文档视界 最新最全的文档下载
当前位置:文档视界 › 镍基高温合金的特点、制备及应用

镍基高温合金的特点、制备及应用

镍基高温合金的特点、制备及应用

镍基高温合金的特点、制备及应用

高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。那么,以镍为基体(含量一般大于50%)在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金称之为镍基高温合金(以下简称“镍基合金”)。

镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。镍基高温合金是30年代后期开始研制的。英国于1941年首先生产出镍基高温合金Nimonic75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基高温合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基高温合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。

镍基高温合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物g[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。镍基合金按强化方式有固溶强化型合金和沉淀强化型合金。

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

镍基合金管的性能化学成分

镍基合金管的性能、化学成分 以镍为基体,能在一些介质中耐腐蚀的合金,称为镍基耐蚀合金。此外,含镍大于30%,且含镍加铁大于50%的耐蚀合金,习惯上称为铁-镍基耐蚀合金(见不锈耐酸钢)。1905年美国生产的Ni-Cu合金(Monel合金Ni 70 Cu30)是最早的镍基耐蚀合金。1914年美国开始生产Ni-Cr-Mo-Cu型耐蚀合金(Illium R),1920年德国开始生产含Cr约15%、Mo约7%的Ni-Cr-Mo型耐蚀合金。70年代各国生产的耐蚀合金牌号已近50种。其中产量较大、使用较广的有Ni-Cu,Ni-Cr,Ni-Mo,Ni-Cr-Mo(W),Ni-Cr-Mo-Cu和Ni-Fe-Cr,Ni-Fe-Cr-Mo等合金系列,共十多种牌号。中国在50年代开始研制镍基和铁-镍基耐蚀合金,到70年代末,已有十多种牌号。 类别镍基耐蚀合金多具有奥氏体组织。在固溶和时效处理状态下,合金的奥氏体基体和晶界上还有金属间相和金属的碳氮化物存在,各种耐蚀合金按成分分类及其特性如下: Ni-Cu合金在还原性介质中耐蚀性优于镍,而在氧化性介质中耐蚀性又优于铜,它在无氧和氧化剂的条件下,是耐高温氟气、氟化氢和氢氟酸的最好的材料(见金属腐蚀)。 Ni-Cr合金主要在氧化性介质条件下使用。抗高温氧化和含硫、钒等气体的腐蚀,其耐蚀性随铬含量的增加而增强。这类合金也具有较好的耐氢氧化物(如NaOH、KOH)腐蚀和耐应力腐蚀的能力。 Ni-Mo合金主要在还原性介质腐蚀的条件下使用。它是耐盐酸腐蚀的最好的一种合金,但在有氧和氧化剂存在时,耐蚀性会显著下降。 Ni-Cr-Mo(W)合金兼有上述Ni-Cr合金、Ni-Mo合金的性能。主要在氧化-还原混合介质条件下使用。这类合金在高温氟化氢气中、在含氧和氧化剂的盐酸、氢氟酸溶液中以及在室温下的湿氯气中耐蚀性良好。 Ni-Cr-Mo-Cu合金具有既耐硝酸又耐硫酸腐蚀的能力,在一些氧化-还原性混合酸中也有很好的耐蚀性。 什么是超级不锈钢?镍基合金? 超级不锈钢、镍基合金是一种特种的不锈钢,首先在化学成分上与普通不锈钢304不同,是指含高镍,高铬,高钼的一种高合金不锈钢。其次在耐高温或者耐腐蚀的性能上,与304相比,具有更加优秀的耐高温或者耐腐蚀性能,是304不可取代的。另外,从不锈钢的分类上,特殊不锈钢的金相组织是一种稳定的奥氏体金相组织。 由于这种特种不锈钢是一种高合金的材料,所以在制造工艺上相当复杂,一般人们只能依靠传统工艺来制造这种特种不锈钢,如灌注,锻造,压延等等。 在许多的领域中,比如 1,海洋:海域环境的海洋构造物,海水淡化,海水养殖,海水热交换等。 2,环保领域:火力发电的烟气脱硫装置,废水处理等。 3,能源领域:原子能发电,煤炭的综合利用,海潮发电等。 4,石油化工领域:炼油,化学化工设备等。 5,食品领域:制盐,酱油酿造等 在以上的众多领域中,普通不锈钢304是无法胜任的,在这些特殊的领域中,特种不锈钢是不可缺少的,也是不可被替代的。近几年来,随着经济的快速发达,随着工业领域的层次的不断提高,越来越多的项目需要档次更高的不锈钢。。。。。特种不锈钢(超级不锈钢、镍基合金)。

镍基高温合金材料研究进展汇总-共7页

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

镍基高温合金溅射NiCrALY涂层盐腐蚀行为

第一章绪论 1.1. 铸造高温合金的发展 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。半个世纪以来,航空发动机涡轮前温度从40年代的730℃提高到90年代的1677℃,推重比从大约3提高到10,这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是高性能的铸造高压涡轮叶片合金的应用更是功不可没。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件[1]。美国GE公司为其J33航空发动机选用了钴基合金HS 21制作涡轮工作叶片,代替原先用的锻造高温合金Hasteelloy B。,从此开创了使用铸造高温合金工作叶片的历史。到60年代初,由于发动机工作温度提高,要求叶片合金的热强性能进一步提高,使高温合金合金化程度不断提高,于是出现了复杂合金化与压力加工困难的矛盾,并且越来越尖锐,加之这一时期铸造技术进步,使合金性能和叶片质量提高,出现了大批复杂合金化的高性能合金,使铸造高温合金叶片的应用越来越广泛。我国第一个铸造高温合金是北京航空材料研究院于1958年研制的K401合金,用作WP6发动机的导向叶片。我国第一个铸造涡轮工作叶片是60年代初在黎明发动机厂研制的WP6S发动机一级涡轮叶片(K406合金)。70年代中期,由中科院金属研究所研制成功的K417镍基铸造高温合金制作涡轮叶片用于WP-7型发动机,投入生产,成为我国最先服役于航线的铸造涡轮叶片合金。70年代之后,由于定向凝固和单晶合金的出现,使得所有国家的先进新型发动机几乎无一例外地选用铸造高温合金制作最高温区工作的叶片,从此确立了铸造高温合金叶片的稳固地位[2]。 1.2镍基高温合金的发展 早在60年代,国内外就开始对从高温合金诞生的金属间化合物(Ni3Al、NiAl、Ti3Al、TiAl)为基的合金进行了广泛的研究,因为这些化合物具有诱人的低密度、高模量和良好的抗氧化性,认为是有发展前景的替换材料。70年代中期,美国Howmet公司发展了高温合金细晶铸造法,从而在合金凝固过程的晶粒控制方面

镍基高温合金

镍基高温合金 飞行器工程学院110622班 11062228 袁同豪 摘要:定义了高温镍合金,诉说了其发展过程、成份和性能和生产工艺,以及阐述了镍基高温合金的研究、制造与应用 关键字:镍基高温合金抗氧化塑性组织稳定性固溶 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。具有良好的耐高温腐蚀和抗氧化性能、优良的冷热加工和焊接工艺性能,在700℃以下具有满意的热强性和高的塑性。合金可以通过冷加工得到强化,也可以用电阻焊、溶焊或钎焊连接,可供应冷轧薄板、热轧厚板、带材、丝材、棒材、圆饼、环坯、环形锻件等,适宜制作在1100℃以下承受低载荷的抗氧化零件。 镍基高温合金是30年代后期开始研制的。英国于1941年首先生产出镍基合金Ni-20Cr-0.4Ti;为了提高蠕变强度又添加铝,研制出Ni-20Cr-2.5Ti-1.3Al。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基高温合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 镍基高温合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。固溶强化型合金:具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大的部件,如燃气轮机的燃烧室;沉淀强化型合金:通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐

国内外镍基高温合金

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128);GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169);GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710); GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100;

镍基单晶高温合金的发展

镍基单晶高温合金的发展 胡壮麒1 刘丽荣1,2 金 涛1 孙晓峰1 (1.中国科学院金属研究所,沈阳 110016;2.沈阳工业大学,沈阳 110023) 摘要:概述了镍基单晶高温合金的发展历程,分析了其成分、相组成、热处理的特征和持久变形及强化机制,给出了其持久性能数据,并指出了发展趋势。 关键词:镍基单晶高温合金 成分 性能 D evelop m en t of the N i-Ba se S i n gle Crysta l Supera lloys Hu Zhuangqi1 L iu L ir ong1,2 J in Tao1 Sun Xiaofeng1 (1.I nstitute of Metal Research,Chinese Academy of Sciences,Shenyang110016,China) (2.Shenyang University of Technol ogy,Shenyang110023,China) Abstract:The devel opment of the N i-base single crystal superall oys is intr oduced,and its compositi on,phase p re2 ci p itati on,heat treat m ent,endurance p r operty and strengthening mechanis m are analyzed.The data of its endurance p r operty is listed,and the devel opment trend of N i-base single crystal superall oys is pointed out. Key words:N i-base single crystal superall oys;compositi on;p r operty 1 引言 镍基单晶高温合金具有优良的高温性能,是目前制造先进航空发动机和燃气轮机叶片的主要材料。为了满足高性能航空发动机的设计需求,多年来,各国十分重视镍基单晶高温合金的研制和开发。 20世纪80年代以来,单晶高温合金一直沿着其独特的道路发展。随着合金设计理论水平的提高和生产工艺的改进,相继出现耐温能力比第1代单晶合金分别大约高30℃和60℃的第2代单晶合金和第3代单晶合金;第2代单晶高温合金的代表有P WA1484〔1〕、C MSX-4〔2〕等,第3代单晶高温合金的代表有C MSX-10〔3〕、C MSX-11〔4〕、Rene N6〔5〕等。研究表明〔6〕,第3代单晶高温合金C MSX-10的耐温能力比第2代单晶合金C MSX-4(最高使用温度约为1163℃)的大约高30℃,其使用温度可达 收稿日期:2005-07-18 第一作者简介:胡壮麒(1929—),中国工程院院士,从事高温合金的开发与应用研究,详细介绍见封二。1204℃左右,同时,还具有十分明显的蠕变强度优势。近年来出现的第4代单晶合金RR3010的承温能力达到1180°C〔7〕,用在英国RR公司最新研制的Trent发动机上。Re的加入以及Hf、Y、La,Ru等元素的合理应用,使新的单晶合金的持久性能和抗环境性能均有明显的提高。 本文综述了有关镍基单晶高温合金的成分特点、相组成、热处理制度、合金性能、应用情况和发展方向,可为开发和研制该类合金提供参考。 2 单晶高温合金的特征 2.1 成分特征 到目前为止,单晶合金已发展了5代。 典型单晶高温合金的成分及应用见表1。在进行单晶合金成分设计时,要兼顾合金性能和工艺性能。由于单晶合金中不存在晶界,并应用在较为苛刻的环境下,所以要注意某些元素的特殊作用。 分析表1列出的单晶合金的成分,可以看出,单晶高温合金成分的发展有以下特点〔8〕。 1 2005年第31卷第3期航空发动机

K417镍基铸造高温合金材料报告

K417镍基铸造高温合金材料报告 K417是高强度的镍基铸造高温合金,其成分中的铝和钛含量较高,形成约占合金重量67%的γ′强化相,因而高温强度较高、塑性较好,加之其密度较低(7.8g/cm3),故特别适宜制作高温转动件。但它的组织稳定性较差,特别是当成分偏上限或铸造工艺参数控制不当时,零件在850~950℃长期工作中,有析出片状σ相的倾向。它的耐热腐蚀性能也较差,若长期高温使用,需用保护涂层 . 化学成分 Typical values(Weight %) Cr Ni Co Mo Al Ti 8.50-9.5 余14.0-16.0 2.50-3.20 4.80-5.70 4.50-5.00 Fe C Mn Si P S ≤1.0 0.13-0.22 ≤0.50 ≤0.50 ≤0.015 ≤0.010 力学性能 θ/℃持久性能拉伸性能 σb/ MPa t/h σb/ MPa δБ/% W / % 900 315 ≥70 635 6 8 物理性能 密度:7.8 g/m3 熔点:1260℃-1340℃ 磁性能:无 相近牌号 美国:IN100 技术标准 HB 5161—1988 物理数据 温度 ℃热导率W/mk 温度 ℃线膨胀系数10-6/K 132 10.87 200 13.2 419 14.23 431 13.5 661 19.25 679 13.5 760 25.94 759 14.7 947 38.49 868 15.7 1076 35.98 956 16.8 1109 41.42 1000 17.3 成形性能 用熔模铸造法可铸成壁厚小至1mm的薄壁零件也可铸造整体涡轮 焊接性能 可以进行氩弧堆焊 零件热处理工艺 1. 零件在铸态下使用; 2. 也可进行渗铝和消除应力的退火处理,处理温度低于1120℃。 表面处理工艺

镍基高温合金的特点、制备及应用

镍基高温合金的特点、制备及应用 高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。那么,以镍为基体(含量一般大于50%)在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金称之为镍基高温合金(以下简称“镍基合金”)。 镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。镍基高温合金是30年代后期开始研制的。英国于1941年首先生产出镍基高温合金Nimonic75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基高温合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基高温合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 镍基高温合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物g[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。镍基合金按强化方式有固溶强化型合金和沉淀强化型合金。

材料论文Inconel718镍基高温合金分析与研究-午虎特种合金技术部

1.4 Inconel 718 化学成分 该合金的化学成分分为 3 类:标准成分、优质成分、高纯成分, 材料论文】 Inconel 718 镍基高温合金分析与研究 -午虎特种合金技术部 Inconel 718 概述 Inconel 718 合金是以体心四方的 γ " 和面心立方的 γ′相沉淀强化的镍基高温合金,在 -253 ~ 700 ℃温度范围内具有良好的综合性能 ,650 ℃以下的屈服强度居变形高温合金的首 位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能 ,以及良好的加工性能、焊接性能和 长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温 度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及 组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程, 就能 获得可满足不同强度级别和使用要求的各种零件。 供应的品种有锻件、 锻棒、轧棒、 冷轧棒、 圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构 件、机匣等零部件在航空上长期使用。 相近牌号 Inconel 718( 美国 ),NC19FeNb ( 法 国) 材料的技术标准 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8 系列用 Inconel 718 合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953 《 航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317 《 航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611 《 航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993 《 转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《 航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8 系列用 Inconel 718 合金棒材》 见表 1-1 。优质成分的在标准成分的基础上降碳增 铌,从而减少碳化铌的数量,减少疲劳源 和增 1.1 Inconel 718 材料牌号 Inconel 718 1.2 Inconel 718 1.3 Inconel 718 GJB 2612-1996

54.镍基单晶高温合金的发展概况

镍基单晶高温合金的发展概况 镍基单晶高温合金的发展概况 黄爱华1,崔树森1,王少刚1,杨胜群1,刘秀玲2,于兴福1 (1.沈阳黎明航空发动机(集团)有限责任公司,辽宁沈阳110043; 2.沈阳铸造研究所,辽宁沈阳110022) 摘要:论述了单晶高温合金的制备方法,凝固过程的控制。概述了单晶高温合金的发展历程以及合金成分的发展。最后介绍了我国高温合金的发展状况。 关键词:镍基单晶高温合金;制备方法;合金成分 高温合金由等轴晶经历了定向柱晶发展到单晶,既是发动机工作温度不断提高的要求,也是凝固技术持续发展的结果。镍基单晶高温合金通常划分为五代,早期研制的单晶合金称为第一代单晶合金[1],随着铼(Re)元素的引入,第二代和第三代单晶合金[2]相继出现,近期开始在单晶合金中加入元素钌(Ru),从而研制出第四代至第五代单晶高温合金。 镍基高温合金广泛应用于航空、航天、舰船、发电、机床、石油和化工等工业领域,在航空发动机上主要用于制作热端部件,如涡轮工作叶片、导向叶片、涡轮盘、燃烧室和压气机等部件。在整个高温合金领域中,镍基高温合金占有特殊重要的地位,与铁基和钴基合金相比,镍基合金具有更好的高温性能,良好的抗氧化和抗腐蚀性能,可以说,镍基高温合金的发展决定了航空涡轮发动机的发展,也决定了航空工业的发展。采用定向凝固技术制备出的单晶合金,其使用温度已接近合金熔点的90%,成为当代先进航空发动机热端部件不可替代的重要结构材料。 1情况介绍 铸件形成定向柱晶组织必须具备两个条件,一是热流必须垂直于晶体生长的固液界面单向流动;二是固液界前方的液体中没有稳定的晶核。Bridgman法就是一种广泛应用的由高温熔体生长单晶的方法。 单晶和定向柱晶凝固过程的唯一差别是单晶必须是由一个晶核长大而成的。获得单一晶核的方法通常有两种:即选晶法和籽晶法,两种方法各有优缺点、互相补充。 (1)螺旋生长法制备单晶的基本原理(图1,图2),众多晶粒在经过螺旋形的单晶选择器后,只剩下生长最快的一个晶粒,从而形成单晶。 图1单晶的螺旋生长法生产示意图图2单晶选择示意图

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

国内外镍基高温合金

国内外镍基高温合金 Prepared on 24 November 2020

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710);GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600 耐蚀合金系列·常用耐蚀合金系列材料 中国牌号国外牌号特性和用途 NS312Inconel 600耐高温氧化物介质腐蚀,用于热处理及化学加工工业装置 NS112Inconel 800H抗氧化物介质腐蚀,抗高温抗渗碳强度高,合成纤维工程中加热管、炉管及构件 NS322Hastelloy B-2(哈氏B2)耐强还原性介质腐蚀,改善抗晶间腐蚀性,高温中盐酸及中浓度硫酸环境中使用 NS334Hastelloy C276(哈氏C276)耐氧化性氯化物水溶液及湿氯、次氯盐酸腐蚀,用于强腐蚀性氧化-还原复合介质环境

国内外镍基高温合金

国内外镍基高温合金标准化管理部编码-[99968T-6889628-J68568-1689N]

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128 (GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90); GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133 (GH33A); GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169 (GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500); GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710); GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600

国内外镍基高温合金

国内外镍基高温合金 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710);GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600 耐蚀合金系列·常用耐蚀合金系列材料 中国牌号国外牌号特性和用途 NS312Inconel 600耐高温氧化物介质腐蚀,用于热处理及化学加工工业装置 NS112Inconel 800H抗氧化物介质腐蚀,抗高温抗渗碳强度高,合成纤维工程中加热管、炉管及构件 NS322Hastelloy B-2(哈氏B2)耐强还原性介质腐蚀,改善抗晶间腐蚀性,高温中盐酸及中浓度硫酸环境中使用 NS334Hastelloy C276(哈氏C276)耐氧化性氯化物水溶液及湿氯、次氯盐酸腐蚀,用于强腐蚀性氧化-还原复合介质环境

镍基高温合金waspaloy加工工艺

镍基高温合金(如In718、Waspaloy等)具有热稳定性好、高温强度和硬度高、耐腐蚀、抗磨损等特点,是典型的难加工材料,常用于制作涡轮盘等发动机关键部件。由于涡轮盘是航空发动机的关键部件之一,在应力、温度和恶劣的工作环境条件下容易产生疲劳失效,因此涡轮盘材料及制造技术是研制高性能航空发动机的关键。由于涡轮盘上的异形孔由若干圆弧和直线组成,形状复杂,加工时要求各组成段位置准确、过渡圆滑而不产生加工转折痕迹,表面粗糙度符合工艺要求,因此该高温合金异形孔的加工是涡轮盘加工的难点。目前,航空发动机制造商均采用电火花加工方法加工镍铬耐热合金异形孔,但是电火花加工过程中产生的热影响层难以用普通的磨削、研磨方法去除,往往需要用磨料射流等特殊工艺去除该变质层,加工效率低,生产成本高。因此,对高效低成本的镍基高温合金异形孔加工方法的研究越来越受到人们的高度重视。 本文通过钻削、铣削与磨削工艺的不同组合、选用新型涂层刀具及适当的加工参数加工镍基高温合金异形孔的工艺试验,讨论了用铣削和磨削加工方法代替电火花方法加工镍基高温合金异形孔的可行性。 2 工艺试验与分析 1.试验条件 切削试验在加工中心上进行,被加工异形孔的形状和尺寸见图1:异形孔的截面由6段圆弧和2段直线组成,孔深10mm。试验中分别采用以下工艺:①钻削?6mm圆孔→铣削异形孔;②钻削?6mm圆孔→磨削异形孔;③钻削?6mm圆孔→铣削异形孔→磨削异形孔。三种不同工艺过程的加工条件、工艺参数见表1。

铣 削 ↓ 磨 削 长25mm,铣刀总长100mm,柄部 直径?6mm,直柄 磨削 直径?4mm、长6mm的圆柱形氧 化铝砂轮(铬刚玉),等级RA120, 柄部直径?3mm 1883330.05 工件材料:In718镍基高温合金 冷却液:浓度为9%的乳化液,压力30Bar 图1 异形孔的截面形状与尺寸 图2 采用不同工艺获得的异形孔表面粗糙度 1.分别采用工具显微镜和图像采集系统测量铣刀和砂轮的磨损,记录磨损形貌。用Taylor-HobsonSurtronic 3p型表面 粗糙度仪沿异形孔的轴线方向测量孔的表面粗糙度Ra。 2.结果与分析 a.对三种加工工艺过程获得的异形孔表面粗糙度进行对比,结果如图2所示:在三种工艺过程中,采用钻削 →铣削→磨削(钻削加工?6mm圆孔→低用量铣削加工异形孔→磨削异形孔)工艺所获得的异形孔的表面粗糙度最 小,而钻削→磨削(钻削加工?6mm圆孔→磨削异形孔)工艺所获得的异形孔表面粗糙度最大。试验证明:在该试验条件下采用铣削加工也能获得满足表面粗糙度要求的异形孔;钻孔后磨削加工比钻孔后铣削加工所获得的异形孔表面粗糙度精度低;铣削后再进行磨削加工可在一定程度上提高异形孔加工的表面粗糙度精度,但会增加成本,降低效率。 b.不同加工条件下的铣刀磨损和破损情况:在钻削→铣削过程中,铣削1个孔后,两把铣刀的转角处均产生 了严重的沟槽磨损和破损。采用低切削用量铣削异形孔时(v=52m/min,f=333mm/min),铣刀产生比较明显的破损(见图3a);而用高切削用量铣削异形孔时(v=104m/min,f=666mm/min),铣刀的沟槽磨损更为显著(见图3b)。

相关文档
相关文档 最新文档