ming 纳米结构铁氧体磁性材料的制备和应用 -应用化工2008,37(6 铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域.综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,分析了相关纳米结构铁氧体磁性材料的制备工艺对磁性能的影响,以及它们的应用,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景. 10.学位论文何敏博油基磁流体的制备工艺研究及功能高分子磁性微球的制备 2008 纳米磁性材料是20世纪70年代后逐步发展、壮大而成为最富有生命力和广阔应用前景的新型磁性材料与常规磁性材料相比。纳米磁性材料在很多方面体现出了优越的性能,如超顺磁性和较高的矫顽力。四氧化三铁(Fe3O4是一种重要的尖晶石类铁氧体,是应用最为广泛的软磁性材料之一。在实际应用中,纳米级的Fe3O4更以其显著的磁敏、气湿敏特性在高密度磁记录材料、磁流体材料、磁性高分子微球、气湿敏传感器件、核磁共振的造影成像以及药物控制释放等领域显现出了巨大的应用前景。其中,磁流体和磁性高分子微球是目前研究较多的两类磁性材料。目前的研究中,制备分散性好的、稳定性高的油基磁流体一直是磁流体制备过程的难点。本论文对油基磁流体的六种制备工艺进行了研究,制备出了在多种有机介质中纳米分散的四氧化三铁磁流体。红外光谱和X-射线衍射实验表明,油酸在Fe3O4粒子表面形成了包覆,且磁流体制备过程中表面活性剂油酸和有机介质的加入并不影响Fe3O4粒子的晶形。制备的Fe3O4粒子洗涤后,不经过干燥过程分散在有机介质中,得到的磁流体磁含量最高,达到 12%;磁流体中Fe3O4粒子粒径分布窄,绝大多数粒子粒径在6-10nm范围。在Fe3O4粒子制备过程中加入有机介质制得的磁流体粒径分布均一,粒子集中分布在5-7nm,磁含量在10%左右。得到的磁流体均具有很好的磁响应性和稳定性。制备粒径均一、

磁含量高、表面功能基含量高的功能高分子磁性微球一直是人们追求的目标。环氧基作为一种可以向多种功能基转化的“活性基团”,在实际应用中体现出了很强的适应性。本论文在制备的油基磁流体和水基磁流体存在下,以苯乙烯和甲基丙烯酸缩水甘油酯为共聚单体,采用分散聚合法制备出了粒径在3μm以下,分布均一、表面光滑、磁含量2.5%的磁性微球,该微球的单体转化率在75%以上,环氧基含量在0.02 mmol/g左右。考察了分散介质、稳定剂、油基/水基磁流体对微球粒径和磁含量的影响。本文链接:

https://www.docsj.com/doc/5c3603100.html,/Periodical_tangssfxyxb200805020.aspx 授权使用:中北大学(zbdxtsg,授权号:ab26c9e9-ce62-478b-8f26-9e9e00b32ed3 下载时间:2011年3月6日

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

纳米磁性材料

重庆科技学院课程结业论文 课程名称:磁性材料 论文题目:纳米磁性材料的发展与应用 院(系)冶金与材料工程学院 专业班级金属材料工程071班 学生姓名罗新中 学生学号 2007440375 任课教师陈登明老师 成绩:,评语: 2010年 7 月 2日

纳米磁性材料的发展与应用 罗新中 2007440375 摘要:论文介绍了纳米磁性材料的结构和性能,对纳米磁性材料在一些领域的应用原理进行了详细的阐述,评述了纳米器件的发展和应用前景,同时对纳米磁性材料的发展给出了一些自己的看法。 关键词:纳米;磁性材料;磁性器件 1 前言 纳米磁性材料技术早在20世纪70年代就被应用于共沉制造磁性液体材。1988年,法国巴黎大学教授研究组首先在Fe/Cr纳米结构的多层膜中发现了巨磁电阻效应,引起国际上的反响。此后,美国、日本和西欧都对发展巨磁电阻材料及其在高技术中的应用投入很大的力量,兴起纳米磁性材料的开发应用热。纳米磁性材料的特性不同于常规的磁性材料,主要是与磁特性相关的物理长度恰好处于纳米量级,例如磁单畴尺寸、超顺磁磁性临界尺寸、交换作用长度等大致在1nm~100nm量级,当磁性材料结构尺寸与这个物理长度相当时,就会呈现出反常的磁学性质从纳米材料的结构特征我们可将其分为3大类: 1.纳米颗粒型,如磁记录介质、共沉磁性液体、电渡吸收材料; 2.纳米微晶型,如纳米微晶永磁材料、纳米、微晶软磁材料; 3.磁微电子结构材料,如薄膜、颗粒膜、多层膜、隧道结等。 2 纳米颗粒型 2.1 磁存储介质材料 近年来,随着信息量的飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有着密切的关系,例如,要求每lcm 可记录1000万条以上的信息,那么,一条信息要记录在lmm~lOmm 中,至少具有300阶段分层次的记录,在1mm ~lOmm中至少必须有300个记录单位。若以超微粒作记录单元,可使记录密度大大提高纳米磁性微粒的尺寸极小,具有单磁畴

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

磁性纳米材料论文

1 磁性纳米材料的定义和进展 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1 - 100nm) ,或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性。而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 颗粒的磁性,理论上始于20 世纪初期发展起来的磁畴理论,理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值。铁磁材料,如铁、镍、钻等磁性单畴临界尺寸大约处于l0 nm 量级,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,人们在50 年代开始对镍纳米微粒的低温磁性进行了研究,提出了磁宏观量子隧道效应的概念,并在60 年代末期研制成了磁性液体。60 年代非晶态磁性材料的诞生为磁性材料增添了新的一页,也为80 年代纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料) 的问世铺平了道路。80 年代以后,在理论与实验二方面,开始对纳米磁性微粒的磁宏观量子隧道效应进行研究,现已成为基础研究的重要课题之一。如1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应,叩开了新兴的磁电子学的大门,为纳米磁性材料的研究开拓了新的领域[2 - 4 ] 。 2 磁性纳米材料的特点 量子尺寸效应: 材料的能级间距是和原子数N 成反比的,因此,

当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 3 磁性纳米材料的应用 由于纳米磁性材料具有多种特别的纳米磁特性,可制成纳米磁膜(包括磁多层膜) 、纳米磁线、纳米磁粉(包括磁粉块体) 和磁性液体等多种形态的磁性材料,因而已在传统技术和高新技术、工农业生产和国防科研以及社会生活中获得了多方面的广泛而重要的应用

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

磁性材料制作工艺

第一节铁氧体磁性材料概述 铁氧体磁性材料可用化学分子式MFe 2O 4表示。式中M 代表锰、镍、锌、铜等二价金属离子。铁氧体磁性是通过烧结这些金属化合物的混合物而制造出来的。铁氧体磁性的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体磁性能应用于高频领域。 首先,按照预定的配方比重,把高纯、粉状的氧化物(如Fe 2O 4、Mn 3O 4、ZnO 、NiO 等)混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温(1000~1400℃)下进行烧结。烧结出的铁氧体制品通过机械加工获得成品尺寸。上述各道工序均受到严格的控制,以使产品的所有特性符合规定的指标。 不同的用途要选择不同的铁氧体材料。有适用于低损耗、高频特性好的系列,有磁导率的线性材料。按照不同的适用频率范围分为:中低频段(20~150kHz )、中高频段(100~500kHz )、超高频段(500~1MHz )。 第二节铁氧体磁性材料的各项物理特性定义与计算公式 01) 初始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁性曲线始端的极限值,即 H B H i 00lim 1→μ=μ 式中 μ0:真空磁导率(4π×10-7H/m ); H : 交流磁场强度(A/m ); B : 交流磁通密度(T )。 02) 有效磁导率μe 在闭合磁路中(漏磁可以忽略),磁芯的有效磁导率可表示为: μe 72104××= e e A l N L π 式中 L :装有磁芯的线圈的自感量; N :线圈匝数; e e A l =C 1=磁芯常数(mm -1) 03) 饱和磁通密度B s

磁化到饱和状态的磁通密度。 04) 剩余磁通密度B r 从磁饱和状态去处磁场后,剩余的 磁通密度。 05) 矫顽力H c 从饱和状态去处磁场后,磁芯继续被反向的磁场磁化,直至磁通密度减小到零,此时的磁场强度称为矫顽力, 06) 损耗因素tan δ 损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和: tan δ=r e δδδtan tan tan h ++ =111r f e i V L h ++ 损耗因数也可用电阻和电抗之比来表示: L R R L R w eff m ωωδ?==tan 式中:tan δe :涡流损耗因数; tan δr :剩余损耗因数; h1:磁滞损耗因数; L :装有磁芯的线圈的自感量(H ); V :磁芯体积(m 3); i :电流(A ); e 1:涡流损耗系数; f :频率(Hz ); r 1:剩余损耗系数; R m :磁芯损耗的等效电阻(Ω); 0HH

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展 【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。 【关键词】铁氧体磁性材料;研究进展;制备 铁氧体是一种非金属磁性材料,又称磁性陶瓷。人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系,应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。因此,有必要对铁氧体磁性陶瓷材料的研究动态进行总结以及对其发展进行展望。 1.铁氧体磁性材料的研究进展 近年来,国内外学者在研究和改进磁性材料的同时,进行了卓有成效的新探索,其重点的研究和应用主要集中在以下几个方面。 1.1 铁氧体吸波材料 由于科学技术的迅猛发展,在武器的隐身技术和电子计算机防信息泄露技术中,以及在生物学中的热效应方面,铁氧体作为吸波材料方面的应用尤为重要。铁氧体吸波材料通常分为尖晶石型铁氧体与六角晶系铁氧体两种类型,其中尖晶石型铁氧体应用历史最长,但尖晶石型铁氧体的电磁参数(介电常数和磁导率)都比较小,而且难以满足相对介单一铁氧体难以满足吸收频带宽、厚度薄和面密度小的要求,所以近年来研究者主要集中研究复合铁氧体材料以及纳米尺寸的铁氧体来控制其电磁参数[1]。铁氧体纳米磁性材料作为微波的吸收体,纳米级的微粒材料的比表面积比常规粗粉大3~4个数量级,吸收率高,一方面,它能吸收空气中的游离的分子或介质中其他分子通过成键方式连接在一起,造成各向异性的改变。另一方面,在微波场中,活性原子及电子运动加剧,促使磁化,最终将电磁能转化为热能,从而增加吸收体的吸波能力。在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁氧体颗粒的涂层作为

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

纳米磁性材料及器件的进展

综述与动态 纳米磁性材料及器件的进展 马昌贵 (西南应用磁学研究所,四川绵阳 621000) 摘 要:概述了国内外纳米磁性材料及器件研究与开发的进展。具体介绍纳米磁性粒子、铁基纳米晶软磁合金、稀土永磁快淬磁粉、人工格、纳米磁性丝、射频用复合软磁材料的制备工艺、主要性能及其在磁记录、传感器、磁电子器件中的应用。 关键词:纳米材料;软磁合金;稀土永磁;人工格;磁电子器件;自旋阀 中图分类号:TM271 文献标识码:A 文章编号:1001-3830(2002)05-0036-05 收稿日期:2001-06-28 1 实用型纳米磁性材料 1.1 最早实用化的纳米磁性粒子 对微细、超微细磁性粒子的基础研究,大约始 于1970年代。当初,多以纯铁(α-Fe )为研究对象,目的是想制出高矫顽力(H c )的磁记录介质;制备工艺几乎都是采用化学沉积法。后来,运用真空蒸镀、溅射等技术,将这项研究工作向实用化阶段推进了一大步。 最早实用的纳米磁性材料,应当从美国宇航局和国家金属研究所开发成功的金属粒子磁性液体算起。 大家知道,磁性液体(又叫铁磁流体)是把纳米级的磁性颗粒通过表面活性剂,均匀地分散到载液中形成的稳定胶状体物质;已在宇航服、轴承、硬磁盘机(HDD )的密封和扬声器减震等方面得到广泛应用。磁性液体的基本参数是饱和磁化强度(M s ),其大小主要由构成胶体的磁性粒子的性质决定。最初的磁性颗粒,是采用真空化学汽相沉积(CVD )或球磨法制得的金属(Fe ,Co ,Ni )或合金粒子,平均粒径5~7nm ,制成的磁性液体的s 0M μ=120~150mT 。后来,又制成了低成本的氧化物(Fe 3O 4等)粒子磁性液体,其s 0M μ≈40mT 。为了提高材料性能,对高M s 氮化铁做了很多的研究。例如,把用等离子体CVD 法制得的ε-Fe x N 粒子(直径2~10nm )分散在甲苯中,制出的磁性液体s 0M μ=220mT 。 提高磁记录密度,需要高H c 记录介质和高饱和磁感应强度(B s )高磁导率(μ)磁头材料。采用共沉淀、水热合成等方法制出的纳米级Co 代换γ-Fe 2O 3、Co-Ti 代换的BaFe 12O 19氧化物粒子磁粉,利用真空蒸发、溅射等工艺制成的金属纳米粒子磁粉、连续薄膜介质相继投放市场,推动了高密度音视频磁记录装置和HDD 的快速发展。 1.2 铁基纳米晶软磁合金 正式以纳米磁性材料命名并迅速投入批量生产的,是日立金属(株)于1988年开发成功的铁基纳米晶软磁合金,商品名Finemet [1]。这是在Fe-Si-B 基础合金中同时添加Nb 和Cu 元素,先用快淬工艺将熔融合金甩成非晶薄带,然后在其晶化温度(≈550℃)进行热处理,生成由直径10~14nm Fe-Si 体心立方微晶埋在剩余未晶化非晶母体中的合金,标称成分为Fe 73.5Si x B 22.5-x -Nb 3Cu 1(通常x =13.5或16.5)。由于这种新型合金的软磁性能明显优于同类非晶材料(高e μ,高B s ,低磁芯损耗),故而受到广泛的重视,很快被用作饱和电抗器、共模扼流圈、高频大功率变压器等磁芯材料。在这种合金中,Nb 和Cu 的同时存在,对晶粒细化和阻止非磁性硼化物的生成起了重要作用。 在Finemet 开发成功后不久,日本阿尔卑斯(株)采用射频溅射工艺,又制成了Fe-M-C(M=Zr ,Hf ,Nb ,Ti ,Ta ,V 等)纳米晶薄膜合金,商品名“Nanomax ”[2]。这种溅射态薄膜合金仍系非晶材料,在550℃左右退火处理约20min ,便生成由α-Fe 和MC 构成的多晶体。MC 的平均粒径1~3nm ,均匀地分散在粒径不到10nm 的α-Fe 相中。Nanomax 具有B s =1.4~1.7T ,i μ(1MHz)=5000~6000,H c =4.8~7.96A/m ,s λ≈0,耐热温度高达700℃,因此,它们首先被用来制作高频磁记录磁头,如VTR 和R-DAT 用MIG 磁头,其记录特性

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

纳米磁性(1)

纳米磁性 1.磁性材料一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了很多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。 2纳米磁性材料的研究概况 纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。 2.1纳米颗粒型 磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提升。纳米磁性微粒因为尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提升信噪比,改善图像质量。 纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提升密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。

磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫 在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁 体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束 在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿 命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在 电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已 普遍采用磁性液体的防尘密封。磁性液体还有其他很多用途,如仪器 仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造 影剂等等。 纳米磁性药物:磁性治疗技术在国内外的研究领域在拓宽,如治疗癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定 在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有 效地杀死癌细胞。另外,还可以用磁粉包裹药物,用磁体固定在病灶 附近,这样能增强药物治疗作用。 电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。 因为纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这 种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得 红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测 器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标, 起到了隐身作用。 2.2纳米微晶型 纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性 能也在持续提升,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理 论值64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用 速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀

纳米磁性材料的研究进展

纳米磁性材料的研究进展 摘要 永磁材料在信息、计算机、通讯、航空航天、办公自动化、交通运输、家电、人体健康和保健等现代科学技术领域有着广泛的应用。近年来,科学技术水平不断更新,尤其是微机械、微电子等技术的迅猛发展,给磁性材料的发展创造了新的机遇,高性能、小型化、新功能日益成为磁性材料的研究趋势。由此具有极高能量密度的稀土永磁材料,尤其是具有小尺寸效应、表面效应、隧道效应等新物理现象的纳米稀土永磁材料越来越引起了人们的重视,相关研究方兴未艾。我国得天独厚的稀土资源优势,为稀土永磁材料的发展提供了极为有利的条件。开展纳米稀土永磁材料及应用研究,将对我国稀土相关产业的发展和稀土资源的有效利用起到积极的促进作用。 最近几年在用表面剂辅助高能球磨技术制备RCo5(R=Sm、Pr、Y、Ce)纳米稀土永磁材料研究中,发现球磨产物为一种具有较高形貌比的多晶的片状粒子,更为特殊的是这种片状粒子具有片外织构,即其组成的晶粒的c轴垂直于片状粒子的表面。这一发现对于制备高性能各向异性粘结磁体具有重要的意义。烧结NdFeB 是目前性能最好的永磁材料,各向异性的NdFeB粘结磁体正在不断发展之中。 关键词:稀土永磁材料、纳米磁性材料、研究现状、制备方法

一、永磁材料的研究现状 1、永磁材料的发展 永磁材料是这样的一种磁性材料:在被磁化至饱和然后去掉磁化场以后,然能够保留一部分的磁性,因此可以不需要电能的持续输入而提供磁场。其主要的性能指标是剩磁(Mr),矫顽力(iHc)和最大磁能积((BH)Max),其中最大磁能积是最重要的指标,它直接决定了同等设计条件下永磁材料的使用量和成本[1]。纵观永磁材料的发展史,磁性材料的发展就是最大磁能积的提高的过程。 在十九世纪末二十世纪初,永磁材料的工业使用开始显现,当时采用的是钨钢、碳钢、铬钢和钴钢等永磁材料磁能积(BH)max不到1 MGOe [2]。永磁材料大规模的使用在三十年代末,以成功研制了铝镍钴(AlNiCo)永磁材料为代表。铝镍钴永磁磁化强度很高,但顽力很小,磁能积仅5-10MGOe 左右。铝镍钴永磁的居里温度高达890℃,具有非常高的温度稳定性,因此在计测仪表及航空航天器件等对温度稳定性要求高的领域仍在使用。五十年代,人们研制出了铁氧体永磁。铁氧体永磁磁性能较差,磁能积不超过5 MGOe,但以廉价的氧化铁为原料,成本很低,主要应用于玩具、扬声器等对磁性能要求不高的领域。在六十年代,稀土钴永磁材料的问世,意味着稀土永磁体时代的到来。在1967年Dayton 大学(美国)的Strnat等人,用粉末烧结法成功地制备了SmCo5永磁体。由于稀土Sm的强磁晶各向异性(磁晶各向异性常数Ku达到10MJ/m3),因此SmCo5磁体的矫顽力非常高,磁能积一般在20 MGOe左右。值得注意的是SmCo5是第一种、工业规模使用的稀土永磁材料[3]。七十年代初出现了以Sm2Co17为基础的第二代稀土永磁,磁能积达到30 MGOe。钐钴磁体含有昂贵而稀缺的战略金属元素Co和稀有金属Sm,成本较高,但由于居里温度高(750-940℃),主要应用于航空航天、军事工业等高技术领域和高温工作环境。八十年代初出现了第三代稀土磁体钕铁硼(Nd2Fe14B)永磁体。钕铁硼永磁综合磁性能最好,磁能积达到50 MGOe以上,且成本相对较低,被誉为一代磁王。此外,在历史上还有Fe-Co-V、Cu-Ni-Fe、AlMnC、Fe-Co-Mo、MnBi 合金等被用作永磁材料[4]。这些材料,普遍磁性能较低,而且成本比较高,目前已经较少使用。在特殊场合下,采用的永磁材料还有FeCrCo、AlNiCo、PtCo 等材料。就目前发展趋势来看,Ba、Sr 铁氧体在工业应用较多的情况将会在许多场合被Nd-Fe-B类的材料所取代。稀土类永磁材料的产值已经很大程度超过铁氧体永磁材料,综上所述稀土永磁材料的生产,已经发展成为一大产业[5]。

纳米磁性材料及应用

纳米磁性材料及应用 摘要 纳米磁性材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好处于纳米量级关键词。利用这些特性,涌现出一些列新材料与众多应用。本文主要介绍了纳米微晶材料及其应用以及磁纳米颗粒在磁记录材料、磁性液体以及磁性药物方面的应用。 关键词:纳米磁性材料;纳米技术;磁性材料 1.引言 1.1物质的磁性 磁性现象的范围是很广泛的,从微观粒子到宏观物体,以至宇宙天体,都具有某种程度的磁性。按照现代原子物理学的观念,物质内部的元磁性体有以下两种[1]: (1)组成物质的基本粒子(电子、质子、中子等)都具有本征磁矩(自旋磁矩) (2)由于电子在原子内运动而产生的微观电流的磁矩(轨道磁矩),以及质子和中子在原子核内的运动所产生的磁矩 当大量原子和分子集团组成物质时,原子内的这些元磁性体之间有各种相互作用,这些相互作用就是物质的磁性起源。 1.2纳米磁性材料的分类 磁性材料一直是国民经济、国防工业的重要支柱与基础,应用十分广泛,尤其在信息存储、处理与传输中已成为不可缺少的组成部分,广泛地应用于电信、自动控制、通讯、家用电器等领域。随着技术的发展,磁性材料进入纳米阶段。纳米磁性材料及其应用主要分为四个方面[2]: (1)磁性纳米微晶材料及其应用;(2)磁性纳米微粒材料;(3)磁性纳米有序阵列及其应用;(4)磁性纳米结构材料及其应用。 1.3纳米磁性材料的特性 纳米磁性材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸、超顺磁性临界尺寸等大致处

于1-100nm量级,当磁性体的尺寸与这些特征物理长度相等时,就会呈现反常的磁学与电学性质[3]。表1所示为Fe、Ni的磁单畴临界半径和超顺磁性临界尺寸[2]。 表1 Fe、Ni的磁单畴临界半径和超顺磁性临界尺寸 M Fe Ni 磁单畴临界半径(nm)8.0 21.2 超顺磁性临界尺寸(nm) 6.3 25 2.磁性纳米微晶材料及其应用 磁性纳米微晶材料大致上可分为纳米微晶软磁材料与纳米微晶永磁材料二大类。 2.1纳米微晶软磁材料 纳米晶软磁材料一般是指材料中晶粒尺寸减小到纳米量级(一般≤50nm)而获得高起始磁导率(μi~105)和低矫顽力(Hc~0.5A/m)的材料。一般是在Fe-B-Si基合金中加少量Cu和Nb,在制成非晶材料后,再进行适当的热处理,Cu和Nb的作用分别是增加晶核数量和抑制晶粒长大以获得超细(纳米级)晶粒结构。纳米晶软磁材料由于其特殊的结构其磁各向异性很小,磁致伸缩趋于零,且电阻率比晶态软磁合金高,而略低于非晶态合金,具有高磁通密度、高磁导率和低铁损的综合优异性能。 纳米晶软磁材料是1988年由日本日立公司的吉泽克仁及同事发现的[4],他们将含有Cu、Nb的Fe-Si-B非晶合金条带退火后,发现基体上均匀分布着许多无规取向的粒径为10~15nm的α-Fe(Si)晶粒。这种退火后形成的纳米合金,其起始磁导率相对于非晶合金不是下降而是大幅提高,同时又具有相当高的饱和磁 感应强度,其组成为Fe 73.5Cu 1 NbSi 13.5 B 9 。他们命名这种合金为Finenet,Finenet 的磁导率高达105,饱和磁感应强度为 1.30T,表2所示为Finenet材料与铁氧体、非晶材料的特性对比。用于工作频率为30kHz的2kW开关电源变压器,重量仅为300g,体积仅为铁氧体的1/5,效率高达96%。Fe-Cu-Nb-Si-B系纳米材料能够获得软磁性的重点原因[2]是:在Fe-Cu-Nb-Si-B纳米材料中,α-Fe(Si)固溶体晶粒极为细小,每个晶粒的晶体学方向取决于随机无规则分布晶粒间的交换耦合作用,这种交换耦合作用的结果使得局域各向异性被有效地平均掉,致使材料的有

相关文档
相关文档 最新文档