文档视界 最新最全的文档下载
当前位置:文档视界 › 数列大题专题训练1(学生版)

数列大题专题训练1(学生版)

数列大题专题训练1(学生版)
数列大题专题训练1(学生版)

精选

数列大题专题训练1

1.已知数列{}n a 的前n 项和为n S ,且. *1

1()2n n S a n N +=∈

(1)求数列{}n a 的通项公式;

(2)设*

3log (1)()n n b S n N =-∈,求满足方程

2334111125

51

n n b b b b b b ++++=L 的n 值.

【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如??

?

?

??

c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n≥2)或1

n (n +2).

2.已知数列是等比数列,首项,公比,其前项和为,且,成等差数列.

(1)求

的通项公式;

(2)若数列满足为数列前项和,若恒成立,求的最大值.

{}n a 11a =0q >n n S 113322,,S a S a S a +++{}n a {}n b 11,2n n

a b n n a T +??

= ?

??

{}n b n n T m ≥m

【方法点晴】本题考查等差数列、等比数列、数列的前项和、数列与不等式,涉及特殊与一般思想、方程思想思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.第二小题首

先由

再由错位相减法求得为递增数列当时,

.再利用特殊与一般思想和转化化归思想将原命题可转化的最大值为.

3.已知数列中,,其前项和满足,其中. (1)求证:数列为等差数列,并求其通项公式;

(2)设,n T 为数列{}n b 的前n 项和.

①求n T 的表达式;

②求使2>n T 的n 的取值范围.

4.为等差数列的前项和,且,,记.其中表示不超过的最大整数,如

,.

(1)求;

(2)求数列的前1000项和.

n 1111222n n

n n

a b n

a b n n a b +??

????=?=?= ?

? ???

????

12n n -?g 2112232...n T =?+?+?+12n n -+g ()112n n T n =+-1n n T T +?-=()120n n +>g {}n T ??1n =()min 1n T =()min n T m ≥1m m ?≤?1{}n a 3,221==a a n n S 1211+=+-+n n n S S S *∈≥N n n ,2{}n a n

n n a b -?=2n S {}n a n 11a =728S =[lg ]n n b a =[]x x [0.9]0=[lg99]1=111101b b b ,,{}n b

精选

【技巧点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.

5.已知数列的前项和为,且(),数列满足().

(1)求,;

(2)求数列的前项和.

6.已知等比数列

{}n a 的公比11,1q a >=,且132,,14a a a +成等差数列,数列{}n b 满足:

()()*1122131n n n a b a b a b n n N +++=-+∈L g .

(1)求数列{}n a 和{}n b 的通项公式;

(2)若8n n ma b ≥-恒成立,求实数m 的最小值.

}{n a n n S n n S n +=22*∈N n }{n b 3log 42+=n n b a *

∈N n n a n b }{n n b a ?n n T

7.已知数列{}n a ,0n a >,其前n 项和n S 满足1

22n n n S a +=-,其中*n N ∈.

(1)设2n

n n

a b =

,证明:数列{}n b 是等差数列; (2)设2n

n n c b -=?,n T 为数列{}n c 的前n 项和,求证:3n T <;

(3)设1

4(1)2n b

n n n d λ-=+-?(λ为非零整数,*n N ∈),试确定λ的值,使得对任意*n N ∈,都有1n n

d d +>成立.

【易错点晴】本题以数列的前n 项和与通项之间的关系等有关知识为背景,其目的是考查等差数列等比数列等有关知识的综合运用,及推理论证能力、运算求解能力、运用所学知识去分析问题和解决问题的能力的综合问题.求解时

充分借助题设条件中的有效信息1

22n n n S a +=-,借助数列前n 项和n S 与通项n a 之间的关系

)2(1≥-=-n S S a n n n 进行推证和求解.本题的第一问,利用等差数列的定义证明数列}2{

n

n

a 是等差数列;第二问中则借助错位相减的求和方法先求出213333222

n n n n n n T ++=--=-<;第三问是依据不等式成立分类推得参数λ的取值范围.

8.设数列{}n a 的前n 项和为n S ,已知11a =()

*121N n n S S n n +=++∈. (1)求数列{}n a 的通项公式; (2)若1n n n

n

b a a +=-,求数列{}n b 的前项和n T .

.

精选

考点:数列的求和;数列的递推关系式. 9.已知数列的首项,且满足,.

(1)设,判断数列是否为等差数列或等比数列,并证明你的结论; (2)求数列的前项和

10.n S 为数列的前n 项和,已知0n a >,2

241n n n a a S +=-.

(1)求{}n a 的通项公式; (2)设1

1

n n n b a a +=,求数列{}n b 的前n 项和n T .

11.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列. (I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。

12.设数列{}n a 的前n 和为n S ,()21

1,22n n

a S na n n n N *

==-+∈. (1)求证:数列

{}n a 为等差数列, 并分别写出n a 和n S 关于n 的表达式;

(2)是否存在自然数n ,使得3

21...2112423n n S S S S n +

++++=?若存在,求出n 的值; 若不存在, 请说明理由;

(3)设()()()1232,...7n n n n c n N T c c c c n N n a **=

∈=++++∈+,若不等式()32

n m

T m Z >∈,对n N *∈恒成立, 求m 的最大值.

13.设数列{}n a 满足3

21212222

n n a a a a n -+

+++=L ,*n N ∈. (1)求数列{}n a 的通项公式; (2)设1(1)(1)

n

n n n a b a a +=--,求数列{}n b 的前n 项和n S .

精选

考点:(1)数列递推式;(2)数列求和. 14.已知函数2

32)(+=

x x

x f ,数列{a n }满足a 1=1,a n+1=f (a n ).

(1)求数列{a n }的通项公式;

(2)设b n =a n a n+1,数列{b n }的前n 项和为S n ,若S n <

2

2016

-m 对一切正整数n 都成立,求最小的正整数m 的值.

考点:1、数列的递推公式及通项公式;2、利用“裂项相消法”求数列前n 项和.

15.设数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *). (1)求证:数列{S n -3n }是等比数列;

(2)若{a n }为递增数列,求a 1的取值范围.

【方法点晴】本题主要考查了利用等比数列的定义判定和证明数列为等比数列、等比数列的性质的应用和数列的递推关系式的化简与运算,解答中得数列{}

3n n S -是公比为2,首项为13a -的等比数列和化简出

211(3)223n n n a a --=-?+?是解答本题的关键,着重考查了学生分析问题和解答问题的能力,以及学生的推理与

运算能力,属于中档试题.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

最新2019-2020年高考数学大题综合训练1教学内容

2019-2020年高考数学大题综合训练1 1.已知等差数列{a n }的公差d ≠0,其前n 项和为S n ,若a 2+a 8=22,且a 4,a 7,a 12成等比数列. (1)求数列{a n }的通项公式; (2)若T n =1S 1+1S 2+…+1S n ,证明:T n <3 4. (1)解 ∵数列{a n }为等差数列,且a 2+a 8=22, ∴a 5=1 2(a 2+a 8)=11. ∵a 4,a 7,a 12成等比数列, ∴a 27=a 4· a 12, 即(11+2d )2=(11-d )·(11+7d ), 又d ≠0, ∴d =2, ∴a 1=11-4×2=3, ∴a n =3+2(n -1)=2n +1(n ∈N *). (2)证明 由(1)得,S n =n (a 1+a n )2=n (n +2), ∴1S n =1n (n +2)=12????1 n -1n +2, ∴T n =1S 1+1S 2+…+1S n =12?? ? ???1-13+????12-14+???? 13-15+…+ ? ?????1n -1-1n +1+????1n -1n +2

=1 2????1+12-1n +1-1n +2 =34-12????1 n +1+1n +2<34. ∴T n <34 . 2.如图,已知四棱锥P -ABCD 的底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,AB =3,BC =2AD =2,E 为CD 的中点,PB ⊥AE . (1)证明:平面PBD ⊥平面ABCD ; (2)若PB =PD ,PC 与平面ABCD 所成的角为π 4,求二面角B -PD -C 的余弦值. (1)证明 由ABCD 是直角梯形, AB =3,BC =2AD =2,可得DC =2,BD =2, 从而△BCD 是等边三角形, ∠BCD =π 3,BD 平分∠ADC , ∵E 为CD 的中点,DE =AD =1, ∴BD ⊥AE . 又∵PB ⊥AE ,PB ∩BD =B , 又PB ,BD ?平面PBD , ∴AE ⊥平面PBD . ∵AE ?平面ABCD , ∴平面PBD ⊥平面ABCD . (2)解 方法一 作PO ⊥BD 于点O ,连接OC ,

数列大题专题训练)

数列大题专题训练 1.已知数列{a n}、{b n}满足:a^- ,a n b n = 1,b n d. 4 1 -a. (1) 求b-,b2,b3,b4; (2) 求数列{b n}的通项公式; (3) 设S n = a£2 ■玄2玄3 ■玄3玄4 ' ... ' a.a n 1 ,求实数a为何值时4aS n

(t 0,n -2,3, ) (1) 求证:数列{a n }是等比数列; 1 (2) 设数列{a n }得公比为 f(t),作数列{b n },使 b i =1,b n 二 f( ),n =(2,3-),求 b b n_1 (3) 求 b i b 2 - b 2b 3 ' b 3b 4 - b 4 b 5 b 2nJ b 2n b 2n b 2n 1 的值。 5 ?设数列{a n }的前n 项和为S n ,且S n =(1 ) - a,其中,=-1,0 ; (1 )证明:数列{a n }是等比数列; 1 水 (2)设数列{a n }的公比 q = f ('),数列{b n }满足b 1 二?,b n 二 f (b nj )(n ? N *,n _ 2) 求数列{b n }的通项公式; 6. 已知定义在 R 上的单调函数 y=f(x),当x<0时,f(x)>1,且对任意的实数 x 、y € R ,有 f(x+y)= f(x)f(y), (I)求f(0),并写出适合条件的函数 f(x )的一个解析式; 1 (n)数列{a n }满足 a 1=f(0)且f(a n 1) (n ? N *), f(-2-a .) ①求通项公式a n 的表达式; 试比较S 与4Tn 的大小,并加以证明 1 a ②令 b n=(?)n ,S n ^b 1 b 2 b n , T n a 〔 a 2 a 2 a 3 1 a n a n 1

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

数列j经典大题讲解与训练(详细答案)

数列——大题训练 1.已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2a 4=64,a 1+a 5=18. (1)若10,所以a 2

2018高考数学专题---数列大题训练(附答案)

2018高考数学专题---数列大题训练(附答案) 1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+. (1)求{n a }的通项公式; (2)求和T n = 12 111 23(1)n a a n a +++ +. 2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线012 1 =+- y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1 111)(321≥∈++++++++= n N n a n a n a n a n n f n 且 ,求函数)(n f 最小值. 3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,8 1)和Q (4,8) (1) 求函数)(x f 的解析式; (2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15. 求n S =f (1)+f (2)+…+f (n )的表达式. 5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数. (1)求证: {}n a 为等比数列; (2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23 n n b b f b n N n -==∈≥,试写出1n b ?? ???? 的通项公式,并求12231n n b b b b b b -++ +的结果. 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线, 且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ; (2)设a 1=a ,b 1=-a ,且12

数列经典题目集锦--答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *. (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且*1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后 能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++ 1 32 46n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值范围.

数列应用题专题训练

数列应用题专题训练 高三数学备课组 以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。 一、储蓄问题 对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。 单利是指本金到期后的利息不再加入本金计算。设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。 复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。 例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式: (1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数); (2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。 问用哪种存款的方式在第六年的7月1日到期的全部本利较高? 分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。 解:若不计复利,5年的零存整取本利是 2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950; 若计复利,则 2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。 所以,第一种存款方式到期的全部本利较高。 二、等差、等比数列问题 等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。 例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。若交付150元以后的第

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

数列大题专题训练1(老师版)

数列大题专题训练1 1.已知数列{}n a 的前n 项和为n S ,且*1 1()2 n n S a n N +=∈. (1)求数列{}n a 的通项公式; (2)设* 3log (1)()n n b S n N =-∈,求满足方程2334111125 51 n n b b b b b b ++++= L 的n 值. 【解析】 试题分析:(1)由 n S 与n a 关系求数列{}n a 的通项公式时,注意分类讨论:当1n =时,11a S =;当2n ≥时, 1n n n a S S -=-,得到递推关系1 1 3n n a a -=,再根据等比数列定义确定公比,由通项公式求通项 (2)先求数列{}n a 前n 项和11() 3n n S =-,再代入求得n b n =-,因为11111n n b b n n +=-+,从而根据裂项相消法求和23 3411111121n n b b b b b b n ++++=-+L ,解11252151n -= +得n 值 试题解析:(1)当1n =时, 123a = , 当1n >时, 112n n S a + =,111 12n n S a --+=, ∴131022n n a a --=,即1 1 3n n a a -= ∴ 23n n a = . (2)21(1()) 1331()1313n n n S -==--,∴n b n =-,11111n n b b n n +=-+, ∴23 3411111121n n b b b b b b n ++++=-+L , 即11252151n -= +,解得101n =. 考点:由 n S 与n a 关系求数列{}n a 的通项公式,裂项相消法求和 【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用 于形如?? ?? ?? c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂

(完整版)数列大题专题训练1[老师版]

范文范例参考 完美Word 格式整理版 数列大题专题训练1 1.已知数列{}n a 的前n 项和为n S ,且*1 1()2 n n S a n N +=∈. (1)求数列{}n a 的通项公式; (2)设* 3log (1)()n n b S n N =-∈,求满足方程233411112551 n n b b b b b b ++++=L 的n 值. 【解析】 试题分析:(1)由 n S 与 n a 关系求数列 {} n a 的通项公式时,注意分类讨论:当1n =时,11 a S =;当2n ≥时, 1 n n n a S S -=-,得到递推关系11 3n n a a -=,再根据等比数列定义确定公比,由通项公式求通项 (2)先求数列{}n a 前n 项和11()3n n S =-,再代入求得n b n =-,因为11111n n b b n n +=-+,从而根据裂项相消法求和23 3411111121n n b b b b b b n ++++=-+L ,解11252151n -=+得n 值 试题解析:(1)当1n =时, 12 3a = , 当1n >时,112n n S a +=,111 1 2n n S a --+=, ∴131022n n a a --=,即1 1 3n n a a -= ∴ 23n n a = . (2)21(1()) 1331()1313n n n S -==--,∴n b n =-,11111n n b b n n +=-+, ∴23 3411111121n n b b b b b b n ++++=-+L , 即11252151n -= +,解得101n =. 考点:由 n S 与 n a 关系求数列 {} n a 的通项公式,裂项相消法求和 【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如?? ? ? ?? c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂

数列大题练习

数列大题 一、选择题 1.数列{a n }的通项公式a n =,则该数列的前( )项之和等于9. 2.数列1, 211+,3211++,…,n 211+++Λ&的前n 项和为( ) 3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为 4.数列2211,12,122,,1222,n -+++++++L L L 的前n 项和为 . 5.数列 1 21, 241, 381, 4161, 5321 , …n n 2 1+,…, 的前n 项之和等于 . 三、解答题 6.设数列{a n }的前n 项和为S n ,()112,2*n n a a S n N +==+∈. (1)求数列{a n }的通项公式;(2)令()2 2log n n b a =,求数列11n n b b +?? ???? 的前n 项和T n . 7.已知数列{a n }满足111,1n n n a a a a +== +; (1)证明:数列1n a ?????? 是等差数列,并求数列{a n }的通项公式;(2)设1 n n a b n =+,求数列{b n }前n 项和为S n . 8.已知数列{a n }的前n 项和为S n ,满足112n n n S S a --=++,且13a =. (I)求数列{a n }的通项公式(Ⅱ)设1 1 n n n b a a +=,求数列{b n }的前n 项和T n .

9.设数列{a n }的前n 项和为S n ,已知13a =,133n n S S +=+ * ()n N ∈, (1)求数列{a n }的通项公式;(2)若14n n n n b a a +=-,求数列{b n }的前n 项和为T n . 10.已知{a n }是公差不为0的等差数列,满足37a =,且1a 、2a 、6a 成等比数列. (1)求数列{a n }的通项公式;(2)设1 1 n n n b a a +=,求数列{b n }的前n 项和S n . 11.已知公差不为零的等差数列}{n a 的前n 项和为n S ,若10110=S ,且124,,a a a 成等比数列。(1)求数列}{n a 的通项公式; (2)设数列}{n b 满足)1)(1(1+-=n n n a a b ,若数列}{n b 前n 项和n T ,证明2 1

经典等差数列性质练习题(含答案)

等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣ 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11 9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为() A.25 B.24 C.20 D.19 10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=() A.5B.3C.﹣1 D.1 11.(2005?黑龙江)如果数列{a n}是等差数列,则() A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D.

高中数学数列练习题及答案解析

高中数学数列练习题及答案解析 第二章数列 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n等于. A.667B.668C.669D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=. A.33B.7C.84D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则. A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a5 4.已知方程=0的四个根组成一个首项为 |m-n|等于. A.1B.313C.D.8421的等差数列,则 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为. A.81 B.120 C.1D.192 6.若数列{an}是等差数列,首项a1>0,a003+a004>0,a003·a004<0,则使前n项和Sn>0成立的最大自然数n是. A.005B.006C.007D.008

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=. A.-4B.-6C.-8D.-10 8.设Sn是等差数列{an}的前n项和,若 A.1B.-1 C.2D.1 a2?a1的值是. b2a5S5=,则9=. a3S599.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则 A.11111B.-C.-或D.2222 210.在等差数列{an}中,an≠0,an-1-an+an+1=0,若S2n-1=38,则n=. 第 1 页共页 A.38B.20 C.10D.9 二、填空题 11.设f=1 2?x,利用课本中推导等差数列前n项和公式的方法,可求得f+f+…+f+…+ f+f的值为12.已知等比数列{an}中, 若a3·a4·a5=8,则a2·a3·a4·a5·a6=. 若a1+a2=324,a3+a4=36,则a5+a6=. 若S4=2,S8=6,则a17+a18+a19+a20=. 82713.在和之间插入三个数,使这五个数成等比数列,

高考数学数列大题专题训练

高考数学数列大题专题训练 命题:郭治击 审题:钟世美 参考答案 1.解:(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则 2121++????=n n n t t t t T ① 1212t t t t T n n n ???=+?+ ② ①×②并利用)21(,102213+≤≤=?=?+-+n i t t t t n i n i ,得 (Ⅱ)由题意和(Ⅰ)中计算结果,知 另一方面,利用 得 所以 2.解:(Ⅰ)0,1,2,1,0是一具满足条件的E 数列A 5。 (答案不唯一,0,1,0,1,0也是一个满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列, 所以)1999,,2,1(11 ==-+k a a k k . 所以A 5是首项为12,公差为1的等差数列. 所以a 2000=12+(2000—1)×1=2011. 充分性,由于a 2000—a 1000≤1, a 2000—a 1000≤1 …… a 2—a 1≤1 所以a 2000—a≤19999,即a 2000≤a 1+1999.

又因为a 1=12,a 2000=2011, 所以a 2000=a 1+1999. n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列. 综上,结论得证。 (Ⅲ)令.1),1,,2,1(011±=-=>=-=+A k k k c n k a a c 则 因为2111112 c c a a c a a ++=++= …… 所以13211)3()2()1()(-++-+-+-+=n n c c n c n c n na A S 因为).1,,1(1,1-=-±=n k c c k k 为偶数所以 所以)1()2)(1()1)(1*21n c n c n c -++--+-- 为偶数, 所以要使2 )1(,0)(-=n n A S n 必须使为偶数, 即4整除*)(144),1(N m m n m n n n ∈+==-或亦即. 当 ,1,0,*)(14241414-===∈+=--+k k k n a a a A E N m m n 的项满足数列时14=k a ),,2,1(m k =时,有;0)(,01==n A S a 当n A E N m m n 数列时,*)(14∈+=的项满足,,1,0243314-===---k k k a a a 当)1(,)(3424-∈+=+=m n N m m n m n 时或不能被4整除,此时不存在E 数列A n , 使得.0)(,01 ==n A S a 3.

相关文档 最新文档