文档视界 最新最全的文档下载
当前位置:文档视界 › 超导材料基础知识介绍

超导材料基础知识介绍

超导材料基础知识介绍
超导材料基础知识介绍

超导材料基础知识介绍

超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。

特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。

①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。

②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。

③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。

基本临界参量有以下 3个基本临界参量。

①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。

②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。

③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。

超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。

分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

瓷。

①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。

②合金材料:超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。

③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。

④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc 处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。

应用超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:

①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。

②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。

③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。

1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,锌为0.75K,铝为

1.196K,铅为7.193K。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。

1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。

1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。

超导科学研究

1.非常规超导体磁通动力学和超导机理主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

2.强磁场下的低维凝聚态特性研究低维性使得低维体系表现出三维体系所没有的特性。低维不稳定性导致了多种有序相。强磁场是揭示低维凝聚态特性的有效手段。主要研究内容包括:有机铁磁性的结构和来源;有机(包括富勒烯)超导体的机理和磁性;强磁场下二维电子气中非线性元激发的特异属性;低维磁性材料的相变和磁相互作用;有机导体在磁场中的输运和载流子特性;磁场中的能带结构和费米面特征等。

3.强磁场下的半导体材料的光、电等特性强磁场技术对半导体科学的发展愈益变得重要,因为在各种物理因素中,外磁场是唯一在保持晶体结构不变的情况下改变动量空间对称性的

物理因素,因而在半导体能带结构研究以及元激发及其互作用研究中,磁场有着特别重要的作用。通过对强磁场下半导体材料的光、电等特性开展实验研究,可进一步理解和把握半导体的光学、电学等物理性质,从而为制造具有各种功能的半导体器件并发展高科技作基础性探索。

4.强磁场下极微细尺度中的物理问题极微细尺度体系中出现许多常规材料不具备的新现象和奇异特性,这与这类材料的微结构特别是电子结构密切相关。强磁场为研究极微细尺度体系的电子态和输运特性提供强有力的手段,不但能进一步揭示这类材料在常规条件下难以出现的奇异现象,而且为在更深层次下认识其物理特性提供丰富的科学信息。主要研究强磁场下极微细尺度金属、半导体等的电子输运、电子局域和关联特性;量子尺寸效应、量子限域效应、小尺寸效应和表面、界面效应;以及极微细尺度氧化物、碳化物和氮化物的光学特性及能隙精细结构等。

5.强磁场化学强磁场对化学反应电子自旋和核自旋的作用,可导致相应化学键的松驰,造成新键生成的有利条件,诱发一般条件下无法实现的物理化学变化,获得原来无法制备的新材料和新化合物。强磁场化学是应用基础性很强的新领域,有一系列理论课题和广泛应用前景。近期可开展水和有机溶剂的磁化及机理研究以及强磁场诱发新化学反应研究等。

6.磁场下的生物学、生物-医学研究等磁体科学和技术强磁场的价值在于对物理学知识有重要贡献。八十年代的一个概念上的重要进展是量子霍尔效应和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年诺贝尔奖)。量子霍尔效应和分数量子霍尔效应的发现激起物理学家探索其起源的热情,并在建立电阻的自然基准,精确测定基本物理常数e,h和精细结构常数(=e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。熟悉物理学史的人都清楚,由固体物理学演化为凝聚态物理学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维晶体拓宽到低维和高维,乃至分数维体系。这些新对象展示了大量新的特性和物理现象,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得凝聚态物理学得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。相对于其它极端条件,强磁场有其自身的特色。

强磁场的作用是改变一个系统的物理状态,即改变角动量(自旋)和带电粒子的轨道运动,因此,也就改变了物理系统的状态。正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如中子源和同步加速器,它们没有改变所研究系统的物理状态。磁场可以产生新的物理环境,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和磁性粒子的远动和能量量子化,并破坏时间反演对称性,使它们具有更独特的性质。强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的费米面结构正是利用强磁场使得电子和空穴在特定方向上的自由运动从而导致磁化和磁阻的振荡这一原理而得以证实的。固体中的费米面结构及特征研究一直是凝聚态物理学领域中的前

沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、纳米材料和介观物体中的物理问题、巨磁阻效应的物理起因、有机铁磁性的结构和来源、有机(包括富勒烯〕超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和费米面特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进凝聚态物理学的进一步发展和完善。

带电粒子象电子、离子等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面催化过程、材料特别是磁性材料的生成过程、生物效应以及液晶的生成过程等的影响,有可能取得新的发现,产生交叉学科的新课题。强磁场应用于材料科学为新的功能材料的开发另辟新径,这方面的, , , 工作在国外备受重视,在国内, 也开始有所要求。高温超导体也正是因为在未来的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。

常用塑料基础知识

一、常用塑料基础知识 一.塑胶的定义 塑胶在日常生活中的应用越来越广泛,已经逐渐取代了部份的金属、纸、木质品。 所谓塑胶,是由分子量非常大的有机化合物组成或由以其为基本成分的各种材料,以热压力等使之具有流动性而成形为最终的固体状态者,称之为塑胶。 二.塑胶的通性 1.比重轻(比重为0.9~2)。 2.坚固耐用。 3.是良好的绝缘体。 4.耐蚀性强,且不生锈。 5.成形容易、生产率高。 6.原料丰富、价格低。 7.色彩鲜明,着色容易。 8.主要原料为煤、石油等化工产品。 三.塑胶的分类 1.热塑性塑胶(thermo Plasties) 是指可以多次重复加热变软、冷却结硬成形的塑料,其耐热性较差它又可分为结晶形与非结晶形,结晶是指分子规则地排列集成。 2.热固性塑胶(thermosething Plasties) 在加热时起初会被软化而具有一定的可塑性,但随着加热的进行,塑胶中的分子不断化合,最后固化成型,也不熔于熔剂的物质。 按用途又可分为通用塑料,工程塑料,热塑性弹体。 通用塑料: 指具备了下列某些性质的聚合物:高强度、刚韧、耐磨、抗化学药品及耐高温,一般指:PA、POM、PC、PPO。 工程塑料: 泛指一些具有能制造机械零件或工程结构材料等工业品质的塑料。其机械性能、电气性能,对化学环境的耐受性,对高温、低温耐受性等方面都具有较优异的特点,能在工程技术上替代某些金属如铜、铝、锌、部份合金钢或其他材料使用,常见的有ABS、PA、PC、POM、PMMA、PU、PSU、PPO、PTFE等,其中前四种发展最快,为国际上公认的四大工程塑料。 热塑性弹体即指橡胶。 为满足某些特别的塑料,加强现有的性能,降低成本等需要,近年来产生的一些掺混工程聚合物,PC/ABS、PC/PBT、PPO/PS。 四.常用塑胶的性质及用途(见附表)

※超导简介与超导材料的历史

神奇的超导:超导简介与超导材料的历史 神奇的超导 罗会仟周兴江 一、什么是超导? 电阻起源于载流子(电子或空穴)在材料中运动过程中受到的各种各样的阻尼。按照材料的常温电阻率从大到小可以分为绝缘体、半导体和导体。绝大部分金属都是良导体,他们在室温下的电阻率非常小但不为零,在10-12 mΩ?cm量级附近。自然界是否存在电阻为零的材料呢?答案是肯定的,这就是超导体。当把超导材料降到某个特定温度以下的时候,将进入超导态,这时电阻将突降为零(图1),同时所有外磁场磁力线将被排出超导体外,导致体内磁感应强度为零,即同时出现零电阻态和完全抗磁性。超导态开始出现的温度一般称为超导临界温度,一般定义为Tc。微观上来说,当超导材料处于超导临界温度之下时,材料中费米面附近的电子将通过相互作用媒介而两两配对,这些电子对将同时处于稳定的低能组态,叫“凝聚体”。在外加电场驱动下,所有电子对整体能够步调一致地运动,因此超导又属于宏观量子凝聚现象。对于零电阻态,实验上已经证实超导材料的电阻率小于10-23 mΩ?cm,在实验精度允许范围内已经可以认为是零。如果将超导体做成环状并感应产生电流,电流将在环中流动不止且几乎不衰减。超导体的完全抗磁性并不依赖于超导体降温和加场的次序,也称为迈斯纳(Meissner)效应。一个材料是否为超导体,零电阻态和完全抗磁性是必须同时具有的两个独立特征。

超导态下配对的电子对又称库珀(Cooper)对。配对后的电子将处于凝聚体中,打破电子对需要付出一定的能量,称为超导能隙,它反映了电子间的配对强度。一般来说,超导态在低外磁场及低温下是稳定的有序量子态。超导体的一系列神奇特性意味着我们可以在低温下稳定地利用超导体,比如实现无损耗输电、稳恒强磁场和高速磁悬浮车等。正因如此,自从超导发现以来,人们对超导材料的探索脚步一直不断向前,对超导微观机理和超导应用的研究热情也从未衰减。随着对超导研究的深入,一系列新的超导家族不断被发现,它们展现的新奇物理现象也在不断挑战人们对现有凝聚态物理的理解,同时实验技术手段也因此得以加速进步,理论概念更是取得了诸多飞跃。已逾百年的超导研究,在诸多科学家的推动下,依旧不断展示新的魅力! 金属Hg在4.2K以下的零电阻态

传统超导体简介

2014年5月24日 传统超导体简介 LH·ZW 摘要:如今超导体在社会生产中扮演着越来越重要的作用,不管是急速发展着的电子工业 还是磁悬浮列车的发展都与超导体的发展息息相关。并且一直以来有着神秘色彩超导体在我们心目中都是高端得遥不可及的,而当今社会的发展却因之而大放异彩,所以对于超导体的机制及其应用我们还是应该学习的。 关键词:电磁学超导体零电阻现象迈斯纳效应超导发电磁悬浮列车 引言 超导体与电磁相关原理不无关系。超导体没有电阻是一材料宏观表现出来的性质,并且在我们现有的认知当中,当温度到达(升高或降低)该材料的某一临界值时,其温度会变为让人们一直以来都不为理解且震惊的零值,即是不可思议的没有电阻现象。且超导的最具特点与价值的是其完全导电性和完全抗磁性,由此使得其在社会生活生产中扮演着重要的角色。 一.超导体分类 现在对于超导体的分类并没有统一的标准,通常的分类方法有以下几种: ?通过材料对于磁场的相应可以把它们分为第一类超导体和第二类超导体:对于第一类超导体只存在一个单一的临界磁场,超过临界磁场的时候,超导性消失;对于第二类超导体,他们有两个临界磁场值,在两个临界值之间,材料允许部分磁场穿透材料。 ?通过解释的理论不同可以把它们分为:传统超导体(如果它们可以用BCS理论或其推论解释)和非传统超导体(如果它们不能用上述理论解释)。 ?通过材料达到超导的临界温度可以把它们分为高温超导体和低温超导体:高温超导体通常指它们的转变温度达到液氮温度(大于77K);低温超导体通常指它们需要其他特殊的技术才可以达到它们的转变温度。 ?通过材料可以将它们分为化学材料超导体比如:铅和水银;合金超导体比如:铌钛合金;氧化物超导体,比如钇钡铜氧化物;有机超导体,比如:碳纳米管。 二.一般超导体(即第一类超导体)的微观机制 1.电阻成因:很多宏观现象可以从微观领域中得到解释。电流是导体中电子的定向移动。电子在原子间移动时,由于电子与原子核间的电磁力的作用,会引起原子振动。众所周知,在正常导体中,一些电子没有被束缚到个别原子上,而是可以通过正离子的晶格自由运动。而电流通过晶格运动时),特别是金属中电子与晶格缺陷碰撞散射,以及在运动过程中其会与晶格振动相互作用而带来宏观上的电阻现象(1)(2)。这就是电阻的成因。 2.超导形成:由电阻成因知我们欲形成超导则要使得那电磁力的作用得到消除进而使得原子消除振动,从而使得电阻为零形成超导。并且由科学研究知在低温下核外电子运转速率

超导材料的主要应用

超导材料的主要应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。下面是有关于超导材料的主要应用的内容,欢迎阅读。 油田超导热洗技术的应用及效果分析【摘要】油井热洗清蜡是保证油井正常生产,是改善井下杆管泵工作环境的重要手段之一。常规热洗清蜡技术存在几方面的问题:1、是常规热洗含水恢复期长,对产量影响较大。2、是常规热洗容易污染地层。3、常规热洗动用车辆多,笨重,成本高。超导热洗工艺弥补了常规热洗的不足,取得了良好的效果。【关键词】油井清蜡超导热洗效果对比 1超导热洗简介 超导热洗工艺技术原理 超导加热器(俗称清蜡机)是油田抽油井洗井清蜡的专用设备。它采用超导传热技术,用油井套管气(天然气)或柴油为热源,将油井产出液(或其它井补充液或水)加热成高温蒸气(或高温液)注入套管环型空间。使油管内的产出液温度逐渐升高,管壁结蜡自上而下逐渐融化,随产出液进入输油管(或油罐)。内阻减小,以达到稳定、降耗、节约成本、不污染油层的目的。 本加热器可清洗日产液量的抽油机井。超导热洗可采用油井产出液自洗、补充水或其它井产出液方法洗井清蜡。两

种方式均采用低压力,低液量,慢升温的热洗工艺。不改变油层的油、水、气流动规律,不污染油层。 油井套压≥,自产气够用时,可用油井自产气为热源,油井有天然气管网,可用天然气做热源,无天然气可用柴油为热源。 超导热洗装置介绍 (1)产品为移动式设备。加热器安装在专用车上。 (2)本加热器按热源分为燃气型、燃油型、燃气燃油两用型三种。 ①燃气型:洗井现场有天燃气管网(压力),可配备全自动燃气燃烧器和温度自控系统。洗井现场无天然气管网、但附近油井套压≥,自产气够用时,可配备半自动燃气燃烧器和温度自控系统。 ②燃油型:无天然气或天然气不够用的油井,可用柴油为热源、配备全自动柴油燃烧器和温度自控系统。 ③燃气燃油两用型:在同一洗井区域内,有的井有天然气、有的井无天然气,可选择燃气燃油两用型。配备燃气系统、燃油系统各一套。配备温度自控系统一套,自产气够用就用自产气、自产气不够用则用柴油。 3自动控制系统和安全措施 (1)用加热器出口温控表控制燃烧器。温控装置会按照设定好的温度自动工作。温度高时自动关机停火,温度低时

超导材料论文

超导材料论文 Prepared on 22 November 2020

超导材料 摘要:简要介绍了超导材:的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。 关键词:超导体研究进展高温低温应用 一前言 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二研究现状 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年,发现了一系列A15型超导体和三元系超导体,如Nb3Sn、V3Ga、Nb3Ge,其中Nb3Ge超导体的临界转变温度(T c)值达到。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开

超导材料的性能与应用综述

超导材料的性能及应用综述 班级:10粉体(2)班学号:1003012003 姓名:徐明明 摘要:回顾了超导现象的发现及发展,综述了超导电性的微观机理,超导物理学研究的历史和主要成果,介绍了超导电性的几种突出的应用,并指出目前对于超导电性的认识在理论、实验、研究上都是初步的 ,还需要进行更多的和更深入全面的研究。 关键词:超导电性;超导应用;BCS理论;应用 一、超导现象的发现及发展 1908 年, 荷兰莱登实验室在卡茂林- 昂尼斯的指导下, 用液氢预冷的节流效应首次实现了氦气的液化,从而使实验温度可低到4~1K 的极低温区, 并开始在这样的低温区测量各种纯金属的电阻率。1911 年,卡茂林- 昂尼斯[1] 发现Hg 的电阻在4. 2K 时突降到当时的仪器精度已无法测出的程度, 即Hg 在一确定的临界温度T c= 4. 15K 以下将丧失其电阻,这是人们第一次看到的超导电性。昂尼斯也凭这一发现获得了1913 年的诺贝尔物理学奖。后来的实验证明,电阻突变温度与汞的纯度无关,只是汞越纯,突变越尖锐。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度 Tc、临界电流 Ic、临界磁场 Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。应该指出,只是在直流电情况下才有零电阻现象。从此,诞生了一门新兴的学科——超导。 一直到20世纪50年代,超导只是作为探索自然界存在的现象和规律在研究,1957年Bardeen、Cooper和Schrieffer[2]提出了著名的BCS理论,揭示了漫长时期不清楚的超导起因。1961年Kunzler将Nb3Sn制成高场磁体,开辟了超导在强电中的应用,特别是 1962 年Josephson效应的出现,将超导应用推广到一个崭新的领域。到20世纪70年代超导在电力工业和微弱信号检测应用方面的进展显示了它无比的优越性,但由于临界温度低,必须使用液氦,这就极大地限制了它的优越性。从20世纪70年代起人们就将注意力转向寻找高温超导体上,在周期表

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

塑料配色着色的基本知识

塑料配色着色的基本知识 塑料配色着色的基本知识 配色着色_ 定义: 配色就是在红、黄、蓝三种基本颜色基础上,配出令人喜爱、符合色卡色差要求、经济并在加工、使用中不变色的色彩。另外塑料着色还可赋予塑料多种功能,如提高塑料耐光性和耐候性;赋予塑料某些特殊功能,如导电性、抗静电性;不同彩色农地膜具有除草或避虫、育秧等作用。即通过配色着色还可达到某种应用上的要求。 二、着色剂: 着色剂主要分颜料和染料两种。颜料是不能溶于普通溶剂的着色剂,故要获得 理想的着色性能,需要用机械方法将颜料均匀分散于塑料中。按结构可分为有机颜 料和无机颜料。无机颜料热稳定性、光稳定性优良,价格低,但着色力相对差,相 对密度大;有机颜料着色力高、色泽鲜艳、色谱齐全、相对密度小,缺点为耐热性 、耐候性和遮盖力方面不如无机颜料。染料是可用于大多数溶剂和被染色塑料的有 机化合物、优点为密度小、着色力高、透明度好,但其一般分子结构小,着色时易 发生迁移。 白色颜料主要有钛白粉、氧化锌、锌钡白三种。钛白粉分金红石型和锐钛型两 种结构,金红石型钛白粉折射率高、遮盖力高、稳定、耐候性好。 炭黑是常用黑色颜料,价格便宜,另外还具有对塑料的紫外线保护(抗老化) 作用和导电作用,不同生产工艺可以得到粒径范围极广的各种不同炭黑,性质差别 也很大。炭黑按用途分有色素炭黑和橡胶补强用炭黑,色素炭黑按其着色能力又分 为高色素炭黑、中色素炭黑和低色素炭黑。炭黑粒子易发生聚集,要提高炭黑的着 色力,要解决炭黑的分散性。 珠光颜料又叫云母钛珠光颜料,是一种二氧化钛涂覆的云母晶片。根据色相不 同,可分为银白类珠光颜料、彩虹类珠光颜料、彩色类珠光颜料三类。 购买颜料,必须了解颜料的染料索引(C.I ),C.I 是由英国染色家协会和 美国纺织化学家和染色家协会合编出版的国际性染料、颜料品种汇编,每一种颜料 按应用和化学结构类别有两个编号,避免采购时因对相同分子结构、不同叫法的颜 料发生误解,也有利于使用时管理和查找原因。 三、配色着色工艺: 配色着色可采用色粉直接加入树脂法和色母粒法。 色粉与塑料树脂直接混合后,送入下一步制品成型工艺,工序短,成本低,但 工作环境差,着色力差,着色均匀性和质量稳定性差。 色母粒法是着色剂和载体树脂、分散剂、其他助剂配制成一定浓度着色剂的粒 料,制品成型时根据着色要求,加入一定量色母粒,使制品含有要求的着色剂量,

超导现象简介

超导现象简介 超导现象:某些物质在温度降低到一定值时电阻会完全消失,这种现象称为超导电性。超导技术的开发和应用对国民经济、军事技术、科学实验与医疗卫生等具有重大价值。 具有超导电性的物质称为超导材料或超导体。超导材料包括金属低温超导材料、陶瓷高温超导材料和有机超导材料等。 发展概况:超导电性是荷兰科学家H.K.昂尼斯1911年发现的,他在做低温实验时,意外发现汞线冷却到4ZK时电阻突然消失了。随后科学家们发现许多金属、合金和金属间化合物也具有这种特性。1933 年,德国人W.迈斯纳发现超导体具有高抗磁性,使磁力线不能透人,人们称之为迈斯纳效应。1957年美国人J.巴丁、LN.库泊、J.R.施里弗共同提出超导微观理论(BCS理论)。1962年,英国人BD.约瑟夫森从理论上预言超导电流能够穿过一层极薄的绝缘体进入另一超导体,形成隧道超导电流。这种约瑟夫森效应随后为实验所证实。1986 年初,美国国际商用机器公司苏黎世研究所的K.A.马勒和J.G.贝诺斯发现,钡钢铜氧化合物在30K时呈现超导电性。这种陶瓷超导材料的发现,为超导技术的发展开辟了新的途径。1986年以前发现的超导材料是良导体金属、合金和金属间化合物,其临界温度最高不过232K,而马勒和贝诺斯发现的超导材料却是氧化物,临界温度比低温超导体高得多,对超导研究具有划时代的意义,世界各国对此都十分重视。1987年中国成立了超导技术专家委员会和国家超导技术联合研究开发中心,统一领导全国的超导研究工作;同年7月美国总统提出《总统超导倡议》,要求政府采取必要措施支持高温超导研究;日本政府和民间企业、大学制订了共同开发超导材料的计划。各国超导科学家以陶瓷材料为对象寻找高临界温度的超导材料,形成了一股世界性的超导研究热,忆钡铜氧化合物、秘锯钙铜氧化合物、铂钡钙铜氧化合物等高温超导材料不断涌现。自1986年以来,中国在高温超导技术攻关中取得了一系列重大成就,在某些领域达到了国际领先水平。超导材料特性超导材料最重要的特性是完全电导性和完全抗磁性。完全电导性是指在一定的温度条件下超导体的电阻为零,在这种状态下,超导体不仅可以无损耗地输送电流,而且在储存电能时也不会有损失。完全抗磁性是指材料一旦进人超导状态,磁力线就不能穿过超导体,其内部磁通量等于零。这两个特性是衡量

塑料基础知识

塑料的基础 从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史,相对于金属的诞生时间来说,相差了5000多年,这么大的时间跨度,塑胶在金属面前算是一种非常新鲜的材料,然而即使是短短的120年,塑胶工业经过了飞速发展,到目前为止,我们生活中的很多产品,或多或少都使用了塑胶,甚至有些还是全塑胶制成的产品 当各种各样的塑胶产品(包括合格的、不合格的)充斥我们的生活时,那些低价的、质量不合格、不美观的产品带给人们很差的使用体验,久而久之,人们就会对这种塑胶产品在心理上打上了低级的、廉价的符号。再次面对塑胶外壳的产品时,即使是功能没问题,质量合格,但单从外观上就给人一种质疑、犹豫不定的感觉,这种感觉个人理解为塑胶感。 塑胶感,反映的是人们对某个产品的价值或者使用感受一种认知,是对产品的一种主观评价,是因人而异的。 塑胶感,狭义上是指,产品外层能看得到的塑胶外壳给人带来的视觉或触觉上的感受; 广义上是指,产品给人带来的心理上一些负面的感受。 一提到塑胶或者塑胶感,往往带着贬义的意思,很多人心里可能会想到是“低级”、“廉价”,“不环保”甚至“虚假”、“劣质”等词来形容不好的东西。 01 事实上,塑胶作为一种材料,因其的优异的特性,被广泛应用于各行各业,甚至在很多领域上能取代金属等其他传统材料。

1.由于塑胶的成型特性,在外观造型上设计的自由度比金属大得多。比如金属外壳的电脑机箱,由于金属板材的成型特性,外观往往只能设计成类方型的造型;而塑胶外壳的产品就不一样的,只要能顺利出模,造型上的设计就自由很多。 2.由于密度的差异,同等体积下,塑胶的重量比金属轻(钢铁)的多。比如在汽车轻量化设计中,随着改性技术的发展,塑料体现出低成本、高性能的明显优势,从最初的内饰件逐步发展到外饰件、发动机周边部件等,应用范围逐步扩大,在汽车用材料中用量比重不断提高。 3.塑胶的批量制造的成本比金属低得多,比如手机外壳,塑胶外壳的话工艺会简单很多,金属、玻璃、陶瓷外壳工艺复杂得多,成本自然高得多。 02 既然塑胶材料有很多金属等其他材料无法比拟的优点,为什么反而给人一种低端感、廉价感呢?这其中有三方面的原因: 第一,心理上认知的不同。 这要从他们的出身说起,远古代冶炼还原技术不高时,可以利用的金属是不易氧化,更易还原,甚至在自然界就有较高纯度矿石的金属容易被人们利用,比

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

超导行业专题系列报告之一超导行业概述篇

行业及产业 行业研究 /深度研究 证券 研究报告中小盘专题行业报告 2011年07月19日超导“航母”即将启航 ——超导行业专题系列报告之一:超导行业概述篇 行业评级:看好 相关研究 证券分析师 王华 A0230511040065 研究支持 孟烨勇 mengyy@https://www.docsj.com/doc/483720802.html, 联系人 孟烨勇 (8621)23297818*7486 mengyy@https://www.docsj.com/doc/483720802.html, 地址:上海市南京东路99号 电话:(8621)23297818 上海申银万国证券研究所有限公司 https://www.docsj.com/doc/483720802.html, 核心观点: ●超导材料是一种具有超导特性的新型材料,在一定低温条件下能排斥磁力线 并且呈现出电阻为零的现象。超导现象从1911年发现至今正好100年,在 这百年历史中超导材料的物质结构、性质及品种逐渐清晰。目前,已经发现 的有46种元素和几千种合金和化合物具有超导特性。 ●超导产业链主要由三部分组成:上游是矿产资源,如钇、钡、铋、锶等金属, 是超导行业的基础;中游是超导材料如YBCO和BSCCO等带材,是超导行业 的核心;下游是超导应用产品,如超导电缆、超导限流器、超导储能、超导 发电机、超导滤波和超导变压器等,是超导行业的载体。 ●技术进步和成本下降是基础,超导行业将逐步实现商业化应用。由于世界各 国面临电力系统设备及基础设施老化等问题,如美国每年由于短路电流造成 的损失高达800亿美元。全球包括美国、欧盟、日本、韩国等国相继出台大 规模的一系列政策和资金支持,大力研发和生产超导应用产品,解决短路电 流引起的电力系统问题。按照奥巴马政府规划,在未来8-10年内超导电网 产业规模将达到30万亿美金。对比美国,由于短路电流过大,我们保守估 计中国每年电力系统损失约在10几亿元。按照目前电力技术,必须使用超 导产品才能解决短路大电流瞬间冲击造成的电网损失,超导行业商业化应用 值得期待。 ●我国超导材料和超导限流器潜在市场规模分别为800亿和1500亿。超导市 场潜在规模约2000亿,而超导材料占比30-40%,我们预计超导材料潜在市 场规模约800亿。如果十二五电网规划主导的特高压建设顺利实施,电网短 路电流将由当前的59.9KA,在未来5年内最大上升到150KA。而目前通用的 SF6断路器无法满足短路电流日益增高的冲击压力,超导限流器是目前唯一 能解决短路电流过大,并且保护电路的产品。我们按照十二五规划中,短路 电流超过100KA变电站数量来测算,至2020年,我国超导限流器潜在市场 容量1500亿。 ●我们最看好超导材料,其次是超导限流器等产品应用。首先,目前国内超导 材料主要是依赖于美国和日本进口,价格较高,占应用产品的50%左右成本。 超导行业发展必将产生超导材料大量的需求,如果超导材料长期依赖进口, 国内超导行业将沦为简单加工制造业,没有核心竞争力。因此,未来超导材 料的国产化必将是国内超导行业发展的制高点;其次,超导产品应用是超导 行业产业链中市场空间最大的一环,而超导限流器又是解决电网短路电流过 大并且保护电路的唯一现实产品应用,必将是产品领域领先者。 ●从整个产业链价值分析来讲,钇矿资源占超导材料30%左右的成本,超导材 料占超导产品应用40-50%的成本。从盈利能力来讲,超导材料盈利能力最强, 毛利率约50%左右;超导限流器的毛利率相对较低,约30%左右。根据超导 行业盈利能力强弱水平,我们看好:超导材料和超导限流器。 ●我们建议战略性看好超导材料和产品研发的公司。最看好超导材料,推荐正 在研发第二代超导材料的永鼎股份,建议关注汉缆股份;其次看好最先具有 商业化应用前景的超导限流器,推荐百利电气,建议关注中天科技、综艺股 份和宝胜股份。超导材料及产品的深度研究请见后续专题报告。 本公司不持有或交易股票及其衍生品,在法律许可情况下可能为或争取为本报告提到的公司提供财务顾问服务;本公司关联机构在法律许可情况下可能持有或 交易本报告提到的上市公司所发行的证券或投资标的,持有比例可能超过已发行股份的1%,还可能为或争取为这些公司提供投资银行服务。本公司在知晓范围 内履行披露义务。客户可通过compliance@https://www.docsj.com/doc/483720802.html,索取有关披露资料或登录https://www.docsj.com/doc/483720802.html, 信息披露栏目查询。客户应全面理解本报告结尾 处的"法律声明"。

(完整版)塑料基础知识

第一节塑料的基本概念 一、塑料的定义 可塑性材料:以树脂(有时用单体在加工过程中直接聚合)为主要成分,一般含有添加剂,并在加工过程中可流动成型的材料,但不包括弹性体。 组成:基体材料-----合成树脂(高分子化合物)) 辅助材料------助剂(添加剂) 二、高分子化合物的概念 1.高分子化合物(聚合物):分子量很高的分子组成的化合物,由许多相同的、简单的基本单元通过共价键重复连接而成 聚合反应: 单体高分子,聚合物,高聚物 2.聚合机理: (1)连锁聚合: 聚合过程由链引发、链增长、链终止几步基元反应组成 反应体系中只存在单体、聚合物和微量引发剂 进行连锁聚合反应的单体主要是烯类、二烯类化合物 (2)逐步聚合: 在低分子转变成聚合物的过程中反应是逐步进行的 聚合体系由单体和分子量递增的中间产物所组成 大部分的缩聚反应(反应中有低分子副产物生成)属于逐步聚合 单体通常是含有官能团的化合物(如二元酸、二元醇等) 第二节聚合物的特性 1.树脂分子结构对性能的影响: (1)分子链的化学结构对性能的影响:分子链中含有不稳定结构,聚合物的稳定性差。例:PP易氧化,PC、PET易水解(2)分子链柔性对性能的影响:链段:高分子链上能独立运动的最小单元。柔性好的分子,链段短,容易运动,熔体黏度小。制品拉伸强度低、抗冲击强度高 (3)分子链规整性的影响: 分子链规整性好的,可结晶。如:PE、PP 成型加工条件影响聚合物结晶度及结晶状况,影响制品性能 2.树脂分子量对塑料性能的影响: 分子量↑: 拉伸强度↑ 伸长率↑ 抗冲击强度↑ 熔体流动性↓ 溶解性↓ 第三节塑料成型基础 一、聚合物的流动和流变行为: 流变学:研究材料流动和变形规律的一门科学。高聚物分子量大,结构及热运动复杂。故流动情况复杂:不仅存在不可逆的塑性形变,且存在可逆的弹性形变。流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

超导材料及应用

超导材料 摘要:简要介绍了超导材料的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。 关键词:超导体研究进展高温低温应用 一前言 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二研究现状 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 2.超导材料的研究 2.1低温超导阶段 在梅斯勒发现超导体的抗磁性之后(相继有荷兰物理学家埃伦弗斯特根据有关的超导体在液氦中比热不连续现象(提出热力学中二级相变的概念)柯特和卡西米尔提出超导的二流体模型)德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦

超导材料的特征、发展及其应用

超导材料的特性、发展及其应用 1.超导材料简介 1.1 超导材料的三个基本参量 超导材料是指在一定的低温条件下会呈现出电阻等于零以及排斥磁力线的性质的材料,其材料具有三个基本临界参量,分别是: 1> 临界温度T c:破坏超导所需的最低温度。T c是物质常数,同一种材料在相同条件下有确定的值。T c值因材料而异,已测得超导材料T c值最低的是钨,为0.012K。当温度在T c 以上时,超导材料具有有限的电阻值,我们称其处于正常态;当温度在T c以下时,超导体进入零电阻状态,即超导态。 2> 临界电流I c和临界电流密度J c:临界电流即破坏超导所需的最小电流,I c一般随温度和外磁场的增加而减少。单位截面积上所承载的I c称为临界电流密度,用J c来表示。 3> 临界磁场H c:即破坏超导状态所需的最小磁场。 图1-1 位于球内的部分为超导状态 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以T c为例,从1911年荷兰物理学家昂纳斯发现超导电性(Hg,T c=4.2K)起,直到1986年以前,人们发现的最高的T c才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将T c提高到35K;之后仅一年时间,新材料的T c已提高到了100K左右。如今,超导材料的T c最高已超过了150K[1]。 1.2 超导体的分类 第Ⅰ类超导体:第I类超导体主要包括一些在常温下具有良好导电性的纯金属,如铝、锌、镓、镉、锡、铟等,该类超导体的溶点较低、质地较软,亦被称作“软超导体”。其特征是由正常态过渡到超导态时没有中间态,并且具有完全抗磁性。第I类超导体由于其临界电流密度和临界磁场较低,因而没有很好的实用价值[2]。 第Ⅱ类超导体:除金属元素钒、锝和铌外,第II类超导体主要包括金属化合物及其合金。第II类超导体和第I类超导体的区别主要在于: (1) 第II类超导体由正常态转变为超导态时有一个中间态(混合态); (2) 第II类超导体的混合态中有磁通线存在,而第I类超导体没有;

塑料原材料基本知识介绍

塑料原材料基本知識介紹 一﹒高分子化合物(polymer)與塑料(plastics)﹕ 樹脂(resin)+添加料(additives)=塑料 二﹒塑料分類﹕ 分類方式﹕依据結晶性﹐機械性能﹐可塑性等 1﹒結晶性和非結晶性塑料 結晶性塑料﹕PE PP PA PS 非結晶性塑料﹕PC PVC PMMA PPO 2﹒通用塑料和工程塑料﹕ 通用塑料﹕PE PP PVC PS 工程塑料﹕PA PC PPO PBT POM 3﹒可塑性﹕ 熱硬性塑料﹕PF EP SI 熱可塑性塑料﹕PVC PE PP PC PPO ABS PBT 三﹒塑料選用時需考慮的基本性能﹕ 1﹒機械性能﹕ 拉伸強度﹐抗沖擊強度﹐斷裂伸長率﹐抗疲勞強度﹐缺口沖擊強度應力應變曲線 2﹒耐熱性﹕ 脆化溫度﹐玻璃化轉變溫度﹐熱變形溫度﹐熔點 溫度形變曲線 ε % Tg Tf T℃Tg-玻璃化轉變溫度Tf-流動溫度 常溫下處于玻璃態的高分子聚合物通常作塑料﹔ 常溫下處于高彈態的高分子聚合物通常作橡膠﹒ 3﹒耐燃性﹕ 易燃型﹐自熄型﹐阻燃型

4﹒流動性 流動曲線及幕律定律τ=kγn τ 假塑性流體 牛頓性流体 γ 融熔指數MI 5﹒吸水性﹕ 6﹒成型收縮率﹕ 7﹒化學性能﹕ 耐溶劑性﹐耐酸鹼性 8﹒耐候性﹕ 四﹒塑料改性﹕ 改善物理及化學性能 化學改性﹕共聚(ABS,PC+ABS)﹐接枝﹐交聯物理改性﹕填充﹐共混(mPPO) 五﹒添加料﹕ 1﹒加工助劑 (1)可塑劑 使聚合物玻璃化溫度降低﹐改善加工性 DOP﹐DBP (2)熱穩定劑 鉛類穩定劑﹐金屬皂類穩定劑 (3)光穩定劑及抗氧劑 提高耐候性 (4)抗沖擊改性劑 (5)阻燃劑 有机鹵化物﹐含鹵磷酸酯﹐紅磷﹐氫氧化鋁 向非鹵化﹐低發煙﹐低毒發展 (6)抗靜電劑 碳黑﹐導電金屬填料 2﹒填充材及強化材 降低成本﹐改善塑料的機械強度 碳黑﹐玻璃纖維﹐碳酸鈣

超导材料的种类及应用

超导材料的种类及应用 篇一:超导材料特性与应用功能材料概论——论超导材料特性与应用摘要:材料是一切技术发展的物质基础。在功能材料中,超导材料具有优越的物理、化学性质,目前已被广泛接受和认同,具有良好的发展前景。关键词:超导材料特性前景能源、信息和材料是现代文明的三大支柱,而材料又是一切技术发展的物质基础。其中功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。一、超导材料的发现1911年,荷兰物理学家翁奈在研究水银低温电阻时,首先发现了超导现象。后来又陆续发现了一些金

属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性,相应的具有这种性质的物质就称为超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被广泛接受和认同,具有良好的发展前景。 二、超导材料的分类1、超导元素在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb),已用于制造超导交流电力电缆、高Q值谐振腔等。2、合金材料超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能将进一步提高。3、超导化合物超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。4、超导陶瓷20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-

相关文档