文档视界 最新最全的文档下载
当前位置:文档视界 › 碳水化合物的代谢

碳水化合物的代谢

碳水化合物的代谢
碳水化合物的代谢

碳水化合物的代谢

碳水化合物在体内分解过程中,首先经糖酵解途径降解为丙酮酸,在无氧情况下,丙酮酸在胞浆内还原为乳酸,这一过程称为碳水化合物的无氧氧化。由于缺氧时葡萄糖降解为乳酸的情况与酵母菌内葡萄糖“发酵”生成乙酸的过程相似,因而碳水化合物的无氧分解也称为“糖酵解”。在有氧的情况下,丙酮酸进入线粒体,氧化脱羧后进入三羧酸循环,最终被彻底氧化成二氧化碳及水,这个过程称为碳水化合物的有氧氧化。

(一)无氧分解

1.糖酵解过程由于葡萄糖降解到丙酮酸阶段的反应过程对于有氧氧化和糖酵解是共同的,因此把葡萄糖降解成丙酮酸阶段的具体反应过程单独地称为糖酵解途径。整个过程可分为两个阶段。第一阶段由 1 分子葡萄糖转变为2 分子磷酸丙糖,第二阶段由磷酸丙糖生成丙酮酸。第一阶段反应是一个耗能过程,消耗 2 分子ATP;第二阶段反应是产能过程,一分子葡萄糖可生成 4 分子的ATP,整个过程净生成2 分子ATP。

2.糖酵解作用的生理意义糖酵解产生的可利用能量虽然有限,但在某些特殊情况下具有重要的生理意义。例如重体力劳动或剧烈运动时,肌肉可因氧供应不足处于严重相对缺氧状态,这时需要通过糖酵解作用补充急需的能量。

(二)有氧氧化

葡萄糖的有氧氧化反应过程可归纳为三个阶段:第一阶段是葡萄糖降解为丙酮酸,此阶段的化学反应与糖酵解途径完全相同。第二阶段是丙酮酸转变成乙酰辅酶A。第三阶段是乙酰辅酶 A 进入三羧酸循环被彻底氧化成CO2 和H20,并释放出能量。三羧酸循环由一连串的反应组成。这些反应从有 4 个碳原子的草酰乙酸与 2 个碳原子的乙酰CoA 的乙酰基缩合成 6 个碳原子的柠檬酸开始,反复地脱氢氧化。通过三羧酸循环,葡萄糖被完全彻底分解。

糖有氧氧化的生理意义:有氧氧化是机体获取能量的主要方式。1 分子葡萄糖彻底氧化可净生成36~38 个ATP,是无氧酵解生成量的18~19 倍。有氧氧化不但释放能量的效率高,而且逐步释放的能量储存于ATP 分子中,因此能量的利用率也很高。

糖的氧化过程中生成的CO2 并非都是代谢废物,有相当部分被固定于体内某些物质上,进行许多重要物质的合成代谢。例如在丙酮酸羧化酶及其辅酶生物素的催化下,丙酮酸分子可以固定CO2 生成草酰乙酸。其他一些重要物质,如嘌呤、嘧啶、脂肪酸、尿素等化合物的合成,均需以CO2 作为必不可少的原料之一。

有氧氧化过程中的多种中间产物可以使糖、脂类、蛋白质及其他许多物质发生广泛的代谢联系和互变。例如有氧氧化第一阶段生成的磷酸丙糖可转变成仅一磷酸甘油;第二阶段生成的乙酰CoA 可以合成脂肪酸,二者可进一步合成脂肪。有氧氧化反应过程中生成的丙酮酸、脂酰CoA、仅一酮戊二酸、草酰乙酸,通过氨基酸的转氨基作用或联合脱氨基的逆行,可分别生成丙氨酸、谷氨酸及天冬氨酸,这些氨基酸又可转变成为其他多种非必需氨基酸,合成各种蛋白质。

最新碳水化合物教案

教案 第二章,第四节人体对碳水化合物的需要 教学目标: 1、通过本节教学,使学生了解碳水化合物的主要生理功能;常见活性多糖的生理功能;血糖指数( GI )的升高对糖类食物选择的重要作用。 2、通过学习掌握碳水化合物、膳食纤维概念、分类和食物来源; 3、理解糖类(碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用)、膳食纤维主要生理功能;了解常见活性多糖的生理功能;血糖指数( GI )的对糖类食物选择的重要作用。 4、通过对本节内容的学习,运用所学知识指导人们合理选取糖类,保障健康。 教学重点:碳水化合物、膳食纤维概念、营养分类和食物来源; 教学难点:碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用、膳食纤维主要生理功能 新课导入:开运动会的时候,班里的班委会给运动员买点葡萄糖口服液来服用,还有前两年流行的PTT饮料,同学们想一下,这些现象说明了什么问题呢?由此引入要讲的内容。 教学内容:

一、碳水化合物的功能 1 、供能与的节约蛋白质作用 当摄入足够的碳水化合物时,可以防止体内和膳食中的蛋白质转变为葡萄糖,这是所谓的节约蛋白质作用。 2 、构成机体细胞的成分 碳水化合物是构成机体的重要物质,并参与细胞的许多生命活动。 3 、维持神经系统的功能 尽管大多数体细胞可由脂肪和蛋白质代替糖作为能源,但是脑、神经和肺组织却需要葡萄糖作为能源物质,若血中葡萄糖水平下降,脑缺乏葡萄糖可产生不良反应。 4、抗生酮作用 碳水化合物摄取不足,脂肪代谢产生脂肪酸,氧化增多,会产生较多的酮体,高过肾的回收能力时,会影响人的健康,即所谓的酸中毒。 5、提供膳食纤维,活性多糖果,有益肠道功能 如乳糖可促进肠中有益菌的生长,也可加强钙的吸收。低聚糖:有利于肠道菌群平衡。 6 、食品加工能够中的重要原、辐材料(对食品) 很多工业食品都含有糖,并且对食品的感官性状有重要作用。 二、碳水化合物 (carbohydrate) 的分类: 按其化学组成、生理作用和健康意义可分为: 1 、糖:包括单糖 (monosaccharide 、双糖 (disaccharide) 和糖醇。

31第三节碳水化合物的代谢

碳水化合物的消化 (一)口腔内消化 碳水化合物的消化自口腔开始。口腔分泌的唾液中含有α-淀粉酶(α-amylase),又称 唾液淀粉酶(ptyalin),唾液中还含此酶的激动剂氯离子,而且还具有此酶最合适pH6~7 的环境。α-淀粉酶能催化直链淀粉、支链淀粉及糖原分子中α-1,4-糖苷键的水解,但不能水解这些分子中分支点上的α-1,6-糖苷键及紧邻的两个α-1,4-糖苷键。水解后的产物可有葡萄糖、麦芽糖、异麦芽糖、麦芽寡糖以及糊精等的混合物。 (二)胃内消化 由于食物在口腔停留时间短暂,以致唾液淀粉酶的消化作用不大。当口腔内的碳水化合物食物被唾液所含的粘蛋白粘合成团,并被吞咽而进人胃后,其中所包藏的唾液淀粉酶仍可使淀粉短时继续水解,但当胃酸及胃蛋白酶渗入食团或食团散开后,pH 下降至1~2 时,不 再适合唾液淀粉酶的作用,同时该淀粉酶本身亦被胃蛋白酶水解破坏而完全失去活性。胃液不含任何能水解碳水化合物的酶,其所含的胃酸虽然很强,但对碳水化合物也只可能有微少或极局限的水解,故碳水化合物在胃中几乎完全没有什么消化。 (三)肠内消化 碳水化合物的消化主要是在小肠中进行。小肠内消化分肠腔消化和小肠粘膜上皮细胞表面上的消化。极少部分非淀粉多糖可在结肠内通过发酵消化。 1.肠腔内消化肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉酶(amylopsin),其作用和性质与唾液淀粉酶一样,最适pH 为6.3~7.2,也需要氯离子作激动剂。胰淀粉酶对末端α-1,4-糖苷键和邻近α-1,6-糖苷键的α-1,4-糖苷键不起作用,但可随意水解淀粉分子内部的其他α-1,4-糖苷键。消化结果可使淀粉变成麦芽糖、麦芽三糖(约占65%)、异麦芽糖、α-临界糊精及少量葡萄糖等。α-临界糊精是由4~9 个葡萄糖基构成。 2.小肠粘膜上皮细胞表面上的消化淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠粘膜上皮细胞表面进一步彻底消化。小肠粘膜上皮细胞刷状缘上含有丰富的α- 糊精酶(α-dextrinase)、糖淀粉酶(glycoamylase)、麦芽糖酶(mahase)、异麦芽糖酶(isomahase)、蔗糖酶(sucrase)及乳糖酶(|actase),它们彼此分工协作,最后把食物中可 消化的多糖及寡糖完全消化成大量的葡萄糖及少量的果糖及半乳糖。生成的这些单糖分子均可被小肠粘膜上皮细胞吸收。 3.结肠内消化小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷气、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。碳水化合物在结肠发酵时,促进了肠道一些特定菌群的生长繁殖,如双歧杆菌、乳酸杆菌等。 二、碳水化合物的吸收 碳水化合物经过消化变成单糖后才能被细胞吸收。糖吸收的主要部位是在小肠的空肠。单糖首先进入肠粘膜上皮细胞,再进入小肠壁的毛细血管,并汇合于门静脉而进入肝脏,最后进入大循环,运送到全身各个器官。在吸收过程中也可能有少量单糖经淋巴系统而进人大循环。 单糖的吸收过程不单是被动扩散吸收,而是一种耗能的主动吸收。目前普遍认为,在肠粘膜上皮细胞刷状缘上有一特异的运糖载体蛋白,不同的载体蛋白对各种单糖的结合能力不同,有的单糖甚至完全不能与之结合,故各种单糖的相对吸收速率也就各异。

碳水化合物作业答案

情境一食品成分化学 任务二碳水化合物(作业答案) 一、填空题 1 碳水化合物根据其组成中单糖的数量可分为单糖、寡糖(低聚糖)、和多糖。 2 单糖根据官能团的特点分为醛糖和酮糖,寡糖一般是由2-10个单糖分子缩合而成,多糖聚合度大于10, 根据组成多糖的单糖种类,多糖分为同聚多糖或杂聚多糖。 3 淀粉对食品的甜味没有贡献,只有水解成低聚糖或葡萄糖才对食品的甜味起作用。 4 糖醇指由糖经氢化还原后的多元醇。 5 糖苷是单糖环状半缩醛结构中的半缩醛羟基与另一分子醇或羟基脱水缩合形成的化合物。糖苷的非糖 部分称为配基,连接糖基与配基的键称糖苷键。 6 大分子多糖溶液都有一定的黏稠性,其溶液的黏度取决于分子的大小,形状,所带净电荷和溶液中的 构象。 7 蔗糖水解称为转化,生成等物质的量葡萄糖和果糖的混合物称为转化糖。 8 含有游离醛基的醛糖或能产生醛基的酮糖都是还原糖,在碱性条件下,有弱的氧化剂存在时被氧化成 糖酸,有强的氧化剂存在时被氧化成糖二酸。 9 纤维素是由β-D-葡萄糖组成,它们之间通过β-1,4糖苷键相连。 10 乳糖是由一分子β-D-半乳糖和一分子D-葡萄糖组成,它们之间通过β-1,4糖苷键相连。 11 判断一个糖的D-型和L-型是以离羰基最远的一个手性(不对称)碳原子上羟基的位置作依据。 12 淀粉分为直连淀粉和支链淀粉,其中支链淀粉的结构与糖原相似。 13 蔗糖是由一分子α-D-葡萄糖和一分子β-D-果糖通过α,β-1,2糖苷键而形成的二糖,蔗糖无(填有或无)还原性。 14 糖类根据其水解情况可分为单糖、寡糖(低聚糖)、和多糖三类。 15 食品中常用的单糖有葡萄糖、果糖;双糖有蔗糖、麦芽糖、乳糖;多糖有淀粉、纤维素、果胶等。 16 直链淀粉分子中的糖苷键是α-1,4糖苷键;麦芽糖分子中的糖苷键是α-1,4糖苷键。 二、选择题 1 根据化学结构和化学性质,碳水化合物是属于一类(B)的化合物。 (A)多羟基酸(B)多羟基醛或酮(C)多羟基醚(D)多羧基醛或酮 2 糖苷的溶解性能与(B)有很大关系。 (A)苷键(B)配体(C)单糖(D)多糖 3 一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生(B)导致中毒。 (A)D-葡萄糖(B)氢氰酸(C)苯甲醛(D)硫氰酸 4 碳水化合物在非酶褐变过程中除了产生深颜色(C)色素外,还产生了多种挥发性物质。 (A)黑色(B)褐色(C)类黑精(D)类褐精 5 糖醇的甜度除了(A)的甜度和蔗糖相近外,其他糖醇的甜度均比蔗糖低。

碳水化合物百度百科

碳水化合物 碳水化合物(carbohydrate)是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物,如纤维素,是人体必须的物质。 糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。因此,糖类化合物对医学来说,具有更重要的意义。 自然界存在最多、具有广谱化学结构和生物功能的有机化合物。可用通式Cx(H2O)y来表示。有单糖、寡糖、淀粉、半纤维素、纤维素、复合多糖,以及糖的衍生物。主要由绿色植物经光合作用而形成,是光合作用的初期产物。从化学结构特征来说,它是含有多羟基的醛类或酮类的化合物或经水解转化成为多羟基醛类或酮类的化合物。例如葡萄糖,含有一个醛基、六个碳原子,叫己醛糖。果糖则含有一个酮基、六个碳原子,叫己酮糖。它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。是人类生存发展必不可少的重要物质之一。

发现历史 在人们知道碳水化合物的化学性质及其组成以前,碳水化合物已经得到很好的作用,如今含碳水化合物丰富的植物作为食物,利用其制成发酵饮料,作为动物的饲料等。一直到18世纪一名德国学者从甜菜中分离出纯糖和从葡萄中分离出葡萄糖后,碳水化合物研究才得到迅速发展。1812年,俄罗斯化学家报告,植物中碳水化合物存在的形式主要是淀粉,在稀酸中加热可水解为葡萄糖。1884年,另一科学家指出,碳水化合物含有一定比例的C、H、O三种元素,其中H和O的比例恰好与水相同为2:1,好像碳和水的化合物,故称此类化合物为碳水化合物,这一名称,一直沿用至今。 化学组成 糖类化合物由C,H,O三种元素组成,分子中H和O的比例通常为 2:1,与水分子中的比例一样,故称为碳水化合物。可用通式Cm (H2O )n表示。因此,曾把这类化合物称为碳水化合物。但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2O )n 通式,如鼠李糖(C6H12O5)、脱氧核

碳水化合物的来源及参考摄入量

碳水化合物的来源及参考摄入量 碳水化合物的营养学意义 碳水化合物是生命细胞结构的主要成分及主要供能物质,并且有调节细胞活动的重要功能。 (一)供给能量 膳食碳水化合物是人类获取能量的最主要、最经济的来源。碳水化合物在体内被消化后,能够迅速氧化给机体提供能量,每克葡萄糖在体内氧化可以产生4lkcal的能量,氧化的最终产物是二氧化碳和水。碳水化合物消化吸收后转变成的葡萄糖除了被机体直接利用,还以糖原的形式储存在肝脏和肌肉中,一旦机体需要,月干脏中的糖原即被分解成葡萄糖以提供能量。 碳水化合物释放能量较快,是火脑神经系统和肌肉的主要能源,对维持其生理功能有着非常重要的作用。中枢神经系统只能利用葡萄糖提供能量,婴儿时期缺少碳水化合物会影响脑细胞的生长发育。 (二)构成机体重要生命物质 碳水化合物是构成机体组织细胞的重要物质,并参与多种生理活动。细胞中的碳水化合物含量约为2%~10%,主要以糖脂、糖和蛋白结合物的形式存在于细胞膜、细胞器、细胞质和细胞间质中。核糖和脱氧核酸参与构成生命遗传物质核糖核酸和脱氧核糖核酸。维持机体正常生理功能的一些重要物质,如抗体、酶和激素也需碳水化合物参与构成。 (三)节氮作用 当碳水化合物摄人不足,能量供给不能满足机体需要时,膳食蛋白中会有一部分通过糖原异生分解成葡萄糖以满足机体对能量的需要,而不能参与构成机体需要的重要物质。摄入充足的碳水化合物则可以节约这一部分蛋白质的消耗,不需要动用蛋白质来供能,增加体内氮的潴留,这一作用被称为碳水化合物对蛋白质的节约作用或者节氮作用(sparing protein action)。 (四)抗生酮作用 脂肪在体内代谢也需要碳水化合物参与,因为脂肪代谢所产生的乙酚基需要与草酰乙酸结合进入三羧酸循环,才能最终被彻底氧化。草酰乙酸是葡萄糖在体内氧化的中间产物,如果膳食中碳水化合物供应不足,体内的草酰乙酸相应减少,脂肪酸不能被完全氧化而产生大量的酮体,酮体不能及时被氧化而在体内蓄积,会导致酮血症和酮尿症。膳食中充足的碳水化合物可避免脂肪不完全氧化而产生过量的酮体,这一作用称为碳水化合物的抗生酮作用(antiketogenesis)。 人体每天至少摄人50g的碳水化合物,可以防止这些由于低碳水化合物饮食所导致的代谢反应的发生。碳水化合物的调节血糖、节氮和抗生酮作用,对于维持机体的正常代谢、酸碱平衡、组织蛋白的合成与更新有非常重要的意义。 (五)解毒作用 肝脏中的葡萄糖醛酸是一种非常重要的解毒剂,它能与许多有害物质如细菌毒素、酒精、砷等结合并排出体外。不能消化的碳水化合物在肠道细菌作用下发酵产生的短链脂肪酸也有一定的解毒作用。 (六)增强肠道功能 非淀粉多糖如纤维素、果胶、抗性淀粉、功能性低聚糖等不易消化的碳水化合物,能刺激肠道蠕动,增加粪便容积,选择性地刺激肠道中有益菌群的生长,对于维持正常肠道功能,减少毒物与肠道细胞的接触时间,保护人体免受有害菌的侵袭有重要作用。

营养学基础—碳水化合物

第二章营养学基础—碳水化合物 学习重点:碳水化合物的分类、食物来源及功能,膳食纤维。 一.碳水化合物的分类 1.单糖:葡萄糖、果糖、半乳糖。单糖为结晶体,易溶于水,有甜味,是糖类的基本组成单位,不能再水解成更小的糖分子,可直接被人体吸收。 (1)葡萄糖 6碳糖,是构成食物中各种糖类的基本单位,是一类具有右旋性和还原性的醛糖,是人类空腹时唯一游离存在的六碳糖,在人血浆中的浓度是5mmol/L。在血液、脑脊液、淋巴液、水果、蜂蜜以及多种植物液中都以游离形式存在。 (2)果糖 6碳酮糖,主要存在于水果及蜂蜜中。玉米糖浆含果糖40-90%,是饮料、冷冻食品、糖果蜜饯生产的重要原料。果糖吸收后经肝脏转变成葡萄糖被人体利用,部分可转变为糖原、脂肪或乳酸。 (3)半乳糖是乳糖的组成成分,半乳糖在人体中先转变成葡萄糖后被利用,母乳中的半乳糖实在体内重新合成的,而不是食物中直接获得的。 2.双糖:两分子单糖缩合而成。常见有蔗糖、麦芽糖、乳糖、海藻糖。 (1)蔗糖由一分子葡萄糖和一分子果糖以α糖苷键连接而成。日常食用白糖即蔗糖,是由甘蔗或甜菜提取而来。 (2)麦芽糖由两分子葡萄糖以α糖苷键连接而成。是淀粉的分解产物,存在于麦芽中。 (3)乳糖由一分子葡萄糖与一分子半乳糖以β糖苷键连接而成。存在于乳中。 乳糖不耐症:人体小肠内乳糖酶的含量不足或缺乏,机体不能或只能少量的分解吸收乳糖,而大量乳糖未被吸收进入大肠,被那里的大量细菌发酵而产酸、产气,引起肠胃不适,如胀气、腹泻等症状。 乳糖不耐症产生的原因:先天性缺少或不能分泌乳糖酶;某些药物或肠道感染使乳糖酶分泌减少;随着年龄增加乳糖酶水平降低。 乳糖不耐受的处理原则:尽量避免单独空腹饮奶;合理使用乳制品:少量多次;选用酸奶、低乳糖奶或先服用乳糖酶制品再饮奶。 (4)海藻糖由两分子葡萄糖组成,存在于真菌及细菌之中。

第五章碳水化合物营养

第五章碳水化合物营养 日粮中的碳水化合物在反刍动物营养中的起着重要的作用。碳水化合物在瘤胃微生物的作用下生成乙酸、丙酸、丁酸、异丁酸、异戊酸等挥发性脂肪酸(VFA),这些VFA是反刍家畜主要的能量来源,可以满足宿主动物总能量需要的70%~80%。但由于瘤胃微生物对日粮中碳水化合物的有效降解,小肠吸收的葡萄糖不能满足宿主动物的需要。因此,糖元异生对反刍类动物极其重要,并且葡萄糖前体物的供应量和某些器官合成葡萄糖的效率都可能是反刍动物整体生产性能提高的限制性因素。奶牛酮病和绵羊妊娠毒血症的预防、奶牛泌乳量和乳脂率的提高?以及保证瘤胃添加剂最大限度的提高生产性能,所有这些都取决于饲喂日粮中碳水化合物的水平和类型。本章将论及反刍动物碳水化合物营养的许多方面。首先从界定具有重要营养价值的碳水化合物开始,而后论述瘤胃微生物对它们的代谢作用;影响碳水化合物消化部位、效率和程度的因素;小肠和大肠对碳水化合物消化的作用;宿主动物体内的糖元异生过程;幼龄反刍动物碳水化合物营养的特征;日粮中碳水化合物营养价值的评定方法;最后讨论饲料加工贮存过程中影响碳水化合物利用率的因素。其中,结构性碳水化合物和非结构性碳水化合物都将被考虑在内。 第一节饲料中的碳水化合物 碳水化合物(carbohydrates)是多羟基的醛、酮及其多聚物和某些衍生物的总称。常规营养分析中将这类营养素分为无氮浸出物和粗纤维两大类。无氮浸出又可称为可溶性无氮化合物(nitrogen free extract),它包括单糖及其衍生物、寡糖(含2—10个糖单位)和某些多糖(如淀粉、糊精、糖原、果聚糖等)。粗纤维包括纤维素、半纤维素、多缩戊糖、木质素、果胶、角质组织等,其中纤维素、半纤维素等也属于多糖。它们是一类重要的营养素,在反刍动物日粮中占一半以上。碳水化合物的组成和分类详见表1。 在青粗饲料的理化性质研究领域还有结构型碳水化合物(structural carbohydrate,SC)非结构性碳水化合物(nonstructural carbohydrate,NSC)水溶性碳水化合物(water soluble carbohydrate,WSC)以及糖与非糖物质的结合物—结合糖。分为淀粉、纤维素、半纤维素和果胶。

碳水化合物的全部作用

基本介绍 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素,是人体必须的物质。 糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。因此,糖类化合物对医学来说,具有更重要的意义。 自然界存在最多、具有广谱化学结构和生物功能的有机化合物。可用通式Cx(H2O)y来表示。有单糖、寡糖、淀粉、半纤维素、纤维素、复合多糖,以及糖的衍生物。主要由绿色植物经光合作用而形成,是光合作用的初期产物。从化学结构特征来说,它是含有多羟基的醛类或酮类的化合物或经水解转化成为多羟基醛类或酮类的化合物。例如葡萄糖,含有一个醛基、六个碳原子,叫己醛糖。果糖则含有一个酮基、六个碳原子,叫己酮糖。它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。是人类生存发展必不可少的重要物质之一。 编辑本段发现历史 在人们知道碳水化合物的化学性质及其组成以前,碳水化合物已经得到很好的作用,如今含碳水化合物丰富的植物作为食物,利用其制成发酵饮料,作为动物的饲料等。一直到18世纪一名德国学者从甜菜中分离出纯糖和从葡萄中分离出葡萄糖后,碳水化合物研究才得到迅速发展。1812年,俄罗斯化学家报告,植物中碳水化合物存在的形式主要是淀粉,在稀酸中加热可水解为葡萄糖。1884年,另一科学家指出,碳水化合物含有一定比例的C、H、O三种元素,其中H和O的比例恰好与水相同为2:1,好像碳和水的化合物,故称此类化合物为碳水化合物,这一名称,一直沿用至今。 编辑本段化学组成 糖类化合物由C(碳),H(氢),O(氧)三种元素组成,分子中H和O的比例通常为 分子式 2:1,与水分子中的比例一样,故称为碳水化合物。可用通式Cm(H2O )n表示。因此,曾把这类化合物称为碳水化合物。但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2O )n 通式,如鼠李糖(C6H12O5)、脱氧核糖(C5H10O4)等;而有些化合物如甲醛、乙酸(C2H4O2)、乳酸(C3H6O3)等,其组成虽符合通式Cm(H2O )n,但结构与性质却与糖类化合物完全不同。所以,碳水化合物这个名称并不确切,但因使用已久,迄今仍在沿用。(另外像碳酸(H2CO3)、碳酸盐(XXCO3)、碳单质(C)、碳的氧化物(CO2、CO)、水(H2O)都不属于有机物,也就是不属于碳水化合物。

浅谈碳水化合物与健康

浅谈碳水化合物与健康 发表时间:2011-08-24T14:22:03.403Z 来源:《魅力中国》2011年7月上供稿作者:田淑珍[导读] 肉类、鱼类、蛋类和植物油基本上不含碳水化合物,不会影响血糖,因而不会刺激胰岛素分泌。田淑珍 (襄樊职业技术学院医学院,湖北襄阳 441000) 中图分类号:O643 文献标识码:A 文章编号:1673-0992(2011)07-0000-01 摘要:碳水化合物亦称糖类化合物,是一切生物体维持生命活动所需能量的主要来源并对人类的健康产生重要作用。膳食中碳水化合物失调,会对机体造成一些不良后果。 关键词:碳水化合物健康作用 碳水化合物是由碳、氢、氧三种元素组成的一类有机化合物,其中大部分碳水化合物中氢和氧的比例与水分子中氢和氧的比例相同,因而被称为“碳水化合物”,又称糖类。碳水化合物是自然界存在最多、分布最广的一类重要的有机化合物。主要由绿色植物经光合作用而形成。它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。是人类生存发展必不可少的重要物质之一。碳水化合物不仅是营养物质,而且有些还具有特殊的生理活性。合理恰当的摄入碳水化合物对健康意义重大。 一、功能与作用 1.供给能量:俗话说,“人是铁,饭是钢,一顿不吃饿的慌”。五谷杂粮的主要化学成分是碳水化合物,人体摄入的碳水化合物在体内经水解变成葡萄糖或其它单糖参加机体代谢。每个人膳食中碳水化合物的比例没有规定具体数量,我国营养专家认为碳水化合物产热量占总热量的60—65%为宜。平时摄入的碳水化合物主要是多糖,在米、面等主食中含量较高,摄入碳水化合物的同时,还能获得蛋白质、脂类、维生素、矿物质、膳食纤维等其它营养物质。而摄人单糖或双糖如葡萄糖、蔗糖,除能补充热量外,不能补充其它营养素。 2.维持脑细胞的正常功能:葡萄糖是维持大脑正常功能的必需营养素,当血糖浓度下降时,脑组织可因缺乏能源而使脑细胞功能受损,造成功能障碍,并出现头晕、心悸、出汗、甚至昏迷。 3.构成细胞和组织:每个细胞都有碳水化合物,其含量为2%—10%,主要以糖脂、糖蛋白和蛋白多糖的形式存在,分布在细脑膜、细胞器膜、细胞浆以及细胞间质中。 4.节省蛋白质:食物中碳水化合物不足,机体不得不动用蛋白质来满足机体活动所需的能量,这将影响机体用蛋白质进行合成新的蛋白质和组织更新。因此,完全不吃主食,只吃肉类是不适宜的,因肉类中含碳水化合物很少,这样机体组织将用蛋白质产热,对机体没有好处。所以减肥病人或糖尿病患者最少摄入的碳水化合物不要低于150克主食。 5.抗酮体的生成:当人体缺乏糖类时,可分解脂类供能,同时产生酮体。酮体导致高酮酸血症。 6.加强肠道功能:适当摄入膳食纤维可防治便秘、预防结肠和直肠癌、防治痔疮等。 7.解毒作用:碳水化合物代谢可产生葡萄糖醛酸,葡萄糖醛酸与可与体内毒素结合进而达到解毒的目的。 二、碳水化合物失调的危害 由于碳水化合物具有多种重要的生理功能与作用,所以在每日膳食中要摄入一定的碳水化合物。但摄入过多或过少均会对人体健康带来不利的影响。 1.缺乏症:碳水化合物摄入不足,脂肪则会因氧化不全而产生过量的酮体,影响体内的酸碱平衡。肝糖原储备不足,会影响肝脏的解毒能力。缺乏碳水化合物还将导致全身无力、疲乏,血糖含量降低,从而产生头晕、心悸、脑功能障碍等严重后果。 2.过量危害:膳食中碳水化合物比例过高,必然会引起蛋白质和脂肪的摄入减少,也能对机体造成不良后果。热量的过多摄入,导致体重增加,产生各种慢性疾病。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。某些碳水化合物含量丰富的食物会使人体血糖和胰岛素激增,从而引起肥胖,甚至导致糖尿病和心脏病。 三、合理饮食 一般说来,对碳水化合物没有特定的饮食要求。主要是应该从碳水化合物中获得合理比例的热量摄入。碳水化合物每天应至少摄入50~100克可消化的碳水化合物以预防碳水化合物缺乏症。但应限制纯能量食物如糖的摄入量。食物中的碳水化合物分成两类:一类是人可以吸收利用的有效碳水化合物如葡萄糖、蔗糖、淀粉等,一类是人不能消化的无效碳水化合物如纤维素。纤维素并不产生热量,它也不能被吸收,但它却可以帮助处于消化系统中的食物顺畅地移动及减慢其对热量的吸收,是人体必须的碳水化合物。因此每天应该补充一定富含纤维素的食物。 大米、面、薯类、香蕉等食品淀粉含量很高。科学家发现,碳水化合物(膳食纤维除外)进入人体后,转化为血糖,刺激胰岛素分泌,促进细胞利用血糖,燃烧提供能量,多余的血糖进入肝脏合成肝糖原和脂肪,血糖剩余的越多,合成的脂肪就越多而储存在体内。血糖波动短期内使人产生饥饿感,长期则使机体细胞对胰岛素敏感度下降,产生“胰岛素抵抗症”,于是血糖燃烧转化为能量的效率下降,人会变得没有力气,“好吃懒做”就容易使人变得肥胖。 肉类、鱼类、蛋类和植物油基本上不含碳水化合物,不会影响血糖,因而不会刺激胰岛素分泌。总的来说,减肥的关键不在于直接控制热量。因为你控制不了,而是通过控制血糖,从而间接控制热量的摄入。 参考文献: [1]碳水化合物[J].家庭医学(新健康)2006年8期 [2]宋锡全,王素英. 黔产棕灰口蘑营养成分分析[J].贵州师范大学学报(自然科学版). 2009年2期

人体碳水化合物

人体碳水化合物 营养学第四节碳水化合物 碳水化合物亦称糖,旧称“醣”。是由碳、氢、氧三种元素所组成。多数糖中的氢氧比例为2:1,与水分子相似,故称为碳水化合物。糖是绿色植物光合作用的产物。糖在自然界分布很广,种类也多。如日常食用最多的淀粉类食品(包括大米、面粉、玉米、红薯、马铃薯、藕粉、粉丝、栗子等),食糖(葡萄糖、蔗糖、蜂蜜、果糖、乳糖等)和植物纤维(包括纤维素,半纤维素,木质素、果胶等)都属于这类化合物。每日膳食中糖的摄入量远远超过蛋白质和脂肪,糖是人体主要供给热能的物质。约占人体每天所需总热量的55-65%,有时也超过80%。 一、糖的组成和分类 根据糖的结构不同,可以分为单糖,双糖和多糖三大类。 (一)单糖 单糖是分子结构最简单并且不能水解的最基本的糖分子。包括由三个碳原子至六个碳原子所组成的糖类。单糖的结晶物质,易溶于水,有甜味,不经消化过程就可为人体吸收利用。在营养上有重要作用的单糖是葡萄糖、果糖和半乳糖三种。 1.葡萄糖 是单糖中最重要的一种。分子式为C6H12O6 ,在自然界分布很广,主要存在于植物性食物中,动物性食物也有。一般来说水果中含量最丰富,如柑桔、橙子,西瓜、甜瓜,葡萄等,其中以葡萄含量最多,大约为干重的20%,葡萄糖对人体很重要,人体血糖主要就是葡萄糖,在体内氧化可释放热量。 2.果糖 分子式与葡萄糖相同,但结构不同,为白色晶体,是最甜的一种糖,其甜度为蔗糖的1.75倍,果糖存在于水果中,蜂蜜含量最多。蔬菜中也含有少量的果糖。食物中的果糖在人体内可转变为肝糖元,然后分解为葡萄糖。 3.半乳糖 半乳糖是二糖类的乳糖经消化后,一半转变为半乳糖,一半转变为葡萄糖。故它在自然界中不能单独存在,半乳糖的甜度比葡萄糖低,当然更低于果糖。它在人体内可转变为肝糖元而被利用。半乳糖中的醛酸是植物中的果胶和半纤维素的成分之一,它又是构成神经组织的重要成分,琼脂(俗名洋粉或冻粉)的主要成分就是多缩半乳糖,它在食品工业上可作凝固剂来制作果膏、果酱、软糖等食

营养学碳水化合物

第四章碳水化合物 抗生酮作用:由于葡萄糖在体内氧化可生成草酰乙酸,脂肪在体内代谢生成乙酰基必须要同草酰乙酸结合,进入三羧酸循环才能被彻底氧化,食物中碳水化合物不足,集体要用储存的脂肪来提供能量。但机体对脂肪酸的氧化能力有一定的限度。动用脂肪过多,其分解代谢的中间产物(酮体)不能完全氧化,即产生酮体,酮体是一种酸性物质,如在体内积存太多,即引起酮血症,膳食中的碳水化合物可保证这种情况不会发生,即抗生酮作用。 一、单糖、双糖及糖醇 (1).单糖(monosacchride) 凡不能被水解为更小分子的糖(核糖、葡萄糖 .葡萄糖(glucose) 来源:淀粉、蔗糖、乳糖等的水解; 作用:作为燃料及制备一些重要化合物; 脑细胞的唯一能量来源 果糖(fructose) 来源:淀粉和蔗糖分解、蜂蜜及水果; 特点:代谢不受胰岛素控制;通常是糖类中最甜的物质,食品工业中重要的甜味物质(2)双糖(oligosacchride) 凡能被水解成少数(2-10个)单糖分子的糖。 如:蔗糖葡萄糖 + 果糖 1.蔗糖 来源:植物的根、茎、叶、花、果实和种子内; 作用:食品工业中重要的含能甜味物质; 与糖尿病、龋齿、动脉硬化等有关 2.异构蔗糖(异麦芽酮糖) 来源:蜂蜜、蔗汁中微量存在; 特点:食品工业中重要的含能甜味物质;耐酸性强、甜味约为蔗糖的42%,不致龋 3.麦芽糖 来源:淀粉水解、发芽的种子(麦芽); 特点:食品工业中重要的糖质原料,温和的甜味剂,甜度约为蔗糖的l/2。 4.乳糖 来源:哺乳动物的乳汁; 特点:牛乳中的还原性二糖;发酵过程中转化为乳酸;在乳糖酶作用下水解;乳糖不耐症。功能: ★是婴儿主要食用的碳水化合物。 ★构成乳糖的D—半乳糖除作为乳糖的构成成分外,还参与构成许多重要的糖脂(如脑苷脂、神经节苷酯)和精蛋白,细胞膜中也有含半乳糖的多糖,故在营养上仍有一定意义。 乳糖不耐症:有些人体内缺乏乳糖酶时,乳糖就不会被水解,无法被吸收,故饮用牛奶后会产生腹痛、腹泻、腹胀等症状,医学上称之为乳糖不耐症。 5.异构乳糖 组成:1分子半乳糖和1分子果糖组成 来源:乳糖异构; 特点: 无天然存在,由乳糖异构而来; 不能被消化吸收,通便作用; 促进肠道有益菌的增殖、抑制腐败菌的生长; 2.特点: 生成的褐色聚合物在消化道中不能水解,无营养价值。

碳水化合物的营养生理作用

(一)碳水化合物的供能贮能作用 碳水化合物,特别是葡萄糖是供给动物代谢活动快速应变需能的最有效的营养素。葡萄糖是大脑神经系统、肌肉、脂肪组织、胎儿生长发育、乳腺等代谢的主要能源。葡萄糖供给不足,小猪出现低血糖症,牛产生酮病,妊娠母羊产生妊娠毒血症,严重时会致死亡。体内代谢活动需要的葡萄糖来源有二:一是从胃肠道吸收;二是由体内生糖物质转化。非反刍动物主要靠前者,也是最经济最有效的能量来源。反刍动物主要靠后者。其中肝是主要生糖器官,约占总生糖量的85%,其次是肾,约占15%。在所有可生糖物质中,最有效的是丙酸和生糖氨基酸,其次是乙酸、丁酸和其它生糖物质。核糖、柠檬酸等生糖化合物转变成葡萄糖的量较小。 碳水化合物除了直接氧化供能外,也可以转变成糖原和脂肪贮存。胎儿在妊娠后期能贮积大量糖原和脂肪供出生后作能源利用,但不同种类动物差异较大。 (二)碳水化合物在动物产品形成中的作用 高产奶牛平均每天大约需要1.2kg葡萄糖用于乳腺合成乳糖。产双羔的绵羊每天约需200g葡萄糖合成乳糖。反刍动物产奶期体内50-85%的葡萄糖用于合成乳糖。基于乳成分的相对稳定性,血糖进入乳腺中的量明显是奶产量的限制因素。葡萄糖也参与部分羊奶蛋白质非必需氨基酸的形成。碳水化合物进入非反刍动物乳腺主要用以合成奶中必要的脂肪酸,母猪乳腺可利用葡萄糖合成肉豆蔻酸和一些其它脂肪酸,也可利用葡萄糖作为合成部分非必需氨基酸的原料。 (一)碳水化合物的供能贮能作用 碳水化合物,特别是葡萄糖是供给动物代谢活动快速应变需能的最有效的营养素。葡萄糖是大脑神经系统、肌肉、脂肪组织、胎儿生长发育、乳腺等代谢的主要能源。葡萄糖供给不足,小猪出现低血糖症,牛产生酮病,妊娠母羊产生妊娠毒血症,严重时会致死亡。体内代谢活动需要的葡萄糖来源有二:一是从胃肠道吸收;二是由体内生糖物质转化。非反刍动物主要靠前者,也是最经济最有效的能量来源。反刍动物主要靠后者。其中肝是主要生糖器官,约占总生糖量的85%,其次是肾,约占15%。在所有可生糖物质中,最有效的是丙酸和生糖氨基酸,其次是乙酸、丁酸和其它生糖物质。核糖、柠檬酸等生糖化合物转变成葡萄糖的量较小。 碳水化合物除了直接氧化供能外,也可以转变成糖原和脂肪贮存。胎儿在妊娠后期能贮积大量糖原和脂肪供出生后作能源利用,但不同种类动物差异较大。 (二)碳水化合物在动物产品形成中的作用 高产奶牛平均每天大约需要1.2kg葡萄糖用于乳腺合成乳糖。产双羔的绵羊每天约需200g葡萄糖合成乳糖。反刍动物产奶期体内50-85%的葡萄糖用于合成乳糖。基于乳成分的相对稳定性,血糖进入乳腺中的量明显是奶产量的限制因素。葡萄糖也参与部分羊奶蛋白质非必需氨基酸的形成。碳水化合物进入非反刍动物乳腺主要用以合成奶中必要的脂肪酸,母猪乳腺可利用葡萄糖合成肉豆蔻酸和一些其它脂肪酸,也可利用葡萄糖作为合成部分非必需氨基酸的原料。

碳水化合物一直是一个让人又爱又恨的东西

碳水化合物一直是一个让人又爱又恨的东西,一方面你需要碳水化合物来给你提供身体所必须的燃料,另一方面它可以轻易的把你的6块腹肌变成一块肥肉。如果身体出现低能量,内脏和肌肉增长乏力这些迹象,就表明你最近你和高碳水化合物接触的过于亲密了,毫无疑问,如果你经常在超市目的不清的购物,往往都会被淀粉和精制碳水化合物引诱,然后让你远离天然食物,使你碳水化合物消费泛滥,导致身体缺乏蛋白质。要赢得这场战争的关键因素就是要让你的身体充满了低碳水化合物和蛋白质食物,同时还要富含重要的矿物质和维生素和未经加工的复杂碳水化合物,我们曾经列出过一份蛋白质食物的清单,那么今天就来看看低碳水化合物的清单,希望能为你的生活带来更多更好的营养建议。 低碳水化合物蔬菜 1、西葫芦,碳水化合物含量:7克(中等大小) 西葫芦是一个很好的蔬菜,非常适合低碳水化合物饮食,如果你拥有高超的厨艺,能够把它变成意大利面的替代品是最好的,注意,是替代高碳水化合物的意大利面条。做土豆饼添加它也可以减少面粉的用量。 营养价值:虽然西葫芦不被人们认为是所谓的超级食品,但它含有一系列的基本营养素:维生素B6、锰、钾、维生素C 2、菜花,碳水化合物含量:每100克含5克 菜花在营养界一直被誉为瘦淀粉,一旦蒸熟后,其特性完全可以代替土豆泥成为低碳水化合物的首选,甚至能加入到奶油汤和比萨饼里,做面食时也可以代替部分面粉,同时可以替代大米或其他主食。 营养价值:作为十字花科芸薹属家族的一员与花椰菜和甘蓝为身体提供大量的抗氧化剂。 3、甜菜,碳水化合物含量:每100克含9克 营养丰富,绿叶蔬菜应该作为低碳水化合物的首选添加到您的购物车中,甜菜也不例外。你可以蒸它或搭配肉丝炒制,味道非常不错,颜色也很好看。 营养价值:提供大量的维生素K,在营养学杂志的一项研究发现,能够降低患癌症和心脏病的风险。 4、蘑菇,碳水化合物含量:每100克含3克 从白色到小褐菇到更多异国情调的香菇,都是低碳水化合物的代表,但这些食用菌富含鲜美的味道。大而多肉的种类可以用作代替汉堡中的面包,或者洒进你最喜爱的比萨饼里面。 营养的好处: 含有大量促进免疫的化合物。

几种特定碳水化合物的生理作用

1. 某些寡糖的生理作用 不同的微生物通过特异性识别作用,只能选择性地定植于某一特定的器官或部位。近年来研究发现,这种特异性识别是通过微生物表面的凝集素和宿主细胞表面的某些寡糖介导完成的。在畜禽胃肠道内,微生物表面的糖蛋白质(或菌毛)能够特异地识别肠粘膜上皮的寡糖受体,并与之结合。近几年来,人们对于寡糖的研究和应用具有特别的兴趣,已合成了一些寡糖产品,如甘露寡糖(MOS,酵母细胞壁的衍生物)、果寡糖(FOS,由蔗糖通过转果糖酶反应合成)等。研究表明,当含有上述寡糖的饲料进入动物体内后,胃肠道中的致病菌就会与之结合,从而不能在肠壁表面定植,这样它们就会随食糜一道排出体外,从而保护了动物免遭这些致病菌的侵害。 某些寡糖不能被动物分泌的酶消化。在胃肠道内,寡糖可以选择性地作为某些细菌生长的底物。果寡糖能够作为乳酸杆菌和双歧杆菌生长的底物,但沙门氏菌、大肠埃希氏菌和其它革兰氏阴性菌发酵FOS的效率很低,因而它们的生长将会受到抑制。MOS可以防止沙门氏菌、大肠杆菌和霍乱弧菌在动物肠道粘膜上皮上的粘附。由于合成寡糖具有上述调整胃肠道微生物区系平衡的效应,现已将其称为化学益生素(Chemical probiotics)。 目前,应用合成寡糖所实施的实验,其正效应较为一致,但应用天然含有寡糖的某些饲料原料的实验,其效果则不一致。Iji等(1998)认为造成这种差异的原因可能是添加合成寡糖时,在饲粮中的添加水平低(低于0.5%),而天然含有寡糖的某些饲料原料中寡糖水平较高。 最常见的寡糖天然来源是豆科籽实,其中寡糖的含量为23-106g/kg。大豆中寡糖的平均含量为46g/kg。饲料中天然寡糖主要为棉籽糖系列(棉籽糖、水苏糖、毛蕊草糖)。这些糖主要被肠道中的有益微生物发酵,但如果量过高,发酵产气过多可能导致肠胃胀气。同时,发酵产物也影响肠粘膜与血浆间的渗透压,严重时可导致腹泻,这也是向仔猪饲喂含高水平大豆或豆粕的饲粮时,容易产生腹泻的原因之一。 2. 动物体内糖苷的生理作用 糖苷是指具有环状结构的醛糖或酮糖的半缩醛羟基上的氢,被烷基或芳香基团所取代的缩醛衍生物。糖苷经完全水解,糖苷键分裂,产生的糖部分称为糖基(glycone),非糖部分称为配基(aglycone)。现已确定动物体内代谢产生的许多糖苷具有解毒作用。哺乳类、鱼类及一些两栖类动物的许多毒素、药物或废物,包括固醇类激素的降解产物可能是通过与D—葡萄糖醛酸形成葡萄糖苷酸而排出体外的。 3. 结构性碳水化合物的营养生理作用 结构性碳水化合物在体内有多种营养生理功能,饲粮中适宜水平的纤维对动物生产性能和健康有积极的作用。粘多糖是保证多种生理功能实现的重要物质。透明质酸具有高度粘性,在润滑关节、保护机体在受到强烈振动时,不致影响正常功能方面起重要作用。硫酸软骨在软骨中起结构支持作用。几丁质(又名甲壳素、壳多糖)是许多低等动物尤其是节肢动物外壳的重要组成部分。虾、蟹是在不断蜕壳和再生壳的过程中生长,而甲壳素的分解产物2—氨基葡萄糖对于虾、蟹壳的形成具有重要作用。因此,在饲料中添加甲壳素(生产中添加虾糠或虾头粉)可促进虾、蟹类的生长。 4.糖蛋白质、糖脂的生理作用 目前糖蛋白质是指由比较短、往往是分支的寡糖链与多肽共价相连所构成的复合糖。糖蛋白质种类繁多,在体内物质运输、血液凝固、生物催化、润滑保护、结构支持、粘着细胞、降低冰点、卵子受精、免疫和激素发挥活性等方面发挥极其重要的作用。

42碳水化合物的功能

4.2碳水化合物的功能 4.2.1体内碳水化合物的功能 人体内碳水化合物葡萄糖、糖原和含糖的复合物有3种存在形式,其功能与其存在形式有关。 (1)储存和提供能量 糖原是肌肉和肝脏内碳水化合物的储存形式,肝脏约储存机体内1/3的糖原。一旦机体需要,肝脏中的糖原分解为葡萄糖进入血循环,提供机体尤其是红细胞、脑和神经组织对能量的需要。肌肉中的糖原只供自身的能量需要。体内的糖原储存只能维持数小时,必须从膳食中不断得到补充。母体内合成的乳糖是乳汁中主要碳水化合物。 (2)机体的构成成分 碳水化合物同样也是机体重要的构成成分之一,如结缔组织中的黏蛋白、神经组织中的糖脂及细胞膜表面具有信息传递功能的糖蛋白,它们往往都是一些寡糖复合物。另外,DNA 和RNA中也含有大量的核糖,在遗传中起着重要的作用。 (3)节约蛋白质作用 当体内碳水化合物供给不足时,机体为了满足自身对葡萄糖的需要,则通过糖原异生作用(gluconeogenesis)产生葡萄糖。由于脂肪一般不能转变成葡萄糖,所以主要动用体内蛋白质,甚至是器官中的蛋白质,如肌肉、肝、肾、心脏中的蛋白质,对人体及各器官造成损害。节食减肥的危害性也与此有关。另外,即使不动用机体内的蛋白质,而动用食物中消化吸收的蛋白质来转变成能量也是不合理或有害的。当摄入足够的碳水化合物时,可以防止体内和膳食中的蛋白质转变为葡萄糖,这就是所谓的节约蛋白质作用(sparing protein action)。 (4)抗生酮作用 脂肪在体内彻底被代谢分解需要葡萄糖的协同作用。脂肪酸被分解所产生的乙酞基需与草酰乙酸结合进入三羧酸循环而最终被彻底氧化,产生能量。若碳水化合物不足,草酰乙酸则不足,脂肪酸不能被彻底氧化而产生酮体。尽管肌肉和其他组织可利用酮体产生能量,但过多的酮体则可引起酮血症(ketosis),影响机体的酸碱平衡。而体内充足的碳水化合物就可以起到抗生酮作用(antiketogenesis)。人体每天至少需要50~100g碳水化合物才可防止酮血症的产生。 4.2.2食物碳水化合物的功能 (1)主要的能量营养素 膳食中的碳水化合物是世界上来源最广、使用最多、价格最便宜的能量营养素。1g碳水化合物可提供约16.7kJ(4.0kcal)的能量。我国人以米面为主食,60%以上的能量来源于碳水化合物。这种膳食结构不仅经济,而且科学和有利于健康。 (2)改变食物的色、香、味、型 利用碳水化合物的各种性质可加工出色、香、味、型各异的多种食品,而食糖的甜味更是食品烹调加工中不可缺少的原料。表4 1列出了几种食用糖及糖醇的相对甜度。表4 1食用糖及糖醇的相对甜度 名称相对甜度名称相对甜度乳糖0.2 果糖1.2~1.8麦芽糖0.4山梨醇0.6葡萄糖0.7甘露醇0.7蔗糖1.0木糖醇0.9摘自: Perspective in Nutrition.3rd. 1996,77(3)提供膳食纤维 膳食纤维的最好来源是天然的食物,如豆类、谷类、新鲜的水果和蔬菜等。膳食纤维因其重要的生理功能,日渐受到人们的重视。 ①增强肠道功能,有利于粪便排出。大多数纤维素具有促进肠道蠕动和吸水膨胀的特性。一方面可使肠道平滑肌保持健康和张力,另一方面粪便因含水分较多而体积增加和变软,

相关文档