文档视界 最新最全的文档下载
当前位置:文档视界 › 极化对单脉冲天线差波束指向的影响分析

极化对单脉冲天线差波束指向的影响分析

第32卷第11期2010年11月

现代雷达

ModernRadar

V01.32No.1l

Nov.2010

?天馈伺系统-中图分类号:TN820文献标志码:A文章编号:1004—7859{2010)11—0070—03极化对单脉冲天线差波束指向的影响分析

刘志惠,孙磊

(南京电子技术研究所,南京210039)

摘要:单脉冲雷达天线的差波束指向和灵敏度通常受2个通道的幅相不平衡性影响,通过仿真计算和测试,在某些情况下。天线极化形式也会对差波束指向带来影响,例如斜45。极化。文中对几种典型模型进行了仿真、对比,并结合测试情况,分析了这种现象的成因、产生条件、对雷达性能的影响,最后给出了几种解决方案。

关键词:单脉冲雷达;差波束指向;极化

Polarization7SImpactonOffsetBeamDirectionalityof

theMonopulseAntenna

LIUZhi—hui,SUNLei

(NanjingResearchInstituteofElectronicsTechnology,Nanjing210039,China)

Abstract:Theoffsetbeamdirectionalityandsensitivityofthemonopulseradarfiremainlyinfluencedbythegain—phaseimbalanceofthetwochannels.Basedonsimulationandtest,theoffsetbeamdirectionalityCallbealsoinfluencedbythepolarizationofthe

antennainsomesituations,suchillsthe45。inclinedpolarization.Inthispapersometypicalmodelsaresimulatedand

compared.

The

genesis,conditionsandthe

influenceonradarareanalyzed.Somesolvingmethodsareintroducedintheend.Keywords:monopulseradar;offset

beamdirectionality;polarization

0引‘言

单脉冲雷达天线常用的极化形式有水平线极化、

垂直线极化、圆极化¨。4J,某些情况下还会用到斜45。

极化,比如在无源探测领域,经常会用到450斜极化。

对于水平极化和垂直极化,差波束指向主要受幅度和

相位的不平衡性影响。对45。斜极化,差波束指向除

了受幅度和相位的不平衡性影响外,在偏离法平面的

切面上,天线的极化形式还会带来固有的指向偏差,即

空间的三维差零深面不再是呈水平或垂直方向,而是

存在一个小角度的倾斜,倾斜方向和倾斜程度直接受

天线单元在阵中所表现的辐射特性决定。在天线的俯

仰法平面上,差波束指向没有偏差,但偏离俯仰法平面

时,指向将出现偏差,且偏差程度随俯仰方向偏离法平

面角度的增大而增大。

l极化形式对差波束指向影响的仿真分析

对一个2×2排列的振子阵列的方位差特性进行

了仿真计算。

如图1所示,垂直极化单元的方位差零深面呈垂

直方向。如图2所示,斜450极化单元阵列差零深面

则有一个小角度的倾斜,且零深变浅。经过分析,我们

通信作者:刘志惠

收稿日期:2010-06-20??-——70?————Emall:lzh_rat@163.com

修订日期:2010-09-28’

发现有2个因素导致差零深面的倾斜:(1)阵列单元

的波瓣图不等化,如图3所示:振子单元H面波瓣比E

面波瓣宽,因此在偏离俯仰面法平面的A点,单元l

的场弱于单元2的场,导致在该处的场虽然在相位上

反相,但幅度不同,不能完全抵消,而在离单元2稍远

的B点出现了合成的最小值,但由于相位也出现了偏

差,因此差零深也相应变浅。(2)在阵中环境中,天线

单元的等效相位中心发生了偏移,从而导致差零深面

出现倾斜,如图4所示。

图1垂直极化单元及其波瓣图

差波束指向角的偏差程度随俯仰方向偏离法平面

角度的增大而增大,并受上述2个因素综合影响,当某

个因素占优势时,差零深面呈现相应的倾斜方向。在

该计算频点上,波瓣的不等化的因素占优势,差零深面

呈现如图3所示的倾斜方向。而且当俯仰面波束边窄

(此处我们以俯仰面单元数量的增大来实现)时,差零

深面的倾斜角也增大,如图5所示。

万方数据

天线各指标对网络的影响

一、天线各指标对网络的影响 (一)互调 互调信号是两个或多个信号通过天线发射时,由于材料的非线性原因将产生三阶或更高阶的调制信号,并可能落在上行频带内,对上行信号造成干扰。互调指标是天线的内部工艺水平和所用材质的集中表现,该指标会在天线长期使用过程中由于材料表面氧化、脱焊等原因逐渐恶化。 (二)驻波比 驻波比(SWR)全称为电压驻波比(VSWR)。在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会在天线产生反射波,反射波和入射波在天馈系统汇合产生驻波。电压驻波比过大,将缩短通信距离,反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。 (三)增益 相同的条件下,增益越高,信号覆盖的距离约远。理论上天线增益下降1dB,覆盖距离将缩小12.2%;增益过低会造成覆盖不足,增益过高会造成越区覆盖。 (四)前后比指标 前后比指标不达标的天线,天线的后瓣有可能产生越区覆盖,导致切换关系混乱、同邻频干扰,产生掉话,并增加了频率规划的难度和准确度。

(五)上旁瓣抑制 上旁瓣抑制不达标,会导致高层信号混乱,同邻频干扰的几率大大增加;另外目前城区高楼较多,会对天线上旁瓣信号造成反射,增加了越区覆盖、异常覆盖情况出现的几率。(六)交叉极化比指标 交叉极化比指标反映的是正交振子的不相关性,该参数的好坏直接影响天线极化分集的效果,对改善上行信号质量有非常重要的作用。 二、天馈故障分析 广西现阶段测试的主要工具为驻波比测试仪和互调测试仪,能够对驻波比、互调值和隔离度进行测试。 三阶互调指标是业界公认的无源器件综合性指标,它直接影响了产品的性能,是生产厂家在产品设计、生产、用料、工艺方面的集中体现。同时,除天线外,还有三类因素会影响系统互调指标:一是射频器件原因,如滤波器、耦合器等器件自身互调指标不合格;二是馈线原因,如馈线进水、弯折;三是工程质量原因,如接头制作及连接不牢,接头内有金属屑等。 天线的驻波比表示天馈线与基站(收发信机)匹配程度的指标,不匹配时,发射机发射的电波将有一部分反射回来,在馈线中产生反射波,反射波到达发射机,最终产生为热量消耗掉。接收时,也会因为不匹配,造成接收信号不好,因

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

天线隔离度

5G NR天线隔离度 5G NR(2.6GHz频段)与其它无线系统共址时,需预留足够的干扰隔离距离规避干扰,同时多系统共址时需要预留不同天馈系统间的安装和维护空间,因此建议: (1)5G NR(2.6GHz)系统与D频段TD-LTE系统邻频,需要时隙对齐避免交叉时隙干扰。 (2)5G NR大规模天线阵与GSM/NB-IoT(900MHz)CDMA 1X/NB-IoT(800MHz)/FDD LTE(900MHz和1.8GHz)/WCDMA/FDD LTE(2.1GHz)/TD-SCDMA(A频段)/TD-LTE(F频段)/5G NR(3.5GHz)/5G NR(4.9GHz)定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m;垂直距离≥0.3m。 (3)5G NR大规模天线阵与DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.9m;垂直距离≥0.3m。 (4)如果安装空间有限,可以适当缩减隔离距离,以不影响天馈系统安装和维护为宜。同时隔离距离不应该小于下表所示数值: 表 10.1-1 5G NR(2.6GHz频段)与其它移动通信系统共站站时的隔离距离要 求 1.15G NR( 2.6GHz频段)与其他无线电台(站)的干扰协调 根据中国人民共和国无线电频谱划分方案,在5G NR系统使用的2600MHz 频段(2500~2690MHz)附近,有低端和高端无线系统存在。 (1)低端:2483.5~2500MHz频段,分配给移动、固定、无线电定位、卫星移动(空对地)、卫星无线电测定(空对地)使用。

(2)高端:2690~2700MHz频段,分配给卫星地球探测、射电天文以及空间研究业务;2700~2900MHz频段,分配给航空无线电导航、无线电定位业务使用。 在2.6GHz频段低端,主要是5G NR与北斗一代导航系统的干扰。在2.6GHz 频段高端,主要是5G NR与航空无线电导航系统的干扰。 (1)5G NR与北斗一代导航系统的干扰协调 5G NR与北斗一代导航系统的干扰主要是5G NR基站和终端对北斗系统终端的干扰。 如果以被北斗系统终端的接受机灵敏度降低1dB为其干扰保护标准,则需要的干扰隔离距离要求如下表: 表10.0-1 5G NR(2.6GHz)与北斗一代卫星导航系统干扰隔离要求 考虑北斗系统终端的移动性,其所受到的干扰为瞬态干扰,因此从整体看,5G NR与北斗系统基本满足共存的要求。 为规避对北斗系统终端的干扰,除增强北斗系统终端的抗干扰能力外,建议综合采取以下干扰缓解工程措施: ①5G NR基站选址及建设时,保证周围一定范围内没有用户活动。 ②通过网络优化实现5G NR网络的良好覆盖,避免5G NR基站和终端以最大功率发射。 (2)5G NR与航空无线电导航系统的干扰协调 航空无线电导航业务属于重要的无线电业务,根据《中华人民共和国无线电管理条例》规定,在导航雷达周围应设置电磁环境保护区。保护区范围由各地无线电管理机构协调相关单位,结合当地地理地形等因素确定。从干扰规避的角度,干扰保护区的范围在视距范围外,且大于850米。 除设置电磁环境保护区外,为规避对5G NR与导航雷达的干扰,建议综合采取以下干扰缓解工程措施: ①提高5G NR基站在2700~2900MHz的抗阻塞指标。 ②5G NR天线最大辐射方向严禁朝向导航雷达。

微带天线的基本理论和分析方法

目录 摘要 (2) Abstract (3) 1 绪论 (4) 研究背景及意义 (4) 国内外发展概况 (5) 本文的主要工作 (6) 2 微带天线的基本理论和分析方法 (8) 微带天线的辐射机理 (8) 微带天线的分析方法 (9) 传输线模型理论 (10) 全波分析理论 (13) 微带天线的馈电方式 (14) 微带线馈电 (14) 同轴线馈电 (15) 口径(缝隙)耦合馈电 (15) 本章小结 (16) 3宽带双频双极化微带天线单元的设计 (17) 天线单元的结构 (17) 天线单元的设计 (19) 介质基片的选择 (19) 天线单元各参数的确定 (19) 天线单元的仿真结果 (21) 本章小结 (22) 4 结束语 (23) 参考文献 (24) 致谢 (26)

ku波段双频微带天线的设计 摘要 本文的主要工作是Ku波段宽带双频双极化微带天线研究。在微带天线的基本理论和分析方法的基础上,对微带天线的技术进行了深入的研究,设计了3种不同结构的Ku波段宽带双频微带天线单元,并完成了实验验证。依据传输线模型理论并结合软件仿真分析了3种不同结构的天线单元在天线的带宽、隔离度和增益等性能方面的差异,并作了比较,得出了性能最佳的一种天线单元结构形式。最后,对全文的研究工作加以总结,并提出本文进一步的研究设想。 关键词:Ku波段;双频;传输线模型;微带天线

Abstract In this paper, broadband dual-frequency and dual-polarized microstrip antenna at Ku band is described. Three kind s o f wideband dual-frequency and dual-polarized microstrip antenna element are proposed and their experimental verifications are completed which based o n the classical theory and a deeper stud y on broadband, dual-frequency and dual-polarization technique of microstrip antenna. From the transmission-line mode theory and simulative results, he bandwidth, isolation and gain characteristics of a microstrip patch element with various structures are analyzed in detail and compared, and an antenna element with the best performance is adopted. Based on the element described, four-element linear array and planar array is designed which adopted anti-phase feeding and dislocation anti-phase feeding technique, respectively. In addition, the technique of anti-phase feeding which suppress cross-polarized is further studied by using the even/odd theoretical analysis. Finally, we summarize the research of the paper with an outlook for the further researches. Key words: Ku band; dual-frequency; dual-polarized; microstrip antenna

天线参数及选择

一、天线的几个重要参数 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用哪一个纯出于习惯。在我们日常维护中,用得较多的是驻波比和回波损耗。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5。回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化

电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。) 3.天线的增益 天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。 4.天线的波瓣宽度 波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为功率强度

系统间隔离度及天线间距计算举例

WLAN 系统中和共址时 天线之间的最小间距计算 (版权所有) 我们选取以下模型来计算 WLAN 系统隔离度和室内分布中和共址时天 线之间的最小间距 干扰站 y y 被干扰站 图1两牛对W214扰校型 在这个模型中,从干扰源基站的功放输出的信号首先被发送滤波器滤波,然 后因两个基站间有一定的隔离而得到相应的衰减,最后被受干扰基站的接收 机所接收。 到达被干扰基站的天线端的杂散干扰功率可以表示: lb 二Ptxamp-Patte nutio n-lisolatio n+10*lg(BW1/BW2) 变形得: Iisolatio n=Ptxamp-Patte nutio n-Ib+10*lg(BW1/BW2) 其中: I 旳发找火亦干 脱电平 计以法L 卜旳千祝电平 的干九毗平

isolation :天线隔离度(dB) Ptxamp:干扰源功放输出杂散功率指标(dBm) Patte nuation:限带滤波器带外衰减 lb :允许最大杂散干扰(杂散干扰不应该大于带内总的热噪声Pn) BW1:被干扰基站信号带宽 BW2:干扰信号可测带宽 ( 1 )计算WLAN 频段和频段工作信道带宽内总的热噪声功率。 WLAN频段工作信道带宽为22MHz,因此WLAN频段工作信道带宽内总 的热噪声功率: Pn=-174dBm+10lg(22 ^HZ)=-101dBm WLAN频段工作信道带宽为20MHz,因此WLAN频段工作信道带宽内总的热噪声功率: Pn=-174dBm+10lg(20 ^HtQ二-101dBm (取值四舍五入,实际计算值均小于-101dBm) 则lb= Pn=-101dBm 2)根据我国无委型号核准测试标准, WLAN 杂散指标为-30dBm/MHz; 则:干扰源功放输出杂散功率指标: Ptxamp() =22 MHz &30dBm/MHz) =( 10lg22-30) dBm=-17 dBm Ptxamp ()=20 MHz x(-30dBm/MHz) = (10lg22-30) dBm=-17 dBm (取值四 舍五入,实际计算值均小于-17 dBm) 则Ptxamp=-17 dBm (3)常用WLAN设备的限带滤波器带外衰减Pattenuation为80dB 4) 10*lg(BW1/BW2)

全向天线技术

全向天线技术 陈燕林, 阮成礼 电子科技大学物理电子学院,四川成都(610054) E-mail :july1025@https://www.docsj.com/doc/5b7733922.html, 摘要:本论文主要分析了各种形式的全向天线,从单元天线到阵列天线都有涉及,并分析了各种形式天线的优缺点,根据多数全向天线低增益的特点,提出全向天线需提高增益的要求,并在文章结尾处简单罗列几种提高增益的方法。 关键词:全向,增益,单元天线,阵列天线 1.引言 天线是人们见闻世界的耳目,是人类与太空的联系,是文明社会的组成要素[1] 。随着移动通信事业在我国的迅猛发展,移动电话越来越多的为人们的工作和生活提供方便和快捷。而用户之间通信必须先由天线发射到基站,再由基站传递给所需的用户。因此,移动通信必须有基站天线的配合方可完成,也见证了基站天线的重要性。基站天线按天线辐射的方向图来分类一般可以分为全向天线和定向天线。定向天线一般用于移动用户密度较高的区域,例如市区、机场、商业中心等。而在移动用户密度较低的区域,例如市郊、农村等地区,由于用户分布比较稀疏,话务量不是很高,所设基站数目一般都比较少,密度比较底,这时就需要用到全向天线。而电波在空中传播时由于受到多方面衰落,为了保证通信质量,而又不增加基站数量,就要求天线的增益相对比较高,因此近年来开发高增益全向天线,来改善通信质量是通信系统中一个迫切的研究课题。本文对全向天线的形式进行了分析,并在结尾处简单罗列了几种提高增益方法。 全向天线发展至今,目前从结构形式上产生了多样化的成果,从最初的单极子,偶极子,双锥,螺旋天线到对数周期天线,微带,智能天线等,对一些自身很难达到全向辐射的单元天线,可将其组成阵列,就能形成全向辐射的方向图,本文中涉及到的有串馈直线式微带阵列天线,还有一些并馈微带阵列天线,渐变缝隙天线等。 2. 天线的方向性和增益 2.1 天线的方向性 天线在空间各点的辐射强度是不相同的,把天线置于球坐标中,在各点的辐射强度可用角坐标(θ,φ)的函数来表示,可写为方程(1), (,)E Af θ?= (1) 其中,A 为比例常数,f(θ,φ)称为天线的方向图函数[2] 。 为了使用方便,一般取方向性函数的最大值为1,得到归一化方向性函数,记为 (,)(,)/fmax F f θ?θ?= (2)

收发天线隔离度

收发天线隔离度? 在安装天线时, 一般要求天线的水平隔离度约为 5 λ至10 λ, 垂直隔离度约为 1 λ。 GSM系统中天线隔离度为避免交调干扰,GSM基站的收、发信机必须有一定的隔离,Tx-Rx:30dB;Tx-Tx:30dB。这同样适用于GSM900和GSM1800共站址的系统。天线隔离度取决于天线辐射方向图和空间距离及增益,通常不考虑电压驻波比引入的衰减。其计算如下: 垂直排列布置时,Lv=28+40lg(k/ ) (dB) 水平排列布置时,Lv=22+20lg(d/ )-(G1+G2)-(S1+S2) (dB) 其中,Lv为隔离度要求,λ为载波的波长k为垂直隔离距离,d为水平隔离距离,G1、G2 分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1 、S2 分别为发射天线和接收天线在90°方向上的副(dBp,相对于主波束,取负值)。通常65°扇形波束天S约为-18dBp,90°扇形波束天线约为-9dBp,120°扇形波束S约为-7dBp,这可以根据具体的天线方向图来确定。采用全向天线时,S为0。 GSM900和GSM1800两系统天线支架应满足以下要求: 定向天线 同一系统内,同扇区两天线水平隔离间距≥4m;不同扇区两天线水平间距≥0.5m; 两系统间,同扇区两天线同方向时,天线水平隔离间距≥1m; 天线垂直隔离间距≥0.5 米;天线底部距楼顶围墙≥0.5米; 天线下沿和天线面向方向上楼顶的连线与水平方向的夹角>150; 全向天线 天线水平间距≥10米或天线垂直间距≥0.5米;天线下沿距楼顶围墙≥0.5米 ●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下: Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr) 其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当收发天线夹角为180°时,方向性损耗即为天线的前后比。 ●垂直隔离度Lv是收发信天线在垂直间隔距离上产生的空间损耗,表示公式如下:

圆极化天线交叉极化隔离度与轴比间的关系

对于圆极化或线极化通信制式的地面站天线来说,国际卫星(INTELSAT)组织有一些强制性技术要求。 例如,其中要求线极化地面站天线交叉极化隔离度XPD >=30dB; 而对于圆极化地面站天线: 1. 当地面站天线口径D>=4.5m时,要求天线交叉极化隔离度XPD不低于30.7dB(相当于天线轴比AR不大于1.06或0.5dB); 2.当地面站天线口径 2.5m<= D <=4.5m时,要求天线交叉极化隔离度XPD 不低于27.3dB(相当于天线轴比AR不大于1.09或0.75dB); 3.当地面站天线口径 D <=2.5m时,要求天线交叉极化隔离度XPD不低于17.7dB(相当于天线轴比AR不大于1.3或2.28dB)。 上面讲到了天线交叉极化隔离度XPD,天线轴比AR,以及轴比AR的两种表达形式。对于线极化地面站天线,由于天线是发射或接受线极化电磁波,没有轴比问题,所以只提交叉极化隔离度; 而圆极化地面站天线是发射或接受圆极化电磁波,所以既要用交叉极化隔离度,还可以用天线轴比。实际上轴比和交叉极化隔离度是相关的,知道了轴比就可以求出交叉极化隔离度,当然知道了交叉极化隔离度也可以求出轴比。如以下公式: (1) 其中R表示以dB为单位的轴比。 天线轴比一般用的最多有两种表示(还有用角度表示,但用的很少),一种是以dB 为单位的R表示,或者一种是无单位的b表示。前者一般在试验室测试很方便,所以研制生产人员用的较多。二者换算关系如下: (2) 轴比还可以用角度表示: R=20lg{ ( 1+sin Δ )/( 1-sin Δ) } (3) b= ( 1+sin Δ )/( 1-sin Δ) (4) 其中Δ = 0~90°(要用弧度表示) 由(1),(2),)式可以算出常用的几种数据: 轴比 b 1.06 1.09 1.3 轴比 R(dB) 0.506124 0.7485 2.2788

天线知识讲座讲解

天线部分 一、天线理论知识 天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。所以我们必须全面了解天线。 1、天线的方位图: 方位图是天线电气性能的最重要指标它直接全面的反映出天线的辐射特性。 定义:天线的辐射电磁场在一定距离上随空间角坐标分布的图形。 由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。 根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面; H面方向图:通过最大辐射方向并与磁场矢量平行的平面; 水平面方向图(Horizontal):是指与地面平行的平面内的方向图; 垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。 E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。 2、波瓣: 零功率点波瓣宽度:主瓣最大值两边两个零辐射方 向之间的夹角。 半功率点波瓣宽度:在E面或H面的等距线上,主 瓣最大值两边场强等于最大场强的0.707倍(或一 半功率密度)的两辐射方向之间的夹角。 副瓣电平:在E面或H面的等距线上,副瓣最大值 与主瓣最大值之比,通常用dB表示。 后瓣:与主瓣相反方向上的副瓣。 前后比:等距线上,主瓣功率密度最大值和后瓣功 率密度最大值之比(dB)

移动通信系统与天线

移动通信系统是有线与无线的综合体,它是移动网络在其覆盖范围内,通过空中接口(无线)将移动台与基站联系起来,并进而与移动交换机相联系(有线)的一个综合的复合体。而在移动通信系统中,空间无线信号的发射和接收都是依靠移动天线来实现的。因此,天线对于移动通信网络来说,起着举足轻重的作用,如果天线的选择不好,或者天线的参数设置不当,都会直接影响到整个移动通信网络的运行质量。尤其在基站数量多,站距小,载频数量多的高话务量地区,天线选择及参数设置是否合适,对移动通信网络的干扰,覆盖率,接通率及全网服务质量有很大影响。本文将向读者介绍一些有关天线的基本知识,并联系本人实际,谈谈天线在日常维护及网络优化中的作用。 一、天线的几个重要参数 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用哪一个纯出于习惯。在我们日常维护中,用得较多的是驻波比和回波损耗。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5。回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。)3.天线的增益 天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。 4.天线的波瓣宽度 波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为

卫星接收天线调整的三大参数

卫星接收天线调整的三大参数 09-03-10 11:25 发表于:《发烧寻星(卫星卫视交流)》分类:未分类 卫星广播电视从模拟到数字,从C波段到Ku波段,从传输到直播的发展非常迅速, 我国有线电视的信源多数来自于卫星。利用卫星传送技术进行覆盖是我国广播电视 传输的一个重要组成部分,如村村通广播电视工程中利用卫星信号进行覆盖的就占 了很大的比例。为此,卫星接收是广电机构技术人员所必须掌握的一门技术。 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和 馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经 75-135度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线,卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经 134度的位置,我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。 卫星天线的方位角计算公式是:A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。 方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。 2、仰角 仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。 仰角的计算公式是:

WCDMA共站址天线安装隔离度要求

WCDMA共站址天线安装隔离度要求 概述 随着运营商的增加和新移动系统的应用,同一站点出现几种制式共存的情况也将大大增加,由于基站天线的距离近,不同系统之间将产生干扰,如何避免、减少不同系统共站址时相互之间的干扰就成为一个突出的问题。共站址干扰主要是由一个系统基站天线发射的(杂散、互调)信号被(同站址)另一个系统基站天线接收到,而形成了干扰(或阻塞)。根据WCDMA与其它移动系统的隔离度要求,本文给出了共站址时WCDMA天线的安装要求,可作为共基站建设时天线安装的指导或建议。 1 共站址隔离度分析 1.1 WCDMA BS与其它系统共站址协议分析 根据文献[1]~[5],WCDMA与GSM 900MHz、DCS 1800MHz、PHS BS、CDMA2000 BS 或TD-SCDMA BS共站址时,考虑其它系统杂散对WCDMA接收灵敏度的影响小于0.1dB,得到的隔离度要求如下表所示: 表1根据协议WCMDA与其它系统共站址时隔离度要求 根据协议分析,由上表可以看出,WCDMA和其它系统基站基本不可能做到共站址。如果要共站址,必须对其它系统基站在WCDMA接收频段的杂散辐射进行滤波。 1.2 WCDMA BS与其它系统共站址建议值 表2WCMDA与其它系统共站址时隔离度建议值

说明:根据协议WCDMA与GSM、DCS、CDMA2000系统间要求的隔离度非常高,在实际情况中,一般要求隔离度在40dB以上,所用60dB是考虑到可能各家的GSM、DCS、CDMA2000系统设备杂散不一致而留了干扰余量。 2 共站址天线安装要求 2.1 各种系统所使用的天线情况 各系统频段内天线均包括: 1.全向单极化:增益11dBi(GSM、DCS、CDMA、WCDMA),10dBi(PHS) 2.定向单极化:水平波瓣宽度65°、90°,增益15dBi(GSM、DCS、CDMA、WCDMA),增益18dBi(DCS,WCDMA) 3.定向双极化:水平波瓣宽度65°,增益15dBi(GSM、DCS、CDMA、WCDMA),增益18dBi(DCS,WCDMA) 其中PHS系统是如下的形式:由多个天线单元构成,天线的下倾角比较大,一般在100以上。 2.2 需要考虑的各种组合方式 1.WCDMA全向天线与其它系统全向天线间: WCDMA-GSM WCDMA-DCS WCDMA-CDMA WCDMA-PHS WCDMA-WCDMA 由于只考虑WCDMA系统与其它系统的隔离度,不考虑其它系统之间的要求。 2.WCDMA全向天线与其它系统定向天线间: WCDMA-GSM WCDMA-DCS WCDMA-CDMA WCDMA-WCDMA

天线隔离度

1.各系统之间的干扰分析 1.1. 需考虑的干扰类型 由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。 1)杂散辐射(Spurious emissions) 由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。 邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。 2)接收机互调干扰 包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。 多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。 发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。 交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。 3)阻塞干扰 阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。被干扰系统可允许的阻塞干扰功率一般要求低于LNA的1dB压缩点10dB。 由于互调干扰主要出现在:有两个以上不同的频率作用于非线性电路或器件时,将由这两个频率互相调制而产生新的频率,若这个新频率正好落于某一个信道而为工作于该信道的接收机所接收时,此时所构成的接收机的干扰。本次共址建设的多个系统只是共用铁塔、机房等公共设施,收发信机间并不共用电路或器件,所以不会直接共同作用在非线性器件上,间接落在某系统非线性器件上的不同频率分量一般强度不高,产生的新频率分量较微弱。而且,互调干扰产物与各频率分配有关,可以通过频率规划(所分配频段内的频率调整),避免互调产物落在被干扰系统工作频点上。所以,本方案可以不考虑互调干扰,重点分析杂散干扰和阻塞干扰,并且按照两者中受限的一种,分析共址时的干扰抑制方案;由于基站发射功率大、接收灵敏度高,所以本例中多系统共址时主要考虑基站与基站之间的干扰。

一种高隔离度双极化微带天线的设计

一种高隔离度双极化微带天线的设计 苏振华尹应增任学施张杰乔青 (西安电子科技大学天线与微波技术国家重点实验室,西安 710071) 摘要:本文介绍了一种工作在Ku波段的高隔离度双极化微带天线,该天线采用邻近耦合和H槽缝隙耦合相结合的馈电方法实现了天线的双极化,双层反射地板的结构降低了天线方向图的后瓣。借助Ansoft 公司的HFSS仿真软件对该天线进行了仿真和优化,得到了较好的结构和指标参数。与常规的双极化微带天线结构相比,该天线具有高端口隔离度和低后瓣的特性。 关键词:双极化;微带天线;隔离度 Design of a Dual-polarization Microstrip Antenna Su Zhenhua Yin Yingzeng Ren Xueshi Zhang Jie Qiao Qing (Institute of Antennas and Electromagnetic Scattering,Xidian University, Xi'an 710071,China) Abstract: A high isolation dual-polarization microstrip antenna working at Ku-band is presented. This antenna is fed by methods of direct coupling and H-slot coupling to realize dual-polarization. Due to the double reflectors structure ,the antenna has a lower back-lobe. On basis of Ansoft HFSS software, this antenna is analyzed and optimized. Some good results are presented. Compared to conventional dual-polarization microstrip antenna, this antenna has better isolation and lower back-lobe characteristics. Keywords: dual-polarization ; microstrip antenna ; isolation 1 引言 微带天线由于具有体积小,重量轻,低剖面,易于加工以及与有源器件及电路集成等诸多有点,在通信,雷达等方面得到广泛的应用。另外,频谱资源日益紧张现代卫星通信领域迫切需要天线具有双极化功能,因为双极化可使它的通信容量增加一倍。 双极化技术的应用通常要求低交叉极化电平和高隔离度。单层的双端口馈电隔离度一般只能达到-25dB左右[1],多层馈电虽然结构稍微复杂,但是可以得到很高的隔离度。 本文首先对三层介质板单层反射板的微带双极化天线进行了分析,其结果表明方向图的后瓣比较大。然后采用了四层介质板,在最下层的介质板下方加了一块反射地板,得出比较理想的结果,其端口隔离度低于-40dB,后瓣降低了4.85dB。2 微带双极化天线的研究 2.1 天线的结构 三层介质板微带天线结构如图1所示,其中(a)是立体的侧视图,(b)是俯视图。天线由三层介质板组成,辐射贴片蚀刻在最上层即第一层介质板的顶部。邻近耦合馈电微带线在第二层介质板的上面,第二层介质板和第三层介质板之间放置反射地板,H 槽开在这反射地板上面,第三层介质板的下侧为通过H槽耦合馈电的微带线。三层介质板都采用介电常数为2.2的Rogers RT/duroid 5880(tm)材料,第一,二层厚度为0.381mm,第三层厚度为0.254mm,馈电采用50欧姆微带开路线。 不同层馈电可以明显的增加隔离度,可以对H 槽的尺寸进行调节,改善输入端口的阻抗特性。 ·102·

天线隔离度要求.docx

精品文档 1、LTE-D频段天线隔离度要求 : GSM/DCS符合 3GPP TS 05.05 V8.20.0 (2005-11 )规范要求时, TD-LTE 线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,建议采用垂直隔离方式,垂直 距离≥ 1.8 m ; GSM/DCS符合 3GPP TS 45.005 V9.1.0 (2009-11)规范要求时,TD-LTE 线阵和GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥0.3m。 TD-LTE线阵和 CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂 直隔离方式,垂直距离≥ 2.7m。 TD-LTE 线阵和 CDMA2000定向天线之间间距要求:并排同向安装时,建议采用 垂直隔离方式,垂直距离≥ 2.7m。 TD-LTE线阵和 WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥ 0.2m TD-LTE与 TD-SCDMA隔离要求:并排同向安装时,水平隔离距离≥0.5m,垂直距离≥ 0.2m。 2、LTE-F 频段天线隔离度要求 : TD-LTE 线阵和 GSM/DCS定向天线之间间距要求:并排同向安装时,水平隔离 距离≥ 0.5m,垂直距离≥ 0.3m。 TD-LTE 线阵和 CDMA 1X定向天线之间间距要求:并排同向安装时,建议采用垂 直隔离方式,垂直距离≥ 2 m。 TD-LTE 线阵和 CDMA2000定向天线之间间距要求:并排同向安装时,建议采用 垂直隔离方式,垂直距离≥ 3 m。 TD-LTE线阵和 WCDMA定向天线之间间距要求:并排同向安装时,水平隔离距离 ≥ 0.5m,垂直距离≥ 0.2m。 3、GPS 天线安装位置应高于其附近金属物,与附近金属物水平距离大于等于 1.5 米,两个或多个 GPS天线安装时要保持 2 米以上的间距 4、不同扇区的天线之间间距应在 2 米以上; a) 铁塔顶平台安装全向天线时,天线水平间距必须大于4m。 b) 全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m。 c)同平台全向天线与其它天线的间距应大于 1.5m。 d)上下平台全向天线的垂直距离应大于1m。5、 定向天线 同一小区两单极化天线在辐射方向上间距应大于 4m。(最小不小于 3.5m)相 邻小区间两天线间距应大于 0.5m。 上下平台间天线垂直分极距离应大于 1m。 900MHz天线和 DCS1800MHz天线安装与同一平台上时,天线水平间距应大于 1m。 微波天线与 GSM天线安装于同一平台上时,微波天线朝向应处于 GSM同一小区两天线之间。

相关文档
相关文档 最新文档