文档视界 最新最全的文档下载
当前位置:文档视界 › 地球化学

地球化学

地球化学
地球化学

地球化学的现状及其在矿产勘探中的应用

摘要地球化学是地学的一门年轻的分支学科,是化学与地学各领域相结合的产物。随着科学技术的飞跃进步,地球化学的研究手段更加先进,研究领域不断扩大,原有分支迅速发展,同时新的分支相继出现。目前地球化学在地质探矿、环境保护、农业生产、灾害预报等领域发挥着重要的作用,已逐渐成为地球科学最活跃、最有生命力的学科之一。本文主要介绍地球化学的发展现状,同时结合矿产勘探实际工作来论述地球化学在地质找矿中的重要作用。

一、地球化学的现状

虽然地球化学思想的萌芽阶段可以追溯到遥远的过去,但是在早期阶段,主要是对与地壳的化学组成有关的某些地球化学现象的定性的描述。直至20世纪上半叶,地球化学才独立成型,作为一门独立学科,正式登上国际舞台。

然而随着化学、物理学和地学等领域的发展,地球化学迎来了大发展时期,当前地球化学研究手段日渐先进,研究领域不断扩展,研究精度不断提高,这些彰显了地球化学的活力。地球化学强劲生命力的另一个体现是原有分支的迅猛发展和新分支的不断涌现,下面通过几个主要分支的叙述来反映地球化学的发展现状。

1.元素地球化学

元素地球化学是研究地壳中或地表各类岩石、矿物、矿石及各种地质体中化学元素的组成、含量、分布及时空变化的学科,也是研究各种化学元素地球化学行为的主要学科。作为地球化学中最早出现的基础学科分支,现阶段元素地球化学的研究更广泛更深入了。对于元素在各种地质体中以及动植物中的含量和分布特征积累了越来越多的数据,对其控制规律有了更深入的认识;对于元素在各种地质作用过程中的地球化学行为有了更清楚的了解。

研究的元素种类有了明显的增加,包括许多微量元素,如稀土、稀有、分散元素,因而出现了微量元素地球化学,如稀土元素地球化学、稀有气体地球化学等,而且数据更精确、更合理了。元素地球化学,特别是微量元素地球化学研究,包括多种元素对比值的应用,现在己经成为探讨岩石、矿床以至行星的成因和演化的重要手段。

2. 同位素地球化学

同位素地质年代学也取得了长足的进展,传统的方法,如U-Pb、Rb-Sr、K-Ar、C14法更加完善;各种等时线法的提出;同位素稀释质谱法成为常现研究手段;一些理论模式的提出以及测定年代范围的扩大等。同时新的年代测定法也得到了发展,如铀系法、裂变径迹法、Ar40/Ar39法、钐-钕法、Re-0s法、热释光法、沉降核类法等,特别是钐-钕法,比之早建立的铀铅法、铷锶法、钾氩法等同位素年代学方法更接近于封闭体系。

建立了一整套同位素地质年龄测定方法,使所测年限从距今数年直到几十乃至一百多亿年,为地球与天体演化建立了时间尺度,从而大大地丰富了人们对地球与天体演化的认识。现在,我们可以借助这些手段,建立地球以至银河系发展的完整年表。

伴随着同位素地质年代学的蓬勃发展,特别是同位素分馏机制的深入研究和同位素分离、测试技术的提高,同位素地球化学的另一个分支——稳定同位素地球化学在这个时期也发展很快,不仅积累了大量同位素丰度测定数据,而且在理论、方法和应用各方面均有很大进展。同位素组成变化所提供的信息,已经成为探讨许多地质过程的强有力的手段。根据稳定同位素的研究,初步解决了一些争论多年的矿床成因问题,并提出了一些新的成矿假说。在天体演化方面也提出了新的见解。目前研究较多的稳定同位素种类,已经发展到氧、硫、碳、氢、铅、稀土、锂等20 余种,尤以氧、硫、碳、氢同位素发展最快。

3. 有机地球化学

随着石油和天然气的大量开发和寻找,有机地球化学以惊人的速度后来居上,成为地球化学中最活跃的学科分支之一。早在二十世纪三十年代,A.特里布斯对于地质体中卟啉化合物的研究,曾为有机地球化学的兴起做出了重要的贡献,但是由于分析测试技术的限制,十多年中没有取得重要的进展。

由于各种色谱技术的出现和应用,才使有机地球化学迅速发展为一门独立的学科分支。不仅从现代沉积物、土堆、沉积岩和天然水体中分离鉴定出了越来越多的有机化合物,确定了多种地质体中各类天然有机质的组成和演化特征,探讨了有机质对金属元素的富集作用和有机质参与下化学元素迁移富集的一般机制,而且证实有机质转化为烃类需要一定的埋藏深度和温度条件,建立了一批生油地

球化学指标和石油演化理论,在油气田的寻找和评价中发挥了重要的作用,并对生命出现前有机质的演化,即生命起源的研究做出了重要的贡献。

同时由于采用了各种色谱技术、色谱-质谱-电子计算机、核磁共振、高分辨电子显微镜等,已能从分子水平研究地质类脂物,并已深入研究和新发现了许多重要的生物标志化合物或分子化石;对高分子量有机质,如腐殖酸与干酪根等的研究也取得突破。

4. 勘查地球化学

勘查地球化学,作为一种找矿方法,又叫地球化学探矿,简称化探。作为地球化学的另一个重要分支,勘查地球化学也发展很快,各种方法不断涌现,如金属测量法、普查石油的气体测量法、生物地球化学找矿法、水化学法等。

随着分析测试技术的进步及电子计算机的广泛使用,使对数目巨大的分析数据的储存、整理和分析更加科学,对异常的解释更加精确,同时由于在找矿上“攻深找盲”的需要,有力地促进了地球化学探矿的广泛开展。勘查地球化学已经成为一项必不可少的找矿手段,无论在国内还是国外,结合地质研究,勘查地球化学都取得了显著的找矿效果,发现了许多重要的矿床,如在加拿大发现了纽曼半岛铜矿床,在英国发现了爱尔兰纳凡铅锌矿。另外勘查地球化学在方法、理论、探矿范围和测定对象等方面都有了很大的发展。已经出现了微量元素、热发光、热晕、同位素等地球化学探矿的新趋势。

通过对国内外勘查地球化学一些最新进展的跟踪,认为矿体-成矿系列、地球化学异常模式、矿区化探和隐伏矿体定位预测依然是今后勘查地球化学的重要研究领域。

5.环境地球化学

随着工业的发展,七十年代以后,地球化学的一个新分支——环境地球化学诞生了。由于人类社会对环境问题日益重视,而研究环境问题与矿产勘查所依据的地球化学分散、富集与迁移的原理有许多相似之处,故近年来越来越多的勘查地球化学家转向环境地球化学领域。

越来越多的事实表明,由于周围环境,如土壤、水或农作物中某些化学元素或物质的过于缺乏或过于集中,会引起某些疾病。这种病的发生,往往是地区性的,通常称为“地方病”,如我国的克山病、大骨节病等。由于工业的发展,大

量的废气、废液、废渣排向自然界,在农业生产中,化肥农药的广泛使用,加上矿山的开发以及工程设施的大量修建,使往日深埋在地下的物质暴露于地表,从而改变了当地的化学组成,影响其化学作用和化学演化的进行,给人类的生存和生态平衡造成了严重的威胁。

环境地球化学近些年最为突出的进展是提出了“化学定时炸弹”的新概念。化学定时炸弹是指化学物质在土壤中不断累积,终于使土壤承受能力达到极限。这时只要增加少量投入就会使原被土壤固定的化学物质大量释放,造成无法收拾的严重灾害。另一种类型的化学定时炸弹是由于气候及土地利用的改变使土壤承受能力大幅度下降,导致化学定时炸弹提前引爆。

6.实验地球化学

实验地球化学应用化学原理和现代实验技术,在实验室中模拟自然条件,研究地球化学过程中元素的行为和自然化学反应的机理。实验地球化学不仅为地球化学的理论和假说提供实验证据,而且是地球化学研究和地球化学过程的热力学计算与数学模拟之间的桥梁。它对地球化学,甚至整个地球科学的发展均有重要作用。

实验地球化学是在实验矿物学和实验岩石学的基础上逐步发展起来的。它是地球化学的一个分支,是以野外及室内实验资料为依据,利用不同温度、压力的技术和设备,在实验室里创造不同的地球化学作用过程,研究元素的迁移与富集、分布与分配,岩石及矿床的形成条件;探讨自然化学反应机理,以实现实验室对自然地球化学作用的再现。它不仅为地球化学的理论和假设提供实验依据,而且是地球化学研究和地球化学过程的热力学计算与数学模拟之间的桥梁。它对地球化学、甚至整个地球科学的发展均有重要贡献。

目前实验地球化学的研究热点主要有以下几点:(1)水溶液和热水溶液体系的实验研究,涉及温度范围由地表温度到500℃,压力不超过5000万帕,重点在流体相的研究。(2)流体-矿物体系的实验研究,温度低于固相线温度,压力不超过10亿帕。研究重点是矿物相,主要利用各种外加热高温高压设备,研究固溶体矿物的成分界限、矿物与流体之间元素的分配及其与物理化学条件的关系,以及测定分配系数等。(3)硅酸盐体系的高温高压实验研究,温度高于固相线温度,压力一般高于100万帕。研究的重点是熔体相,所用设备包括内加热高

压装置和超高压高温设备。硅酸盐熔体中挥发分和惰性气体溶解度的实验研究对于探讨岩浆的产生、地壳-地幔体系的演化意义重大。通过硅酸盐熔体(淬火玻璃)的拉曼光谱、穆斯鲍尔谱学研究,了解硅酸盐熔体的结构,查明各种元素在硅酸盐熔体中的结构作用,加深了认识岩浆熔体的本质。

二、地球化学在矿产勘探中的应用

随着地质矿产普查工作程度的提高,地质找矿难度越来越大,主要是近地表肉眼易见的露头矿越来越少。因此,在地质找矿中,地球化学勘查新方法、新技术得到迅速的发展。主要是应用高灵敏度、高精密度、高准确度的分析仪器,进行多元素、多信息、多目标地寻找那些肉眼难以识别的地表浅部矿以及深部盲矿和掩埋矿。应用这些地球化学勘查新方法、新技术,已经取得了显著地质找矿效果。另外,在扩大区域地球化学调查应用范围方面,近年来区域地球化学调查的发展不仅仅是直接找矿,而且在基础地质研究、成矿预测、环境地质方面等都已显示了它独特的作用和巨大的潜力。

近十多年来,地球化学勘查在深度和广度方面都迅速发展,矿区化探在推动整个化探工作发展中起到很重要的作用。特别在隐伏矿普查中,显示了矿区化探的潜在能力。矿区化探的发展主要表现在以下三方面:已知矿区及外围找矿,典型矿床、矿田地球化学找矿模式的建立与研究,矿床、矿田地球化学特征和成矿成晕机制的研究。

在已知矿区及外围开展普查找矿,多年来运用较多的方法是岩石和土壤地球化学测量,特别是矿区钻孔原生晕工作。它反映了不同产状和剥蚀深度的矿体,对于研究矿与非矿原生异常的形成机理和特征指标,提供了有利的条件。在矿区外围开展了大量土壤或岩石地球化学测量,一般采用大比例尺面积性工作,用以发现矿区外围新的矿体或成矿有利地段,均取得显著找矿效果。另外近年来,在矿区和外围开展了大量新方法新技术的运用,例如汞气测量、地电化学方法、地气方法、综合气体方法等在许多矿区及外围寻找隐伏矿取得了一些新的地质找矿效果。

对于典型矿床、矿田地球化学找矿模式的建立与研究也得到足够的重视,近年来,由于地表出露的矿体日益减少,盲矿、掩埋矿已逐步成为主要找矿对象。为了提高找矿效果,国内外对各种地质成矿模式,特别是地球化学异常模式的研

究工作,日益广泛和深入。地球化学异常模式是一种找矿模式,它是对所研究的地质体产生的各种地球化学异常特征的概括,是通过总结已知矿体、矿床、矿田的各种地球化学异常特征,即原生异常和次生异常、元素组合的水平及垂向分带、异常的展布及发育等特征,力求反映出它们与地质体在空间、时间、成因上的关系,从而指出最优的方法及各种找矿评价指标。此项工作已取得了较大进展和很好的找矿效果,有力地指导了矿产普查和勘查工作。

对矿床、矿田地球化学特征的成矿成晕机制的研究,主要通过已知矿床或矿田有关的原生地球化学特征,探讨成矿成晕机制,查明异常与矿床的内在联系,提高矿床研究程度和勘查地球化学理论,提高找矿效果。如河南小秦岭金矿田,内蒙古白乃庙斑岩铜矿田等矿田的地球化学特征及矿田成矿物质来源、成矿成晕机理做了大量的研究工作。由于不同类型金矿、铜矿及其它矿种的矿床、矿田地球化学异常找矿模式的建立和矿床、矿田地球化学特征的研究,大大提高了化探找矿效果,并为化探寻找隐伏矿积累了很多经验,也促进了化探水平的提高。

总的来说,当前地球化学的在矿产勘探中的应用主要体现在如下几个方面:(1)覆盖区化探方法和理论。随着勘查程度增高,出露区找到新的矿产地的可能性越来越小,因此,寻找新的大型矿床的最大机遇在隐伏区。国际勘查界正聚焦于占陆地面积一半的隐伏区矿产勘查。因此,深穿透地球化学勘查技术(气体和部分提取)受到各国化探界的极大重视,是未来勘查地球化学发展主要方向。气体地球化学测量方法由于气体的强穿透性,可将大量的与深部矿化作用有关的物质携带到地表,可直接或间接指示各种地质成矿过程,而受到勘查地球化学的重视。经历数十年的发展之后,气体地球化学测量在测量指标、方法及影响因素研究方面都取得了长足进展。特别是近年来由于分析技术提高,使得很多超微含量的气体测定成为可能,一些新的气体测量方法相继提出,在寻找隐伏矿或盲矿方面获得了较好的效果。但是,要解决外来运积物覆盖区的地球化学调查与矿产勘查问题,需要在加强理论研究的基础上,完善方法并在应用中检验效果。

(2)特殊方法研究。国外在矿物、植物等地球化学勘查方法的研究和应用明显加强,已经对特殊景观区特殊矿产的地球化学勘查发挥了作用(如矿物化探用于寻找铂族元素矿床、稀有分散元素矿床、金刚石矿床;植物化探用于难进入或和浅覆盖区寻找贵金属和贱金属矿床),随着研究实例的增加,这些方法将在

矿产勘查中得到更多应用。

(3)岩石地球化学重新受到重视。常规化探方法在提供出露区矿化信息方面,发挥了其它技术无法替代的作用,可是,一旦矿化体被发现、进入异常评价和矿化体勘探阶段,化探的作用明显减小,限制了化探技术的应用范围。近些年,国内外的地质学家投入很大精力研究原生晕及其分带规律,以解决矿化体的剥蚀深度。

(4)同位素在勘查地球化学中应用将得到加强。随着ICP/MS分析技术的发展,特别是HR-ICP/MS技术的成熟,将使得ICP/MS分析同位素的灵敏度和精度得到提高,可直接分析各种样品中铅,不仅用于示踪研究,而且可用来填图。

因此,地球化学在直接找矿、基础地质研究、成矿预测、环境地质方面等都已显示了它独特的作用和巨大的潜力,对于寻找深部矿体有着其独特的优势,是一种比不可少的探矿手段。

参考文献

1.陆继龙.地球化学动力学研究现状与趋势.世界地质,1999,18(4):1-6.

2.李富山,韩贵琳.非传统稳定同位素锶(δ88/86Sr)的地球化学研究进展.地球与环境,2011,

39(4):585-591.

3.吕古贤,孙岩,刘德良等.构造地球化学的回顾与展望.大地构造与成矿学,2011,35(4):

479-494.

4.牟绪赞,奚小环.固体矿产地球化学勘查进展与成果.物探与化探,1996,20(4):241-249.

5.崔熙琳,汪明启,唐金荣.金属矿气体地球化学测量技术新进展.物探与化探,2009,33

(2):135-139.

6.谢学锦.勘查地球化学:发展史、现状、展望.地质与勘探,2002,38(6):1-9.

7.方维萱,徐国瑞.勘查地球化学主要新进展与今后的重要发展领域.矿产与地质,2005,

19(6):599-605.

8.谢学锦,王学求.深穿透地球化学新进展.地学前缘,2003,10(1):225-238.

9王岳军,张琴华,郑海飞.实验地球化学研究进展.地球科学进展,1996,11(1):30-34.

10.丁悌平.稳定同位素地球化学的现状与展望.岩矿测试,1990,9(1):72-77.

11.赵慈平.我国火山地热流体地球化学研究新进展.矿物岩石地球化学通报,2011,30(4):

382-390.

12.张永昌.我国有机地球化学研究现状、发展方向和展望.石油与天然气地质,2010,31

(3):265-271.

13.谢学锦,程志中,成杭新.应用地球化学在中国发展的前景.中国地质,2004,31(增

刊):16-29.

14.张招崇,骆文娟.中国新时代火山岩岩石学、地球化学与年代学研究进展.矿物岩石地

球化学通报,2011,30(4):353-360.

应用地球化学考试重点(经典)

应用地球化学考试重点 绪论 1、应用地球化学:运用地球化学基本理论和方法技术,解决人类生存的自然资源和环境质量的实际问题的学科。地球化学是其理论基础。 2、应用地球化学研究内容: 元素分布与矿产资源 元素在各介质中的含量 元素的分布与分配 地球化学异常与指标 矿床的成因(矿床学为主) 矿床的储量(找矿勘探课程为主) 3、地球化学找矿与其它探矿方法的比较: (1)与地球物理相比,地化方法已成为其有效的辅助手段之一,在评价和解释地球物理异常时,可排除其多解性。 在某种意义上说是一种直接的找矿方法,因而成果的推断解释较物探法简单、直接。 (2)同时,它较地质钻探等投资少。 (3)地质物化探综合运用,则更能提高找矿的效果。 (4)传统的地质找矿方法,以矿物学和岩石学的观察为基础,要求要有可见标志。所以必须要求矿物的粒度在光学显微镜的分辨能力以上。而地球化学方法是依靠分析测试手段探测其微观标志 (5)任何一种找矿方法,都有一个应用条件问题,都要根据研究区地形地貌自然景观条件的不同,以及目标矿种的地球化学特征的不同,选择相宜的方法技术。 4、应用地球化学研究领域 第一章 1、地球化学旋回:地幔物质分异出的岩浆及地壳重熔物质形成的岩浆上升结晶形成岩浆岩,经构造运动进入表生环境,经风化剥蚀,搬运沉积,形成沉积岩,沉积岩经沉降或俯冲作用到达地壳深部,发生变质或重熔作用,形成岩浆,完成一个大循环。 2、常组组分分布特征: 地壳的物质成分与上地幔最有成因联系。起源于地幔。 地壳:便于采样→数据较多。 地幔:不能采样→数据少。 遵循化学计量原则形成自然矿物

地壳:易熔的硅铝长英质成分(Si、Al、Ca)和K、Na、水增加,以长英质浅色矿物为主。 地幔:难熔组分Mg、Fe、Ni、Co、Cr;以铁镁暗色矿物为主。 岩石圈中十余种常量元素占总量的绝大部分。 常量元素在地壳中总量占99. 9%以上 3、微量元素的分布规律:(判断/填空) 不受化学计量原则控制 ?微量元素分布服从概率分布规律,既有随机性,又有统计性。 ?从地核到地壳的垂直方向上,分散在结晶矿物中的微量元素在地球化学旋回中产生了分异作用,有些元素(亲石元素)具有明显的从地核,下地幔向上地幔,最终在地壳中富集。 ?微观上受元素类质同象置换条件制约,少部分以超显微非结构混入物(在矿物结晶生长时混入晶格缺陷或机械包裹)。 ?宏观上受元素分配系数制约,以某种统计规律反映富集贫化趋势。 元素的地球化学分类 4、谢尔巴科夫分类方法: 谢尔巴科夫用元素的向心力和离心力描述这种向地球外圈贫化或富集的趋势 谢尔巴科夫分类方法:向心元素、最弱离心元素、弱离心元素、离心元素 ?每次重熔,不相容元素和相容元素都产生一次分离,从而使晚期的岩浆较早期的岩浆更富集不相容元素。5、巴尔科特把岩浆岩演化的这种规律总结为极性演化,即酸性岩越来越酸性,基性岩越来越基性。这为矿产评价 与找矿提供了思路,即在时代最新的花岗岩类岩体中寻找不相容元素的矿床。 6、戈尔德施密特提出划分为亲铁、亲硫(亲铜)、亲氧(亲石)、亲气、亲生物元素的分类方案 7、从超基性岩到酸性岩,还具有由相容元素组合变为不相容元素组合的特征。 8、正常分布与异常分布: 一般将遵从常规、不悖常理、无特别异举即为正常,其核心是从众,相反即为异常。 地球化学的正常分布,也就是某一空间中多数位置上元素含量所具有的相对波动不大的特征。 地球化学中的异常,是指某一区段的地球化学特征明显不同于周围无矿背景区的现象。 9、背景区元素含量:背景上限、背景值、背景下限 10、把异常区内高于正常上限Ca的样品数n’与总样品数n的比值n’/n称为异常率。 异常率的大小,不仅与成矿作用的强度、规模有关,成矿作用越强,越接近矿化中心,异常率越高。 11、背景值分为四级:全球的背景值、地球化学省的背景值、区域的背景值、局部的背景值。 12、地球化学省:在地壳的某一大范围内,某些成分富集特征特别明显,不止是一两类岩石中元素丰度特别高,而 且该种元素的矿床常成群出现,矿产出现率也特别高。通常将地壳的这一区段称为地球化学省。地球化学省实质上是一种地球化学异常,它是以全球地壳为背景的规模巨大的一级地球化学异常。 13、地球化学指标:是指一切能提供地球化学信息或地质信息的,能直接或间接测定的地球化学变量。地球化学指 标在三度空间和时间上的分布与演化称为地球化学场。 14、地球化学场有以下特征: (1)与地球物理场相比,它没有严格的数学公式或化学定律进行准确的描述、推断、或延拓,它是具体点上地球化学环境(化学、热力学、动力学)综合制约的结果,可以定性推测而不能准确推算。 (2)地球化学场是一个连续的非均匀场。 (3)地球化学场是一个不可逆动态演化的非稳定场。 (4)地球化学场的指标不具有传递性。 15、地球化学障:凡是浓度梯度极大值所在的点,叫做地球化学障,其实质就是地球化学环境发生骤然变化,元素 活动性发生急剧改变的地段(A·И·彼列尔曼)。它是一种地球化学环境的边界。 16、50年代阿伦斯(1954,1957)提出常量元素服从正态分布,微量元素服从对数正态分布规律,概括了当时最 有影响的认识。地质体中元素含量的概率分布型式与该地质体经历的地质作用过程有关。 维斯捷里斯(V.B.Visteeius.1960)的“地球化学过程的基本定律”最有代表性:单一地球化学过程所形成的地质体,元素含量服从正态分布;由数个地球化学作用过程叠加所形成的复合地质体中元素含量偏离正态分布,并且多为正偏分布(其中有些服从对数正态分布)。

adakite地球化学特征及成因

adakite地球化学特征及成因 1968年,Green and Ringwood提出,大洋玄武岩(MORB)在岛弧俯冲带转变为榴辉岩之后,可以发生部分熔融,形成钙碱性的安山岩。然而,Stern和Gill的试验和地球化学研究表明,绝大多数岛弧安山岩不可能由俯冲的MORB部分熔融形成。现今各大洋周边俯冲洋壳的平均年龄为60Ma,已基本冷却,岩Benioff带的地热梯度较低(≤10 ℃/km),洋壳在俯冲过程中不能直接熔融,而是发生变质并逐步脱水。富含大离子亲石元素(LILE)的水热流体向上运移,交代地幔楔,并使之发生部分熔融,形成岛弧拉斑玄武岩和钙碱性玄武岩。岛弧玄武岩经过分离结晶等演化,形成典型的岛弧玄武岩-安山岩-英安岩-流纹岩岩系。 1990年,Defant and Drummond重新提出,某些岛弧钙碱性安山岩和英安岩为俯冲版片部分熔融形成。在一些地区,如果年轻、热的洋壳发生俯冲,则沿Benioff带的地热梯度高(25~30 ℃/km),洋壳可能发生脱水熔融,形成高铝的中-酸性岩石。这类岩石最早发生于aleutian群岛的Adak岛,因此,被命名为adakite,指的是新生代与年轻洋壳俯冲有关的、具有独特地球化学特征的一类中-酸性火山岩或侵入岩,其地球化学特征与太古代高铝的英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)相似。由于其特殊的成因,对研究陆壳的起源和演化、俯冲带的元素地球化学行为以及壳-幔相互作用有重要意义,对探讨一些造山带的古构造演化也很有帮助。 1、adakite的岩石地球化学特征 adakite的主要矿物组合为:斜长石+角闪石±黑云母,单斜辉石和斜方辉石极少,只在Aleutian和墨西哥的高镁安山岩中有所发现。

景观地理学

景观地理学 内容摘要景观地理学是诞生于德国与俄罗斯的一个地理学学派,可说是源远流长。经一个多世纪的发展,充分吸收了生态学、系统学与人类科学的重要思想,逐步推陈出新,至本世纪80年代,更是形成了以景观生态学为代表的新一代的景观科学。景观生态学将生态学中结构与功能关系的研究与地理学中人地相互作用过程的研究有机融合,形成了以不同时空尺度下格局与过程、人类作用为主导的景观演化等概念为中心的理论框架,形成强调自然与人文因子相结合的景观规划与管理等实际应用领域。景观规划建筑学则体现了景观学与工程科学的交叉,它将生物措施与工程措施相结合,营建能充分展示景观多重价值的人居环境。本文系统论述了现代景观科学的形成与发展,从科研认识论的角度对景观生态学的核心概念做了重点介绍。 1 景观地理学的源流 本世纪初景观地理学在德国的兴起,标志着用发生学的观点和综合分析的方法划分地表类型并研究其发展演变的近代地理学的诞生。景观一词源于德语Landschaft,具有地表可见景象的综合和某个限定性区域的双重含义。施吕特尔(O.Schluter1872-1952)是德国景观学派的创始人,他是从自然与人文现象的综合外貌角度来理解景观,倡导景观研究作为地理学的中心问题,探索由原始景观变成人类文化景观的过程。帕萨格(S.Passarge)创造了景观地理学一词,于1913年建立了一套地理学性质的景观学体系,强调对分类要素的描述和解释。他在小区域的详细考察方面及在全球范围内对景观学的发展作出了贡献。其代表作有:《景观学基础》和《比较景观学》,他还提出了城市景观、空间景观等概念,力求完善景观形态与分类的解释。由于中欧地区有限的生态地理空间和较长的开发历史,使得景观外貌呈现出高度的人文化,同时由于德国地理学研究有着很深的地质地貌学渊源,因而德国的景观地理学以重视人文景观及具有强烈的地理、地貌学色彩为其特色,制图分析是其主要研究方法。1939年特罗尔(G.Troll)在利用航空像片判读进行东非土地利用研究时,提出了"将地理学的区域空间分析与生态学的结构功能研究相结合"的景观生态学新方向,这一思想对欧美各国的景观学研究产生了重大影响。 美国的景观地理学深受德国的影响,索尔(C.O.Sauer)也是从地貌入手转入文化地理研究,他于20年代中期发表的著作"景观形态学",把景观看作地表的基本单元,认为景观是由自然与文化要素两部分叠加而成。以他为代表的伯克利(Berkeley)学派研究了大量景观变迁的实例,揭示了人在改变地球面貌中的作用,促进了景观学派的发展。 按照A.F.伊萨钦科的观点(1959),景观学说与自然地理分异理论和综合自然区划一起构成了俄国与苏联景观地理学的三大理论成就。与德国和美国的地理学家不一样,原苏联的地理学家多偏重于自然景观的研究,认为自然景观即自然综合体是自然地理学的主要研究对象,景观的类型方向和区域方向并存。这当然是与原苏联的国土辽阔、开发程度较低有关。贝尔格(L.S.Berg)发表了"苏联景观地带"提出了关于自然区以下尺度土地单元的等级与类型划分的景观学说,主要依据植物群落和地形单元的组合。1942年苏卡切夫(V.N.Sukachev)提出了与生态系统相近似的生物地理群落概念,并将其作为景观的最小单元,重点研究群落各组成成分之间的物质循环与能量交换。60年代,苏联开始了景观结构与功能的定位实验研究,着重于水热平衡、生物地球化学过程的监测和实验,波雷诺夫(B.B.Poleinov)建立了景观地球化学的研究方向,卡列斯尼克(S.V.Kalesnik)提出景观学定义和景观分类、类型和结构等概念。A.A.克劳克利斯的"实验景观学"和B.Б.索恰瓦的"地理学系统学说导论"作为其理论总结,反映了苏联地理景观研究的实验思想、系统思想和生态学方向的新趋势。 德国和苏联在景观地理学方面的理论成就,特别是关于自然区划和土地单元的等级、类型划分的理论与方法,在第二次世界大战以后激发了欧美各国广泛的应用研究,包括景观及其以下尺度的土地资源分类、评价和区划规划、景观制图、景观设计和综合管理。其中荷兰、

地球化学心得

勘查地球化学心得体会--兼浅谈广东化探找金矿 王立强 广东省地质局七一九地质大队地质勘查所 1前言 目前,化探找金逐步被人们重视,在地质找矿中的效果也逐渐明显,成为寻找各种类型金矿床比较快速、经济、有效的重要手段。在区域普查中,通过查明区域地球化学异常,可迅速指出找矿远景区;在详查及勘探阶段,通过岩石地球化学异常的研究,可直接发现金矿床或矿体,更好地发挥化探在地质找矿工作中的作用。但是金在地壳内部的本底含量极低,即使是金矿体中的金含量一般亦仅为n×10-6~10n×10-6,仅凭肉眼无法将之直接区分出来,因此以对样品(水系沉积物、土壤、岩石等>进行定量分析为主要工作手段的化探方法,在当今金矿勘查中发挥了极其重要的作用。 中国地球化学的发展主要是借鉴了前苏联和西方的研究思路,前苏联的勘察地球化学主要依靠对土壤进行金属测量,但采样点布置较稀疏,而西方国家主要采用水系沉积物测量,但是主要用于研究,两者优缺点都有。80年代以来,金分析技术目臻成熟,当时Au分析的检出限低于或等于0.3×10-6,准确度、精密度在一定程度上能满足区域化探的要求,因而全国区域化探找金空前繁荣,特别是谢学锦先生提出的“区域化探全国扫面计划”建议,将我国的勘察地球化学推进到快速发展的崭新阶段。随着时代发展,金分析技术逐步进步,中国勘察地球化学也得到了长足的进步,三十年以来已完成1:500万和1:1 000万比例尺的39种元素或氧化物的全国地球化学图,使中国拥有了最引人瞩目的全国规模地球化学数据库,使中国化探走在了世界前列。而广东化探找金始于1974年,主要为以1:20万水系沉积物测量为主要工作方法的区域化探扫面,不过因为受金分析技术的影响,当时找金主要从金的伴生元素如As、Cu、Pb等入手,其难度不言而喻,但广东各地质单位的前辈在这种艰难条件下提交了大

综合地球化学和地球物理

综合地球化学和地球物理矿产资源勘查方法- 一个案例研究在地下室复Ilesa 面积、尼日利亚埃马纽尔〃AriyibiAbiodun 地球和空间物理研究实验室, 物理系, 奥巴费米〃Awolowo大学(非统),勒-演练,尼日利亚 1、介绍 地球的地壳由岩石的固体。当岩石经过仔细的检查,它们 被发现是由不同的大小,形状和颜色离散的颗粒组成的。这 些谷物是矿物质,它们是构建块的岩石土壤的形成从岩石一 般涉及到的物理作用、化学风化作用产生的表面处理。气候 条件下的风化的影响来确定两种形式的风化明显比其他变 得更多。在干旱的气候,那里很少有水并且那里是明显的昼 夜温度变化的,化学风化作用很大次级机械风化岩石分解成 简单的成分越来越多,小型谷物和碎片里个人矿物质构成岩 石很容易得到。另一方面,如果气候炎热潮湿,降雨量可观 化学风化变得明显、个体所形成矿物岩石都受到相当强烈的 化学和相对温和的机械风化,形成不同的产品的所有成分的 土壤在大多数地下室复杂的岩石、风化产品,成为能够反映 一定的特征(地球化学和矿物学)的母岩。 先前的研究区已经暗示ofsulphide矿化但报导的范围已经 仅仅局限于角闪岩和周围地区Iwara断层。目前的工作区域

在范围和寻求独特的地球化学和地球物理使用一个集成的 方法在这片片岩带包含未分化片岩、片麻岩、混合岩、伟晶岩、片岩变闪长岩、石英岩、石英片岩、花岗片麻岩、片岩和麻粒岩和片麻岩旨在描述该地区矿产勘查。地球化学 数据从61年抽样地点受到多元分析和解释,描绘地球化学异常区。地球物理调查异常区,采用了超——低频电磁(甚低频电气磁探方法。 2。地质背景 Ilesa的区域,位于尼日利亚西南部的地下室复杂(片岩带)的前寒武纪时代(De不力,1953)。德不力(1947)和拉斯(1957)建议尼日利亚的地下室是多环复杂。这证实了赫尔利(1966,1970)用放射法来确定岩石的年龄。尼日利亚地下室被认为有结构复杂性由于折叠、火成岩和变质活动与五大岩石单元内识别复杂的Rahaman地下结构。这些都是: 复杂的混合岩片麻岩石英岩。这个地质图的Ilesa面积如图1。 插入图 其中的片岩带组Ilesa面积部分有着各种各样的称为“新 变质沈积物”(Oyawoye,1964),“年轻的变质沈积物”(麦咖 哩,1976);片岩、元火成岩岩石”(Rahaman,1988)。尼日利亚片岩带发生的岩化趋势特征显示为尼日利亚基底杂岩。片岩带组成变质的,半泥质泥质岩石, c硅酸盐岩石,和卵石片岩。

元素地球化学背景特征

一、元素地球化学背景特征 工区对Au、Ag、Cu、Pb、Zn、As、Sb、Bi、W、Sn、Mo等十一种元素的含量进行了统计分析,其地球化学特征参数见表3-1。 1、全区内背景值对比特征, (1)从1∶5万水系沉积物测量—土壤测量—岩石测量,背景值逐渐增高的有Sb、Pb、Ag、Cu、Zn等元素,其中以Pb、Ag、Zn变化最为显著,Pb在1∶5万水系沉积物测量中最低为17.36×10-6,到1∶1万土壤地球化学测量中增加到40.64×10-6,在岩石中最高为85.45×10-6;Ag在1∶5万水系沉积物测量中最低为0.06×10-6,到1∶1万土壤地球化学测量中增加到0.10×10-6,在岩石中最高为0.13×10-6,增加了一个数量级;Zn在1∶5万水系沉积物测量中最低为72.78×10-6,到1:1万土壤地球化学测量中增加到96.38×10-6,在岩石中最高为537.88×10-6, 增加了一个数量级,是正常的成矿序列,反映了是区内的主成矿元素,从岩石中迁移进入土壤经次生变化后迁移到水系中进一步的贫化。 (2)区内从岩石测量或土壤测量—1∶5万水系沉积物测量,背景值逐渐增高的有Sn、Au等元素,Sn在岩石中最低为1.72×10-6; 到1:1万土壤地球化学测量中增加到 2.21×10-6,在1∶5万水系沉积物测量中最高为2.51×10-6,是一个反正常的变化序列,但同处一个数量级;Au在岩石中为0.97×10-9; 到1:1万土壤地球化学测量中减少到0.54×10-9,在1∶5万水系沉积物测量中最高为1.22×10-9,反映出Sn、Au元素从岩石中迁移进入土壤经次生变化后,迁移到水系中富集。 (3)区内从土壤测量—1∶5万水系沉积物测量—岩石测量,背景值逐渐增高的有Bi、W、Mo等元素,这类均是高温元素,其中Bi在土壤中最低0.36×10-6,在1∶5万水系沉积物测量中为0.46×10-6, 在岩石中最高为0.50×10-6; W在土壤中最低2.19×10-6,在1∶5万水系沉积物测量中为2.29×10-6, 在岩石中最高为3.18×10-6; Mo在土壤中最低0.51×10-6,在1∶5万水

地球化学

不相容元素 incompatible elements释文:又称湿亲岩浆元素(hy-gromagmatophile elements),在岩浆或热液的矿物结晶过程中趋向于在液相中富集的某些微量元素(如Sn、Li、Rb、Sr、Cs、Be、Ba、Zr、Hf、Nb、Ta、Th、U和稀土元素)。因其浓度低,不能形成独立矿物相。因受其离子半径、电荷和化合键所限,很难进入造岩矿物晶体结构中,而在残余岩浆或热液中相对富集。其固——液相分配系数近于零。元素的不相容性可因结晶条件的不同而改变。 相容元素 compatible element释文:在岩浆或热液中的某些微量元素(如Cr、Ni、Co、V等)。在矿物结晶过程中趋向于在早期固相中富集。因其浓度低,不能形成独立矿物,但其离子半径、电荷、晶体场等晶体化学性质与构成结晶矿物的主要元素相似,故在固——液相反应或平衡中易于呈类质同象形式进入有关矿物相。其固——液相分配系数明显大于1。元素的相容性可因结晶条件的不同而改变。 高场强元素 电价较高、半径较小、具有较高离子场强(为离子与半径之比)的,典型代表为Nb、Ta、zr、Hf、Th等。这些元素性质一般较稳定,不易受、蚀变和作用等的影响,因此常用来恢复遭后期变化的原岩性质。指小、离子电荷大、(2/R)大于3的元素,如、、、、、、等。 大离子亲石元素 large ion lithophile element,LILE 释文:大离子亲石元素是指离子半径大,电荷低,离子电位π<3,易溶于水的元素,化学性质活泼,地球化学活动性强,特别是有流体参与的系统。典型代表为K、Rb、Sr、Ba、Cs、Pb2+、Eu2+等。 亏损地幔 depleted mantle,DM 释文:亏损地幔是指曾对地壳的形成作出过贡献,易熔组分已被明显消耗的地幔物质,其中大离子亲石元素、热产元素等明显亏损,难熔组分则相对富集。亏损地幔又称残留地幔,是经过部分熔融出岩浆后的地 幔残留部分。其相对于原始地幔明显亏损易熔组分,如K 2O、Na 2 O、CaO、Al 2 O 3 、 TiO 2 等,Mg质高,多大于91,一般为91.5-93.5。微量元素中地幔不相容元素亏损,如出现左倾的稀土配分型式等。亏损地幔,是洋中脊玄武源区的主要成分,主要特征是低Rb/Sr,高Sm/Nd;143Nd/144Nd比值高,87Sr/86Sr比值低,其&Nd(t)为高正值,&Sr(t)为负值。 富集地幔 在地球发展演化的早期阶段,地幔不断地发生部分熔融,相当部分容易进入液相的元素随着熔融作用不断地移出地幔源区进入岩浆,从而使地幔亏损了上述组分,形成了化学上的亏损地幔。如Si、AL、Ca、Na、K等。如果地幔中加入了上述元素,则形成富集地幔。

第七章 生物地球化学循环(一)

第7章生物地球化学循环第1节土壤的组成 第2节土壤的性质 第3节物质循环与土壤形成 第4节土壤分类与土壤类型 第4节生态系统的组成与结构 第6节生态系统的能量流动 第7节生态系统的物质循环 第8节地球上的生态系统

引子:生物地球化学循环概述 一、何谓生物地球化学循环? 1.概念:生命有机体及其产物与周围环境之间反复 不断进行的物质和能量的交换过程。 2.过程:物能的吸收-同化-排放-分解-归还-流失 3.性质:非封闭的循环(进入土壤、岩层、海底) 4.主体:生物和土壤 5.循环的介质:水和大气 二、人类对生物地球化学循环的影响 1.大气、水体、土壤的污染 2.污染物质的迁移、转化和集散 3.对人类健康的威胁

第1节土壤的组成 引言:土壤与土壤肥力 1. 土壤:在陆地表层和浅水域底部、由有机和无机物质组成、具有肥力、能生长植物的疏松层。 2.土壤的本质是肥力,指土壤中水、热、气、肥(养分)周期性动态达到稳、匀、足、适地满足植物需求的能力。 3. 土壤是一种类生物体 代谢和调节功能比生物弱(如温度) 不具有生长、发育和繁殖的功能 不具有功能各异的器官

一、土壤的无机组成 1. 原生矿物:在物理风化过程中产生的未改变化学成分和结晶构造的造岩矿物。 土壤中各种化学元素的最初来源; 土壤矿物质的粗质部分; 经化学风化分解后,才能释放并供给植物生长所需养分。 2. 次生矿物:岩石在化学风化过程中新生成的土壤矿物,如粘土矿物。 土壤矿物质中最细小的部分; 具有吸附保存呈离子态养分的能力,使土壤具有一定的保肥性。

二、土壤的有机组成 1.原始组织:包括高等植物未分解的根、茎、叶;动物分解原始植物组织,向土壤提供的排泄物和死亡之后的尸体等。 土壤有机部分的最初来源 2.腐殖质:有机组织经由微生物合成的新化合物,或者由原始植物组织变化而成的、比较稳定的分解产物,呈黑色或棕色,性质上为胶体状(颗粒直径<1μm)。 具有极强的吸持水分和养分离子的能力,少量的腐殖质就能显著提高土壤的生产力。

地球化学 实习二 实验二_pH-Eh关系图解的制作

《地球化学》实习二 pH-Eh关系图解的制作 一、实习目的 1、掌握H2O对自然环境中Eh的控制作用。 2、掌握pH-Eh关系图解的制作方法。 3、了解pH-Eh关系图解在地球化学研究中的意义。 二、实习原理 1、自然氧化-还原环境的极限 氧化上限: H2O ? 1/2O2 + 2H+ + 2e-E0=1.23V (P O2=0.21) E = E0 + (0.059/n)?log K E = 1.22 – 0.059pH 还原上限: H2? 2H+ + 2e-E0=0.00V (P H2=1) E = E0 + (0.059/n)?log K E = – 0.059pH 2、pH-Eh关系图解 以Eh为纵坐标,pH为横坐标,图示pH与Eh的关系。 以Fe3+-Fe2+、Fe(OH)3-Fe(OH)2、Fe2+-Fe(OH)3半反应为例,绘制pH-Eh关系图解。 三、实习内容 1、绘制H2O的pH-Eh关系图解 ⑴H2O的电化学半反应方程式: (-)H2O→1/2 O2 +2H++ 2e- E0 =1.23 V E = 1.23 + 0.03 log[p O2]1/2[H+]2 E = 1.22-0.059 pH 当pH=4时,E=0.984 当pH=9时,E=0.689 (+)H2 → 2H+ + 2e- E0 =0.00V E =-0.059pH-(0.059/2)log p H2 E =-0.059pH 当pH=4时,E=-0.236 当pH=9时,E=-0.531 2、以Fe2+、Fe(OH)2、Fe3+、Fe(OH)3形式为例,绘制Fe的pH-Eh关系图解。 选定条件:[Fe2+]=1 M和[Fe2+]=10-3 M两种情形。

地球化学名词解释

1、克拉克值:是指元素地壳中重量百分含量。 2、浓度克拉克值:浓度克拉克值=元素在某一地质体中平均含量/元素的克拉克值,它反映元素在地质体中集中和分散程度,大于1说明相对集中,小于1说明相对分散。 3、元素的地球化学迁移:元素从一种赋存状态转变为另一种赋存状态,并经常伴随元素组合和分布上的变化以及空间位移的作用称为地球化学迁移。 4、元素的丰度值:每种化学元素在自然体中的质量,占自然体总质量(或自然体全部化学元素总质量)的相对份额(如百分数),称为该元素在该自然体中的丰度值. 5、类质同象:某种物质在一定的外界条件下结晶时,晶体中的部分构造位置被介质的其它质点 (原子、离子、络离子、分子)所占据,结果只引起晶格常数的微小变化,而使晶体构造类型、化学键类型等保持不变的现象。 6、载体矿物和富集矿物载体矿物:载体矿物和富集矿物载体矿物是指岩石中所研究元素的主要量分配于其中的那种矿物。但有时该元素在载体矿物中的含量并不很高,往往接近该元素在有时总体中的含量。富集矿物是指岩石中所研究元素在其中的含量大大超过它在岩石总体中的含量的那种矿物。 7、元素的共生组合:具有共同或相似迁移历史和分配规律的元素常在特定的地质体中形成有规律的组合,称为元素的共生组合。 8、元素的赋存状态:也称为元素的存在形式、结合方式、相态、迁移形式等,指元素在其迁移历史的某个阶段所处的物理化学状态与共生元素的结合性质。 9、亲氧元素:是指那些能与氧形成强烈离子键化合物的元素,如K、Na、Si、Al 等,通常以硅酸盐形式聚集于岩石圈。 10、八面体择位能:任意给定的过渡元素离子,在八面体场中的晶体场稳定能一般总是大于在四面体场中的晶体场稳定能.二者的差值称为该离子的八面体择位能(OSPE). 这是离子对八面体配位位置亲和势的量度。八面体择位能愈大,则趋向于使离子进入八面体配位位置的趋势愈强,而且愈稳定。 11、相容元素和不相容元素:在液相和结晶相(固相)的共存体系,如在岩浆结晶作用过程中,一些微量元素易以类质同像的形式进入造岩矿物晶格,称为相容元素,如Ni2+、Co2+、V3+、Cr3+、Yb3+、Eu2+等。另一些微量元素不易进入造岩矿物晶格,倾向于残留在熔浆或液相这中,称为不相容元素,如Rb、Cs、Sr、Ba等。 12、元素的地球化学亲和性:元素的地球化学亲和性,指阳离子在地球化学过程中趋向于同某种阴离子结合的性质。分亲铁性(趋向于单质形式产出)、亲硫性(趋向于与硫形成强烈共价键的性质)和亲氧性(趋向于与氧形成强烈离子键的性质) 13、分配系数:从能斯特分配定律的表达式中可知:在温度、压力恒定的条件下,微量元素i (溶质)在两相分配达平衡时其浓度比为一常数(KD),此常数KD称为分配系数,或称能斯特分配系数。分配系数只受温度、压力的限定,而与溶质的浓度无关(在一定浓度范围内)。

地球化学书名

2009年11月10日 [电子书PDF|RAR|PDG]: 景观地球化学 [电子书PDF|RAR|PDG]: 非烃地球化学以及应用 [电子书PDF|RAR|PDG]: 地球化学推断地质构造以及岩性的方法 [电子书PDF|RAR|PDG]: 下载—龚美菱著. 相态分析与地质找矿(第一、二版) [电子书PDF|RAR|PDG]: 电子书-王德利,杨利平易近编著. 草地生态与办理利用. 化学工业出版社, 2004.06 [电子书PDF|RAR|PDG]: 下载-范成新,王春霞主编. 长江中下游湖泊环境地球化学与富营养化. 科学出版社, 2007. [电子书PDF|RAR|PDG]: 电子书-宋金明著. 神州近海生物地球化学. 山东科技出版社, 2003.04. [电子书PDF|RAR|PDG]: 贵州省地球化学图集. 地质出版社, 2008.2 PDF|Rar|ZIP|DOC [电子书PDF|RAR|PDG]: Stable Isotopes in Ecology and Environmental Science [经典书籍] [电子书PDF|RAR|PDG]: 电子书-潘宏雨,马锁柱,刘连成主编. 水文现象地质学基础. 地质出版社, 2008. [电子书PDF|RAR|PDG]: 电子书-陈好寿等著. 成矿作用年代学及同位素地球化学. 地质出版社, 1994. [电子书PDF|RAR|PDG]: A型花岗岩相关总结及湖南的一些实例

[电子书PDF|RAR|PDG]: 电子书-稳定同位素化学【郭正谊,1984】 [电子书PDF|RAR|PDG]: 曹建劲,张珂著原地重熔与元素地球化学场 [电子书PDF|RAR|PDG]: Mineral Deposits Earth Evolution [电子书PDF|RAR|PDG]: 电子书-Hydrothermal Processes and Mineral Systems [电子书PDF|RAR|PDG]: 李俊华,夏德兴编. 同位素春秋计算手册. 原子能出版社, 1978. [电子书PDF|RAR|PDG]: 电子书-李桂如译. 同位素地质学. 地质出版社, 1981. [电子书PDF|RAR|PDG]: 电子书(S.Villani)著;陈聿恕译. 同位素分离. 原子能出版社, 1983. [电子书PDF|RAR|PDG]: 电子书-赵墨田编著. 稳定同位素分析法. 科学出版社, 1985. [电子书PDF|RAR|PDG]: (美)G.福尔,J.L.鲍威尔著锶同位素地质学. 科学出版社, 1975. [电子书PDF|RAR|PDG]: 电子书-(美)B.R.多伊著;铅同位素地质. 科学出版社, 1975. [电子书PDF|RAR|PDG]: 电子书-. 铅同位素地质研究的基本问题. 地质出版社, 1979. [电子书PDF|RAR|PDG]: 电子书- 【作者勘查地球化学】地质矿产部矿床地质研究所同位素地质研究室著

岩石地球化学特征

岩石地球化学特征 1火山岩岩石学特征 1.1主量元素特征该旋回岩石化学成分平均值与黎彤值和戴里值相比,该旋回火山熔岩,总体具高硅、高镁,低铁、铝、钙的特点;A/NKC值反映该旋回为铝过饱和岩石类型;分异指数(DI)为3 2.63~88.51, 均值为61.04,各氧化物随着DI值的增大有不同变化,如SiO2、K2O 明显升高,Na2O稍有增高,Al2O3变化不明显,TiO2、Fe2O3、FeO、MgO、CaO明显降低,MnO、P2O5稍微降低。总体上反映了该旋回火山 岩正常的分异趋势;里特曼组合指数说明本区义县旋回火山岩具钙碱 性向碱性演化的趋势。总体上来看,依据同源岩系的δ值事连续且相 近的原理,说明义县旋回火山岩浆是同源的。 1.2微量元素特征该旋回火山岩各岩石过渡元素分配型式曲线基本协 调一致,呈明显的“W”型,表明为同源岩浆分异产物。岩石曲线出现 相交现象,是因为个别元素在不同岩石中富集水准不同所致,反映了 岩浆在运移和成岩过程中可能有外界物质的介入和混染。图中给类岩 石的Ba、Nb呈明显的波谷,说明其在该旋回岩浆演化分异过程中分异 较好,而Zr具有明显的波峰说明该元素在该旋回中比较富集。仅在流 纹岩中Th元素具有明显的波谷,说明其在流纹岩中分异较好。 1.3稀土元素特征该旋回火山熔岩各岩石稀土总量差别较大,∑REE 在94.6~230.17,平均值为152.4。与世界同类岩石维氏值相比,该 旋回火山岩基性-中性岩,为富稀土岩石,中酸性-酸性岩为贫稀土岩石。LREE/HREE值为9.26~15.49,(La/Yb)N值为11.8~27.33,(Ce/Yb)N值为7.98~17.35,La/Sm值为3.36~8.83之间,以上参 数值及稀土配分曲线特征反映该旋回火山岩各岩石均具轻稀土富集, 分馏较好;重稀土亏损,分馏较弱的特点,火山岩浆可能来源于壳幔 混源。 2火山岩形成环境及源区

应用地球化学总结

1、应用地球化学的概念:它是一门运用地球化学基本理论和方法技术,解决人类生存的自然资源和环境质量等实际问题的学科。简而言之,是研究地球表层系统物质组成与人类生存关系,并能产生经济效益和社会效益的学科。 2.用地球化学的研究内应容及方法 (1)矿产勘查地球化学方面,研究成矿元素及其伴生元素的空间分布规律与矿产的联系。研究元素在集中分散过程中与矿体周围各类介质中形成的地球化学异常与矿床的联系,异常形成机制、影响因素、发现异常和解释评价异常的方法技术。 (2)环境地球化学方面,研究对人类生存与发展、对人类健康有影响的化学元素的分布分配及其存在形态。 (3)农业土壤地球化学方面,研究对作物生长有益或必需元素在土壤中的丰缺程度以及有毒、有害元素在土壤中的富集程度。 (4)研究一切化学元素及其化合物在地球表层系统中的分布分配、活动演化可能给人类生存带来直接或间接影响,例如地震、地热、环境改造与治理,利用地球化学作用于土壤改良、土壤施肥等等。 应用地球化学的研究方法基本可分为两方面,其一是现场采样调查评价研究,其二是实验研究。 ①地质观察与样品采集; ②样品加工及分析测试; ③数据的统计分析; ④地球化学指标及异常研究; ⑤地球化学图表的编制; ⑥异常评价及验证、探矿工程布置;资料研究,指导农业种植结构调整,地 方病发病机理研究及环境问题研究等。 3、第四套应用地球化学方法命名系统:地球化学岩石测量、地球化学土壤测量、水系沉积物测量、水化学测量、地球化学气体测量和地球化学生物测量。 4、丰度值一般均在10-2%以上元素称之为“常量元素”。 丰度均在10-2%以下。故称之为“微量元素”。常用重量百万分率(10-4%)表示,书写用ppm(part per million)代表。 lppm=10-6=10-4%=0.0001%=1

(完整word版)地球化学复习资料

球类陨石:主要由基质、球粒、金属和一些特殊矿物集合体等组成。 碳质球类陨石是球粒陨石中的一个特殊类型,含有碳的有机化合物分子,并且主要由 含水硅酸盐组成。 CI型陨石为什么能够作为太阳系元素丰度标准? I型碳质球类陨石中难挥发元素的丰度与太阳一致,且未经受热变质作用影响、形成于远离太阳的较低温区域,是最原始的太阳星云凝聚物资。因而,它能保持着太阳星云 中非挥发元素的初始丰度。 第二章复习题 1、元素的地球化学亲和性 元素地球化学亲和性:主要指阳离子在自然体系中趋向同某种阴离子化合的倾向。又可指在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的 特性。 2、戈尔德斯密特的元素地球化学分类 1)、亲石元素:离子的最外层电子层具有8电子(S2P6)惰性气体型的稳定结构, 与氧容易成键,主要集中于硅酸盐相。 2)、亲铜元素:离子的最外层电子层具有18铜型结构(s2p6d10)在自然界中容易与 硫形成化合物,这些元素在分配时,主要分配在硫化物相中。 3)、亲铁元素:离子最外层电子层具有8-18过渡型结构,这种元素同氧、硫的化合 能力较差,倾向于形成自然元素,因此,这类元素倾向分配在金属相中 4)、亲气元素:原子最外层具有8个电子,原子半径大,具有挥发性或易形成挥发性化合物,主要分布在大气圈中。 5)、亲生物元素:这类元素主要富集在生物圈中。 3、类质同像的概念 类质同像概念:某种物质在一定的外界条件下结晶时,晶体中的部分构造位置被介质中的其他质点(原子、离子、络离子或分子)所占据而只引起晶格常数的微小改变,晶格构造类型、化学键类型、离子正负电荷的平衡保持不变或相近,这种现象称类质 同像。 5、影响元素类质同像的物理化学条件 1)、组份浓度 ---“补偿类质同像”一种熔体或溶液中如果缺乏某种组份,当从中晶出包含此种组份的矿物时,熔体或溶液中性质与之相似的其他元素就可以类质同像 代换的方式加以补充。2)氧化还原电位.

地球化学数据

海南省前寒武纪的研究现状 海南岛地处欧亚板块、印度-澳大利亚板块和菲律宾板块的交汇部位,大地构造位置独特,据前人研究,海南岛出露有一套中元古代结晶基底岩石,对研究华夏一直华南地块在columbia大陆裂解以后和Rodinia聚合之前的演化具有重要意义。 海南岛前寒武纪基底岩石仅在琼西戈枕断裂带上盘抱板-饶文-公爱一带及琼中上安地区零星出露。其中,琼西地区以一套具花岗-绿岩系建造特征的抱板杂岩为主。岩性主要发育有以斜长角闪片(麻)岩为主的变质岩,混合花岗质类岩石,中-基性火山岩;琼中地区发育有一套变质火山岩系,并有少量麻粒岩及紫苏花岗岩分别以透镜状和脉状分布其中。 随着海南戈枕金矿的发现,大批学者对海南岛以抱板杂岩为代表的元古宙地层进行了较为详细的研究,目前所取得的较为统一的认识有:抱板群的形成、组成与演化;石碌群的地层出露以及琼中地区变质岩的主要组成、年代学特征等。 据(候威等.1992,涂少雄.1993,梁新权.1995,马大栓等.1998)等抱板杂岩主要包括一套深变质岩、花岗质类岩石以及中-基性火山岩。 谭忠福(1991),候威等(1992),涂少雄.(1993) 梁新权(1995) 马大栓等(1998),许德如(2000)等对分别对分布在琼中乘坡农场、抱板、土外山、二甲矿区的抱板群变质岩进行研究,认为变质岩主要可以分为变质沉积岩和绿片岩,变质沉积岩主要由石英二云母片岩和白云母石英片岩,是组成抱板群的主要岩石类型,绿片岩主要由斜长角闪片(麻)岩组成,两者产状基本一致互层产出。梁新权(1998),许德如(2001),徐德明等(2008)对花岗质类岩石研究,认为其主要组成部分为花岗闪长岩和二长花岗岩,呈岩株或岩枝侵入于抱板群片岩或片麻岩中,与围岩呈侵入接触关系谭忠福等(1991),涂少雄(1993)马大栓(1998)对二甲矿区,琼中乘坡农场万泉河边及东方县戈枕水库大坝处发育的斜长角闪(片)岩进行研究,认为斜长角闪岩呈脉状斜切围岩中,角闪岩见冷凝边,围岩见有明显的热接触蚀变现象,指示为后期岩脉。 叶伯丹等(1990)研究认为抱板群的变质时期及条纹-眼球状混合岩形成时期应在1145±40Ma,进而推测其原岩时代应为中元古代或更早,候威(1992)对抱板群内的变火山岩、混合花岗(质)片麻岩及其中的暗色包体进行地质年龄分析,得到Sm-Nd等时线年龄为1699.64 士3Ma、1379.54 士25Ma及2885.07士23Ma. 从而他认为抱板群中的斜长角闪片岩的原岩形成于前寒武纪古元古代长城纪时期, 混合花岗(质)片麻岩形成时代是中元古蓟县纪时期并推测海南到存在有太古宙基底;谭忠福等(1991)对海南岛中部抱板群中的变火山岩进行Sm-Nd 法测年,得年龄为975±8.6Ma,张业明等(1998)对海南岛西部的变基性火山岩进行研究,认为其形成于1165Ma士;涂少雄(1993)通过对抱板群内岩体进行同位素测定研究,认为抱板群形成于中元古代早期(1600~1700Ma),1400Ma士经历了一次角闪岩相变质作用混合演化和地壳重熔,并在1000Ma士发生基性岩浆侵入事件,对应于晋宁运动。 梁新权(1995)研究了土外山除发育的变基性玄武岩并认为其主量元素特征与全球大陆拉斑玄武岩和大洋拉斑玄武岩化学成分的算术平均值相当接近, 是一种过渡性拉斑武岩,稀土元素特征及大地构造背景分析图解均指示原岩倾向于岛弧拉斑玄武岩,Sr一N d同位素分析结果,斜长角闪片岩的。e N d ( T ) 为正值( e N d ( T ) = 2.555 ) , 说明这套玄武岩浆来源于亏损地慢区,但e N d ( T ),又要比17 亿年前全球地慢亏损平均值(e N d ( T )= 十6.26 ) 要小些,猜测是受到了少量下地壳物质混染。形成的大地构造背景为岛弧环境,并位于大洋一侧。许德如(2000),斜长角闪片麻岩呈绿色、墨绿色,片麻状构造,柱状、粒状变晶结构,主要变质矿物为绿色普通角闪石(75%~80%)、斜长石(15%~20%)、石英(0%~5%),SiO2变化范围小(48.86%~52.38%),平均为50.13%,TiO2平均为0.85%,基本上小于1.0%,P2O5基本小于0.1%,显示了岛弧火山岩特征,与许多元古代低钛拉斑玄武岩一致。Al2O3平均为14.06%,MgO平均为7.75%,CaO 8.9%~13.85%,K2O 和Na2O 平均值分别为0.78%和1.67%且K2O

地球化学勘查术语

地球化学勘查术语 基本术语 一、地球化学勘查(geochemical exploration) 对自然界各种物质中的化学元素及其它地球化学特征的变化规律进行系统调查研究的全过程。习称化探 1、地球化学探矿(简称化探)-geochemical prospecting 系统测量天然物质中化学元素的含量及其他特征,研究其分布规律,发现地球化学异常,从而进行找矿的工作。 2、地球化学填图(geochemical mapping) 系统采集天然物质,进行多元素分析,并将元素含量(或其他地球化学参数)的空间分布,以某种标准方法编绘成基础图件,提供各个领域应用的工作。 3、环境地球化学调查(exploration geochemistry investigation) 系统研究地球化学勘查的理论、方法与技术的学科。 二、勘查地球化学(exploration geochemistry) 系统研究地球化学勘查的理论、方法与技术的学科。 1、矿产勘查地球化学(geochemistry in mineral exploration) 研究找矿的地球化学勘查理论、方法与技术的学科。 2、区域勘查地球化学(regional geochemistry in exploration) 系统研究大面积内天然物质(如岩石、土壤、水系沉积物、湖积物、天然水等)中化学元素在空间与时间上的分布规律及其与矿产、地质、环境、农牧业、医学等之间关系的理论、方法与技术的学科。 三、地球化学勘查原理 1、地球化学场(geochemical field) 由地质-地球化学作用所形成的各种地球化学指标的特征变化空间。 2、地球化学景观(geochemical landscape) 据表生地球化学作用和自然景观条件所划分的区域带。 3、地球化学障(geochemical barrier) 元素迁移过程中由于介质的物理环境骤然改变,促使元素(从溶液或气态)大量析出的场所或环境。根据造成元素析出聚集的主要因素或作用,分别为沉积障、吸附障、还原障、氧化障、生物障、酸性障、碱性障等。 4、地球化学指标(geochemical indicator) 反映研究对象的各种地球化学指示元素、地球化学参数及其他地球化学特征的统称。 5、地球化学背景(geochemical background) 在特定的范围内,相同介质中广泛存在的地球化学环境特征。 6、背景值(background value) 反映地球化学背景的量值。 7、异常下限(threshold) 同义词异常阈 根据背景值按一定置信度所确定的异常起始值。是分辨地球化学背景和异常的一个量值界限。

相关文档