文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学-概率统计案例

高考数学-概率统计案例

高考数学-概率统计案例
高考数学-概率统计案例

高考数学-概率

一、选择题

1.下列事件属于不可能事件的为().

A.连续投掷骰子两次,掷得的点数和为4

B.连续投掷骰子两次,掷得的点数和为8

C.连续投掷骰子两次,掷得的点数和为12

D.连续投掷骰子两次,掷得的点数和为16

2.给出下列事件:

①同学甲竞选班长成功;

②两球队比赛,强队胜利了;

③一所学校共有730名学生,至少有三名学生的生日相同;

④若集合A,B,C,满足A?B,B?C,则A?C;

⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;

⑥7月天下雪;

⑦从1,3,9中任选两数相加,其和为偶数;

⑧骑车通过10个十字路口,均遇红灯.

其中属于随机事件的有().

A.3个B.4个C.5个D.6个

3.每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,如果每题都选择第一个选择支,则结果是().

A.恰有3道题选对

B.选对的题数与3无一定大小关系

C.至多选对3道题

D.至少选对3道题

4.下列事件属于必然事件的为().

A.没有水分,种子发芽

B.电话铃响一声时就被接听

C.实数的平方为正数

D.全等三角形的面积相等

5.在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件时,必然事件是().

A.3件都是正品B.至少有1件是次品

C.3件都是次品D.至少有1件是正品

6.事件A的概率P(A)必须满足().

A.0<P(A)<1

B.P(A)=1

C.0≤P(A)≤1

D.P(A)=0或1

7.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是().

A.至少有1个白球;都是白球

B.至少有1个白球;至少有一个红球

C.恰有一个白球;恰有2个白球

D.至少有一个白球;都是红球

8.如果事件A,B互斥,那么().

A.A+B是必然事件

B.错误!未找到引用源。是必然事件

C.错误!未找到引用源。与错误!未找到引用源。一定互斥

D.错误!未找到引用源。与错误!未找到引用源。一定不互斥

9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是().

A.错误!未找到引用源。B.错误!未找到引用源。

C.错误!未找到引用源。D.错误!未找到引用源。

10.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log2X Y=1的概率为().

A.错误!未找到引用源。B.错误!未找到引用源。

C.错误!未找到引用源。D.错误!未找到引用源。

二、填空题

11.向面积为S的△ABC内任投一点P,则随机事件“△PBC的面积小于错误!未找到引用源。”的概率为.

12.任意投掷两枚骰子,出现点数相同的概率为.

13.在圆心角为150°的扇形AOB中,过圆心O作射线交弧AB于P,则同时满足∠AOP ≥45°且∠BOP≥75°的概率为.

14.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率是0.28.若红球有21个,则黑球有个.15.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.16.把两封不同的信投入A,B两个信箱,A,B两信箱中各有1封信的概率为.

三、解答题

17.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:

(1)取出1球是红球或黑球的概率;

(2)取出的1球是红球或黑球或白球的概率.

18.现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(1)求A1被选中的概率;

(2)求B1和C1不全被选中的概率.

19.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.

(1)求该总体的平均数;

(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

20.设有关于x的一元二次方程x2+2ax+b2 =0.若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

21.某初级中学共有学生2 000名,各年级男、女生人数如下表:

(1)已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.求x的值;

(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.

参考答案

一、选择题

1.D

解析:两次点数和的最大值为12.

2.C

解析:①②③⑥⑧为随机事件.

3.B

解析:由于每次试验的结果都是随机的,因而不能保证做12次试验中,一定有3道题是正确的,也不能保证选对的题数大于(或小于)3.

4.D

解析:C中实数的平方是非负才是正确的.

5.D

解析:因次品共2件,故抽出的3件中至少有1件为正品.

6.C

解析:概率的第一条基本性质.

7.C

解析:恰有一个白球,便不再可能恰有2个白球,且恰有一个白球与恰有2个白球的事件不可能“必有一个发生”.

8.B

解析:借助集合的Venn图加以理解,错误!未找到引用源。为全集.

9.D

解析:抛掷3次,共有6×6×6=216个事件总数.一次也不出现6,则每次抛掷都有5种可能,故一次也未出现6的事件总数为5×5×5=125.于是

P(没有出现一次6点向上)=错误!未找到引用源。.

∴P(至少出现一次6点向上)=1-P(没有出现一次6点向上)=错误!未找到引用源。.10.C

解析:总事件数为36种.而满足条件的(X,Y)为(1,2),(2,4),(3,6),共3种情形.

二、填空题

11.答案:错误!未找到引用源。.

解析:作△ABC的边BC上的高AD,取E∈AD且ED=错误!未找到引用源。,过E作直线MN∥BC分别交AB于M,AC于N,则当P落在梯形BCNM内时,△PBC的面积小于△ABC的面积的错误!未找到引用源。,故P=错误!未找到引用源。=错误!未找到引用源。.12.答案:错误!未找到引用源。.

解析:总事件数为6×6=36种,相同点数的有6种情形.

13.答案:错误!未找到引用源。.

解析:P点只能在中间一段弧上运动,该弧所对的圆心角为150°-45°-75°,就是30°,P=错误!未找到引用源。=错误!未找到引用源。.

14.答案:15.

解析:1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.

15.答案:错误!未找到引用源。.

解析:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

P=错误!未找到引用源。=错误!未找到引用源。.

16.答案:错误!未找到引用源。.

解析:分别记两封信为a,b,共有投法(即所有基本事件)为:A中a,b,B中无;A 中a,B中b;A中b,B中a;A中无,B中a,b,共有4种,并且这4种投法都是等可能的.其中A中投1封,B中投1封的有2种投法,故所求概率为错误!未找到引用源。.

三、解答题

17.解法1:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.

∴任取1球得红球或黑球的概率为P1=错误!未找到引用源。=错误!未找到引用源。.

(2)从12只球中任取一球得红球有5种取法,得黑球有4种取法,得白球有2种取法.从而得红球或黑球或白球的概率为错误!未找到引用源。.

解法2:(利用互斥事件求概率)

记事件A1={任取1球为红球},A2={任取一球为黑球},A3={任取一球为白球},A4={任取一球为绿球},则P(A1)=错误!未找到引用源。,P(A2)=错误!未找到引用源。,P(A3)=错误!未找到引用源。,P(A4)=错误!未找到引用源。.

根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得

(1)取出1球为红球或黑球的概率为

P(A1+A2)=P(A1)+P(A2)=错误!未找到引用源。+错误!未找到引用源。=错误!未找到引用源。.

(2)取出1球为红球或黑球或白球的概率为

P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=错误!未找到引用源。+错误!未找到引用源。+错误!未找到引用源。=错误!未找到引用源。.

解法3:(利用对立事件求概率的方法)

(1)由解法2知,取出1球为红球或黑球的对立事件为取出一白球或绿球,即A1+A2的对立事件为A3+A4.所以取得一红球或黑球的概率为

P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-错误!未找到引用源。-错误!未找到引用源。=错误!未找到引用源。.

(2)A1+A2+A3的对立事件为A4,所以

P(A1+A2+A3)=1-P(A4)=1-错误!未找到引用源。=错误!未找到引用源。.

18.解:(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间

Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}.

由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.

用M表示“A1恰被选中”这一事件,则

M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},

事件M由6个基本事件组成,因而P(M)=错误!未找到引用源。=错误!未找到引用源。.

(2)用N表示“B1,C1不全被选中”这一事件,

则其对立事件错误!未找到引用源。表示“B1,C1全被选中”这一事件,

由于错误!未找到引用源。={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件错误!未找到引用源。有3个基本事件组成,所以P(错误!未找到引用源。)=错误!未找到引用源。=错误!未找到引用源。,由对立事件的概率公式得P(N)=1-P(错误!未找到引用源。)=1-错误!未找到引用源。=错误!未找到引用源。.

19.解:(1)总体平均数为错误!未找到引用源。(5+6+7+8+9+10)=7.5.

(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”

从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),

(8,10),(9,10),共15个基本结果.

事件A包含的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果,所以所求的概率为P(A)=错误!未找到引用源。.20.分析:本题的要点在于认清:试验的全部结束所构成的区域是什么?事件“方程x2+2ax+b2=0有实根”对应的区域是什么?

解:设事件A为“方程x2+2ax+b2 =0有实根”.

当a≥0,b≥0时,方程x2+2ax+b2 =0有实根的充要

条件为a≥b.

试验的全部结束所构成的区域为

{(a,b)|0≤a≤3,0≤b≤2}.

构成事件A的区域为

{(a,b)|0≤a≤3,0≤b≤2,a≥b}.

(第20题)因此所求的概率为P(A)=错误!未找到引用源。=错误!未找到引用源。.

21.分析:本题考查了古典概型及分层抽样统计的知识,对数据处理能力、推理论证能力、运算求解能力和应用意识都有要求.

解:(1)∵错误!未找到引用源。=0.19,

∴x=380.

(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为错误!未找到引用源。×500=12名.

(3)设初三年级女生比男生多的事件为A,初三年级女生男生数记为(y,z);

由(2)知y+z=500,且y,z∈N,基本事件空间包含的基本事件有:

(245,255)、(246,254)、(247,253)、…、(255,245)共11个.

事件A包含的基本事件有:

(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个.

∴P(A)=错误!未找到引用源。.

初三年级中女生比男生多的概率为错误!未找到引用源。.

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

高考数学概率与统计

高考数学概率与统计 SANY GROUP system office room 【SANYUA16H-

第16讲概率与统计 概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一“非等可能”与“等可能”混同 例1 掷两枚骰子,求所得的点数之和为6的概率. 错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为 P=1 11 剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36 种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=5 36 . 类型二“互斥”与“对立”混同 例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是() A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对 错解A 剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对 立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.

类型三 “互斥”与“独立”混同 例3 甲投篮命中率为O .8,乙投篮命中率为,每人投3次,两人恰好都命中2次的 概率是多少? 错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中 两次为事件A+B ,P(A+B)=P(A)+P(B): 22223 30.80.20.70.30.825c c ?+?= 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰 好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指 两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个 事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关 系是根本不同. 解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独 立, 则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同 例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次, 求第二次才取到黄色球的概率. 错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球” 为事件C,所以P(C)=P(B/A)=6293 =. 剖析 本题错误在于P(A ?B)与P(B/A)的含义没有弄清, P(A ?B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的 A 已经发生的条件下事件 B 发生的概率。 解: P (C )= P(A ?B)=P (A )P (B/A )= 46410915 ?=. 备用

概率统计补充案例

补充案例:概率部分: 案例1、“三人行必有我师焉” 案例2、抓阄问题 案例3、贝叶斯方法运用案例介绍 案例4、化验呈阳性者是否患病 案例5、敏感性问题的调查 案例6、泊松分布在企业评先进中的应用 案例7、碰运气能否通过英语四级考试 案例8、检验方案的确定问题 案例9、风险型决策模型 案例10、一种很迷惑游客的赌博游戏 案例11、标准分及其应用 案例12、正态分布在人才招聘中的应用 案例13、预测录取分数线和考生考试名 统计部分: 案例14、随机变量函数的均值和标准差的近似计算方法案例15、如何表示考试成绩比较合理 案例16、如何估计湖中黑、白鱼的比例 案例17、预测水稻总产量 案例18、工程师的建议是否应采纳 案例19、母亲嗜酒是否影响下—代的健康 案例20、银行经理的方案是否有效 案例21、一元线性回归分析的Excel实现 案例22、方差分析的Excel实现 案例23、预测高考分数 案例24、两次地震间的间隔时间服从指数分布

案例1、“三人行必有我师焉” 我们可以运用概率知识解释孔子的名言“三人行必有我师焉”. 首先我们要明确一个问题,即只要在某一方面领先就可以为师(韩愈说“术业有专攻”). 俗语说“三百六十行,行行出状元”,我们不妨把一个人的才能分成360个方面。孔子是个大圣人,我们假设他在一个方面超过某个人的概率为99%,那么孔子在这方面超过与他“同行”的两个人的概率为99% ×99% =98.0l %,在360个方面孔子总比这两人强的概率为 (98.01%)360=0.07% ,即这两个人在某一方面可以做孔子老师的概率为99.93%.从数学角度分析,孔子的话是很有道理的. 案例2、抓阄问题 一项耐力比赛胜出的10人中有1 人可以获得一次旅游的机会,组织者决定以抓阄的方式分配这一名额. 采取一组10人抓阄,10张阄中只有一张写“有”. 每个人都想争取到这次机会,你希望自己是第几个抓阄者呢? 有人说要先抓,否则写有“有”的阄被别人抓到,自己就没有机会了;有人说不急于先抓,如果前面的人没有抓到写有“有”的阄,这时再抓抓到“有”的机会会大一些. 为了统一认识,用概率的方法构造一个摸球模型来说明问题. 摸球模型:袋中装有1 个红球和9 个黄球除颜色不同外球的大小、形状、质量都相同. 现在10 人依次摸球(不放回),求红球被第 k 个人摸到的概率( k = 1, 2, ?, 10). 解决问题 :设 k A = “ { 第 k 个人摸到红球 }, k = 1, 2, ? , 10. 显然,红球被 第一个人摸到的概率为 101 )(1= A P . 因为 12A A ?,于是红球被第二个人摸到的概率为 101 91109)()()()(121212= ?===A A P A P A A P A P . 同样,由 213A A A ?知红球被第三个人摸到的概率为 1018198109)()()()()(2131213213= ??= ==A A A P A A P A P A A A P A P . 如此继续,类似可得 )(4A P = ==ΛΛ)(5A P 101 )(10=A P . 由此可见,其结果与 k 无关,表明10 个人无论摸球顺序如何,每个人摸到红球的机 会相等. 这也说明10 个人抓阄,只要每个人在抓之前不知道他前边那些已经抓完的结果,无论先后, 抓到的机会是均等的. 在现实生活中单位分房、学生分班、短缺物品的分配等,人们常常乐于用抓阄的办法来解决,其合理性保证当然得归功于“概率”. 通过上面的摸球模型,我们总结出分配中的“抓阄”问题,无论先抓后抓, 结果是一样的.学完概率之后再遇到抓阄问题时不必争先恐后,我们要发扬风格让他人先抓. 案例3、贝叶斯方法运用案例介绍 什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。 正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

18题-高考数学概率与统计知识点

18题-高考数学概率与统计知识点

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)= ) ()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)= k n k k n p p C --)1(. 其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结

的概率P (i x =ξ)=i P ,则称下表. 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++2 1 P P (1) ②常见的离散型随机变量的分布列: (1)二项分布 n 次独立重复试验中,事件A 发生的次数ξ是一个 随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的 分布列如下: 称这样随机变量ξ服从二项分布,记作),(~p n B ξ ,其中n 、p 为参数,并记:) ,;(p n k b q p C k n k k n =- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

第3章-概率统计实例分析及MatlAb求解

第3章概率统计实例分析及MatlAb求解 第3章概率统计实例分析及MatlAb求解 (1) 3.1 随机变量分布与数字特征实例及MA TLAB求解 (1) 3.1.1 MATLAB实现 (1) 3.1.2 相关实例求解 (2) 3.2 数理统计实例分析及MATLAB求解 (4) 3.1.1 MATLAB实现 (4) 3.1.2 相关实例求解 (4) 3.3参数估计与假设检验实例分析及MATLAB求解 (5) 3.1.1 MATLAB实现 (5) 3.1.2 相关实例求解 (5) 3.4 方差分析实例求解 (10) 3.1.1 MATLAB实现 (10) 3.1.2 相关实例求解 (10) 3.5 判别分析应用实例及求解 (14) 3.1.1 MATLAB实现 (14) 3.1.2 相关实例求解 (14) 3.6 聚类分析应用实例及MATLAB求解 (16) 3.1.1 MATLAB实现 (16) 3.1.2 相关实例求解 (16) 3.1 随机变量分布与数字特征实例及MATLAB求解 3.1.1 MATLAB实现 用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。 利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。 MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。 随机数生成函数:rand( )和randn( )两个函数 伪随机数生成函数: A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵 B=raylrnd(b,n,m) %生成rayleigh的伪随机数

(完整word版)高中数学统计与统计案例概率知识点,推荐文档

统计与统计案例概率(文科) 知识点 1.抽样调查 (1)抽样调查 通常情况下,从调查对象中按照一定的方法抽取一部分,进行______,获取数据,并以此对调查对象的某项指标作出______,这就是抽样调查. (2)总体和样本 调查对象的称为总______体,被抽取的称为样______本. (3)抽样调查与普查相比有很多优点,最突出的有两点: ①______ ②节约人力、物力和财力. 2.简单随机抽样 (1)简单随机抽样时,要保证每个个体被抽到的概率. (2)通常采用的简单随机抽样的方法:_____ 3.分层抽样 (1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样. (2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成时,往往选用分层抽样. 4.系统抽样 系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按______(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样. 5.统计图表 统计图表是______数据的重要工具,常用的统计图表有______ 6.数据的数字特征 (1)众数、中位数、平均数 众数:在一组数据中,出现次数最多的数据叫作这组数据的众数. 中位数:将一组数据按大小依次排列,把处在______位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.

平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ). 在频率分布直方图中,中位数左边和右边的直方图的面积应该______ (2)样本方差 标准差s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2], 其中x n 是样本数据的第n 项,n 是,______x 是______ 标准差是刻画数据的离散程度的特征数,样本方差是标准差的______.通常用样本方差估计总体方差,当______时,样本方差很接近总体方差. 7.用样本估计总体 (1)通常我们对总体作出的估计一般分成两种,一种是______,另一种______. (2)在频率分布直方图中,纵轴表示,______数据落在各小组内的频率用______表示,各小长方形的面积总和等于.______ (3)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图. (4)当样本数据较少时,用茎叶图表示数据的效果较好,它没有信息的缺失,而且______,方便表示与比较. 8.相关性 (1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的______ (2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为____________ (3)在两个变量x 和y 的散点图中,若所有点看上去都在一条直线附近波动,则称变量间是______,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是______的.如果所有的点在散点图中没有关系,则称变量间是______的. 9.线性回归方程 (1)最小二乘法 如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+ [y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法. (2)线性回归方程 方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.

2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题 一、解答题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率; (2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )= C 22C 32+C 32C 3 2C 8 4=6 35. 所以,事件A 发生的概率为6 35. (2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )= C 5k C 3 4-k C 8 4(k=1,2,3,4). 所以,随机变量X 的分布列为 随机变量X 的数学期望E (X )=1×1 14+2×3 7+3×3 7+4×1 14=5 2. 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系. 解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A , 第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50 140+50+300+200+800+510=50 2 000=0.025.

《概率与统计》教学案例

“统计与概率”教学案例 南昌市洪都小学谭琴 教材内容:人教版义务教育课程标准实验教科书数学三年级下册第38页内容及练习十第1题。 教材分析 统计最基础的知识是比较、排列和分类。对现实生活中一类物体根据其不同的标准进行比较,从中分辨出异同,并按一定的顺序进行排列,这些都是统计的萌芽思想,而分类则是在比较、排列的基础上,进一步划分不同标准的结果。 本课在学生认识了一格代表2个单位、5个单位的纵向条形统计图的基础上,通过两个例题继续介绍一些常见的条形统计图:一种是横向条形统计图,另一种是起始格与其他格表示不同单位量的条形统计图。让学生根据统计图表进行初步的数据分析,通过分析寻找信息,并根据这些信息作出进一步的判断和决策。学生通过这一阶段的学习,对条形统计图的结构、数据的表示方式,以及条形统计图的作用,都有了一个基本的了解,为下一阶段学习折线统计图打下坚实的基础。练习十中的习题除了让学生根据统计图进行简单的数据分析以外,还注意加强对学生进行提出问题、解决问题能力的培养,让学生根据统计图寻找信息,提出问题并加以解决的要求。 设计思路 1. 数学生活化,让学生学习现实的数学。围绕新课标的这一具体要求,力图让学生在熟悉、亲切的生活背景素材中提出数学问题,让学生感到生活中处处有统计,处处有数学。 2.数学活动化,让学生学习动态的数学。为了让学生真正投入到统计的过程中,为此创设了画一画、议一议的活动氛围,从活动中初步感受数据收集、整理、分析的全过程,从而形成统计观念。 3.数学问题化,让学生学习思考的数学。注意在课中引导学生用精确的数学语言描述数据,根据数据提出问题并解决问题,充分拓展思维,深化对统计意义的理解。 学情分析 在前几册的教材中,学生已经学会了收集和整理数据的方法,会用统计表(包括单式统计表和复式统计表)和条形统计图(一格表示一个或多个单位)来表示统计的结果,并能根据统计图表提出问题加以解决。学生已经掌握基本的统计方法,建立了初步的统计观念。这是本节课的基础和起点。这节课进一步学习统计知识,通过有限样本的数据分析来推断总体样本的大致情况,有些学生在课前已经试着进行了分析,有一定基础,但有一些学生动手能力较弱,推理能力不强,对学生这部分内容会产生一定的困难。主要的难点是在“分析数据”和“合理推断上。 教学目标 1、引导学生自主探索、合作交流,学会看横向条形统计图和起始格与其他格代表的单位量不一致的条形统计图,并能根据统计表中的数据完成统计图。 2、初步学会简单的数据分析,进一步感受到统计对于决策的作用,体会统计在现实生活中的作用,理解数学与生活的紧密联系。 3、加强学生提出问题、解决问题能力的培养。

( 一轮复习用卷)计数原理、概率、随机变量及其分布、统计、统计案例

计数原理、概率、随机变量及其分布、统计、统计案例 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量ξ服从正态分布N (1,σ2 ),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( ) A .2,6 B .2,7 C .3,6 D .3,7 3.将4个颜色互不相同的球全部收入编号为1和2的两个盒 子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种 4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,f x g x =a x , f 1 g 1+f -1g -1=52,则关于x 的方程abx 2 +2x +52 =0(b ∈(0,1))有两个不同实根的概率为( ) A.35 B.25 C.15 D.12 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y 与x 负相关且y ^ =2.347x -6.423; ② y 与x 负相关且y ^ =-3.476x +5.648; ③y 与x 正相关且y ^ =5.437x +8.493;

高考数学-概率统计案例

高考数学-概率 一、选择题 1.下列事件属于不可能事件的为(). A.连续投掷骰子两次,掷得的点数和为4 B.连续投掷骰子两次,掷得的点数和为8 C.连续投掷骰子两次,掷得的点数和为12 D.连续投掷骰子两次,掷得的点数和为16 2.给出下列事件: ①同学甲竞选班长成功; ②两球队比赛,强队胜利了; ③一所学校共有730名学生,至少有三名学生的生日相同; ④若集合A,B,C,满足A?B,B?C,则A?C; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥7月天下雪; ⑦从1,3,9中任选两数相加,其和为偶数; ⑧骑车通过10个十字路口,均遇红灯. 其中属于随机事件的有(). A.3个B.4个C.5个D.6个 3.每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,如果每题都选择第一个选择支,则结果是(). A.恰有3道题选对 B.选对的题数与3无一定大小关系 C.至多选对3道题 D.至少选对3道题 4.下列事件属于必然事件的为(). A.没有水分,种子发芽 B.电话铃响一声时就被接听 C.实数的平方为正数

D.全等三角形的面积相等 5.在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件时,必然事件是(). A.3件都是正品B.至少有1件是次品 C.3件都是次品D.至少有1件是正品 6.事件A的概率P(A)必须满足(). A.0<P(A)<1 B.P(A)=1 C.0≤P(A)≤1 D.P(A)=0或1 7.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是(). A.至少有1个白球;都是白球 B.至少有1个白球;至少有一个红球 C.恰有一个白球;恰有2个白球 D.至少有一个白球;都是红球 8.如果事件A,B互斥,那么(). A.A+B是必然事件 B.错误!未找到引用源。是必然事件 C.错误!未找到引用源。与错误!未找到引用源。一定互斥 D.错误!未找到引用源。与错误!未找到引用源。一定不互斥 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是(). A.错误!未找到引用源。B.错误!未找到引用源。 C.错误!未找到引用源。D.错误!未找到引用源。 10.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log2X Y=1的概率为(). A.错误!未找到引用源。B.错误!未找到引用源。 C.错误!未找到引用源。D.错误!未找到引用源。 二、填空题

高考数学复习+概率统计大题-(理)

专题十二概率统计大题 (一)命题特点和预测: 分析近8年的全国新课标1理数试卷,发现8年8考,每年1题.以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,位置为18题或19题,难度为中档题.2019年仍将以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,难度仍为中档题. (二)历年试题比较: 的最大值点 )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 个零件中其尺寸在

.是否需对当天的生产过程进行检查?剔除 . ,确定

y w 8 2 1 () i i x x =-∑ 6 3 (Ⅰ)根据散点图判断,y=a 二乘估计分别为:测量这些产品的一项质量指标值,

区间 , 作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

【解析与点睛】 (2018年(20)【解析】(1)20件产品中恰有2件不合格品的概率为.因此 . 的最大值点为 (2)由(1 (i180件产品中的不合格品件数,依题意知,,即

所以 . (ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. . 点睛:该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论. (2017年)【解析】 试题分析:(1)根据题设条件知一个零件的尺寸在 之内的概率为0.9974,则零件的尺寸在 (ii )由 ,得μ的估计值为?9.97μ =,σ的估计值为?0.212σ=,由样本数据可以看出有一个零件的尺寸在 之外,因此需对当天的生产过程进行检查. 剔除之外的数据9.22,剩下数据的平均数为 ,因此μ的估计

统计概率与统计案例

(十三)统计概率与统计案例 【命题解读】 考向1:事件与概率(包括古典概型与几何概型) 分析定位:古典概型、几何概型及其概率计算公式是概率计算的基础,为此,要根据题意把概率模型抽象出来,重点是理解好“要完成一件怎样的事”与“要发生的事件是什么”. 例1(2016年全国Ⅱ卷第10题)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A ) 4n m (B )2n m (C )4m n (D )2m n 分析:先审题,然后转化成几何概型的问题进行解决. 解:题意如右图,边长为1的正方形中有n 个点,其中有m 半径为1的41个圆中,则4π=n m ,所以n m 4π=,故选C. 总结:究竟是考查古典概型还是几何概型,需要考生从题意中把模型抽象出来. 考向2:统计与概率(包括离散型随机变量的分布列) 分析定位:史宁中教授关于统计与概率的观点如下: 1.统计学与数学的差异 研究起点:数学是基于定义与假设,统计是基于数据与模型; 思维方法:数学是着重于演绎推理,统计是着重于归纳推理; 结果判断:数学主要是判断对不对,统计主要是判断好不好.

2.统计学与概率的区别 共性:都是研究随机现象 差异:概率是用数学的方法,统计是用数据分析的方法(为预测、决策提供依据). 所以,基于“数据与信息,构建模型,进而判断好不好”是考查的基本方向. 例2(2016年全国Ⅰ卷第19题)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更 以这100的概率,记X n 表示购买2台机器的(I )求(II (III 19n =与20n =之中选分析:(1)数据与信息:本题中是指某种机器中有一易损零件,购进机器时买一个是200元,购进机器后买一个是500元,这就产生了一个问题是:究竟购进机器时要买几个这个零件更好?题中给出了100台机器使用过程中更换零件的状况,其题意如下: X 知,则X 的可能的取值为16,17,18,19,20,21,22,把上表的频率当概率,列得分布列如下:

相关文档
相关文档 最新文档