文档视界 最新最全的文档下载
当前位置:文档视界 › (完整)概率统计大题总结,推荐文档

(完整)概率统计大题总结,推荐文档

(完整)概率统计大题总结,推荐文档
(完整)概率统计大题总结,推荐文档

概率与统计大题总结

一、

知识点汇编:

1.线性回归分析

(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

(2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为:

回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型.

说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2

2

=R r .

3、独立性检验

(1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类

别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为2×2列联表:

y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计

a +c

b +d

a +

b +c

+d

(3)构造随机变量()()()()()()

2

2

+++-=

++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为

如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系:

⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +)

; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或

AB ) ;

⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥; ⑹对立事件:B A ?为不可能事件,B A ?为必然事件,则A 与B 互为对立事件。

概率公式:

⑵古典概型:基本事件的总数

包含的基本事件的个数

A A P =

)(;

⑶几何概型:等)

区域长度(面积或体积试验的全部结果构成的积等)

的区域长度(面积或体构成事件A A P =

)( ;

5、统计案例 抽样方法:

⑴简单随机抽样:一般地,设一个总体的个数为N ,通过逐个不放回的方法从中抽取一个容量为n 的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。 注:①每个个体被抽到的概率为

N

n ; ②常用的简单随机抽样方法有:抽签法;随机数表法。

⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的规则,从

每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定起始的个体编号;④按预

先制定的规则抽取样本。

⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,

将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

注:每个部分所抽取的样本个体数=该部分个体数?

N

n

注:以上三种抽样的共同特点是:在抽样过程中每个个体被抽取的概率相等

频率分布直方图与茎叶图:⑴用直方图反映样本的频率分布规律的直方图称为频率分布直方图。⑵当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边像植物茎上长出来的叶子,这种表示数据的图叫做茎叶图。

总体特征数的估计:

⑴样本平均数∑==+???++=n

i i n x n

x x x n x 1

211)(1;

⑵样本方差])()()[(1222212x x x x x x n S n -+???+-+-=21

)(1x x n

n

i i -=∑= ;

⑶样本标准差])()()[(122221x x x x x x n S n -+???+-+-==21

)(1x x n

n

i i

-∑=

大题训练

1.(本小题满分12分)

某中学准备招聘一批优秀大学生到本单位就业,但在签约前要对他们的师范生素质进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为

815

. (1)求该小组中女生的人数;

(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率为3

4,每个男生通

过的频率为2

3.现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3个人中通过测

试的人数为随机变量ξ,求ξ的分布列和数学期望.

解析 (1)设该小组有n 个女生,根据题意,得C 1n C 110-n C 210

=8

15,(3分)

解得n =6或n =4(舍去).(5分) ∴该小组中有6个女生.(6分)

(2)由题意知,ξ的所有可能取值为0,1,2,3, P (ξ=0)=13×13×14=1

36

,(7分)

P (ξ=1)=C 12×23×13×14+(13)2×34=7

36,(8分) P (ξ=2)=C 12×23×13×34+(23)2×14=49,(9分) P (ξ=3)=(23)2×34=1

3.(10分)

∴ξ的分布列为

(11分)

∴E (ξ)=0×136+1×736+2×49+3×13=25

12.(12分)

2.(2014·江西红色六校二次联考)(本小题满分12分)

某企业招聘工作人员,设置A ,B ,C 三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加A 组测试,丙、丁两人各自独立参加B 组测试.已知甲、乙两人各自通过测试的概率均为13,丙、丁两人各自通过测试的概率均为1

2.

戊参加C 组测试,C 组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,至少答对3题则竞聘成功.

(1)求戊竞聘成功的概率;

(2)求参加A 组测试通过的人数多于参加B 组测试通过的人数的概率; (3)记A 、B 组测试通过的总人数为ξ,求ξ的分布列和期望. 解析 (1)设戊竞聘成功为A 事件,

则P (A )=C 44+C 34C 12

C 4

6=1+815=35

.(3分) (2)设参加A 组测试通过的人数多于参加B 组测试通过的人数为B 事件, 则P (B )=C 1

2×13×23×(12)2+13×13×(12)2+13×13×C 12×(12)2=736.(6分) (3)ξ的所有可能取值为0,1,2,3,4, P (ξ=0)=23×23×12×12=19

P (ξ=1)=C 12×13×23×12×12+23×23×C 1

2×12×12=13

, P (ξ=2)=13×13×12×12+23×23×12×12+C 12×13×23×C 12×12×12=1336, P (ξ=3)=13×13×C 12×12×12+C 12

×13×23×12×12=16, P (ξ=4)=13×13×12×12=1

36.(10分)

所以ξ的分布列为

E (ξ)=0×19+1×13+2×1336+3×16+4×136=5

3

.(12分)

3.(2014·石家庄一模)(本小题满分12分)

现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为12,

乙、丙应聘成功的概率均为t

2

(0

(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求t 的值; (2)记应聘成功的人数为ξ,若当且仅当ξ为2时概率最大,求E (ξ)的取值范围. 解析 (1)由题意得2×t 2×(1-t 2)=1

2,解得t =1.(3分)

(2)ξ的所有可能取值为0,1,2,3, P (ξ=0)=(1-12)(1-t 2)(1-t 2)=(2-t )

2

8

P (ξ=1)=12×(1-t 2)×(1-t 2)+2×(1-12)×t 2×(1-t 2)=4-t

28

P (ξ=2)=2×12×t 2×(1-t 2)+(1-12)×t 2×t 2=4t -t

2

8,

P (ξ=3)=12×t 2×t 2=t 2

8.

故ξ的分布列为

(7分)

所以E (ξ)=t +1

2

.(8分)

由题意得P (ξ=2)-P (ξ=1)=t -12>0,P (ξ=2)-P (ξ=0)=-t 2+4t -2

4>0,P (ξ=2)-P (ξ

=3)=2t -t 2

4

>0.

又因为0

所以t 的取值范围是1

2.(12分)

4.(本小题满分12分)

周先生的船舱中装有6条小鱼和1条大鱼,由于在海上漂流,他计划从当天开始,每天

从该船中捕捉1条鱼(每条鱼被抓到的概率相同)并吃掉来维持生计.若大鱼未被捕捉,则它每天要吃掉1条小鱼.

(1)求这7条鱼中至少有6条被周先生吃的概率;

(2)以ξ表示这7条鱼中被周先生吃掉的条掉,求ξ的分布列及其数学期望. 解析 (1)设周先生能吃到的鱼的条数为ξ,

若周先生要吃到7条鱼,则必须在第一天吃掉大鱼,P (ξ=7)=1

7,

若周先生要吃到6条鱼,则必须在第二天吃掉大鱼,P (ξ=6)=67×15=6

35.

故周先生至少吃掉6条鱼的概率是P (ξ≥6)=P (ξ=6)+P (ξ=7)=11

35

.(4分)

(2)周先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条小鱼,其余3条小鱼被大鱼吃掉,第4天吃掉大鱼,其概率为

P (ξ=4)=67×45×23=16

35,(6分)

P (ξ=5)=67×45×13=8

35

由(1)知P (ξ=6)=635,P (ξ=7)=1

7.(8分)

所以ξ的分布列为

(10分)

故E (ξ)=4×1635+5×835+6×635+7×1

7=5.(12分)

5.(2014·北京)(每小题满分13分)

李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):

(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;

(3)记x 为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数.比较E (X )与x 的大小.(只需写出结论)

思路 (1)利用古典概型求概率;

(2)利用互斥事件和独立事件概率计算公式求概率; (3)直接利用数学期望公式求解.

解析 (1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.

所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(3分) (2)记事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.

则C =A B ∪A B ,A ,B 独立.(5分) 根据投篮统计数据,P (A )=35,P (B )=25.

P (C )=P (A B )+P (A B ) =35×35+25×2

5 =13

25

.(8分) 所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13

25

.(9分)

(3)E (X )=x .(13分) 6.(本小题满分12分)

我国的高铁技术发展迅速,铁道部门计划在A ,B 两城市之间开通高速列车,假设列车在试运行期间,每天在8:00-9:00,9:00-10:00两个时间段内各发一趟由A 城开往B

城的列车(两车发车情况互不影响),A 城发车时间及概率如下表所示:

8:00和周日8:20.(只考虑候车时间,不考虑其他因素)

(1)求甲、乙两人候车时间相等的概率;

(2)设乙候车所需时间为随机变量ξ,求ξ的分布列和数学期望E (ξ).

解析 (1)由题意得,甲、乙两人的候车时间分别是10分钟,30分钟,50分钟的概率为P 甲(10)=16,P 甲(30)=13,P 甲(50)=12;P 乙(10)=13,P 乙(30)=12,P 乙(50)=16×16=1

36.(4

分)

所以甲、乙两人候车时间相等的概率P =16×13+13×12+12×136=17

72.(6分)

(2)ξ的所有可能取值为10,30,50,70,90,(单位:分钟) 所以ξ的分布列为

数学期望E (ξ)=10×13+30×12+50×136+70×118+90×112=280

9.(12分)

7.(本小题满分12分)

考古工作人员在某遗址经过全面勘探、调查和试掘,判定该遗址有A ,B ,C ,D ,E ,F 六件珍贵物件,且这六件珍贵物件呈如图所示的位置在地底埋藏着,考古工作人员需挖掘出上面的某个物件后才能挖掘其相应位置下面的物件.

(1)若要求先挖掘物件A ,B ,C ,E ,求物件E 第3次被挖掘到的概率; (2)设物件E 第X 次被挖掘到,求随机变量X 的分布列与数学期望.

解析 (1)由题意,可将上述问题转化为:挖掘4个物件A ,B ,C ,E 进行了4个步骤,且挖掘B 步骤一定在挖掘E 步骤前,物件E 可在第2步、第3步或第4步被挖掘到.

方法一 分类列举(不考虑D ,F ):

若E 在第2步被挖掘到,则B 必在第1步被挖掘到,故有A 22=2种情况;(1分)

若E 在第3步被挖掘到,则B 在E 前选1步被挖掘到,故有C 12A 22=4种情况;(3分)

若E 在第4步被挖掘到,则有A 33=6种情况.(4分) 故物件E 第3次被挖掘到的概率P =412=1

3.(5分)

方法二 排组计数(考虑了D ,F ):

因为B 必在E 前,即B ,E 步骤顺序一定,故总的可能情况有C 24A 22A 2

2=24种.(2分) 若E 在第3步被挖掘到,则B 在E 前选1步被挖掘到,故有C 12A 22A 22=8种情况,(4分)

故物件E 第3次被挖掘到的概率P =824=1

3

.(5分)

(2)由题意,可将上述问题转化为:挖掘6个物件A ,B ,C ,D ,E ,F 进行了6个步骤,且要求A 在D 前,B 在E 前,C 在F 前.

则物件E 可在第2步、第3步、第4步、第5步、第6步被挖掘到,即X 的所有可能取值为2,3,4,5,6.

P (X =2)=C 24C 22C 26C 24C 22=115,P (X =3)=C 12C 24C 22

C 26C 24C 22=215,

P (X =4)=C 13C 24C 22C 26C 24C 22=15,P (X =5)=C 14C 24C 22

C 26C 24C 22=415,

P (X =6)=C 15C 24C 22

C 26C 24C 22=13

.

随机变量X 的分布列为

(10分)

所以E (X )=2×115+3×215+4×15+5×415+6×13=14

3.(12分)

8.(2014·成都二次诊断)(本小题满分12分)

节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的产品为优质品.现用A ,B 两种不同型号的节能灯做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示:

以上述试验结果中使用时间落入各组的频率作为相应的概率.

(1)现从大量的A ,B 两种型号节能灯中各随机抽取两件产品,求恰有两件是优质品的概率;

(2)已知A 型节能灯的生产厂家对使用时间小于6千小时的节能灯实行“三包”.通过多年统计发现,A 型节能灯每件产品的利润y (单位:元)与其使用时间t (单位:千小时)的关系如下表:

及数学期望.

解析 (1)从A 型号节能灯中随机抽取一件产品为优质品的概率P (A )=1

2

.(1分)

从B 型号节能灯中随机抽取一件产品为优质品的概率P (B )=2

5

.(2分)

∴从A ,B 两种型号节能灯中各随机抽取两件产品,恰有两件是优质品的概率P =C 12

(12)1(12)1×C 12(25)1(35)1+C 22(12)2×C 22(35)2×C 22(12)2×C 2

2(25)2=37100

.(6分) (2)据题意,知X 的可能取值为-40,0,20,40,60,80.(7分) ∵P (X =-40)=C 22(110)2=1

100, P (X =0)=C 12(110)1×(25)1=225, P (X =20)=C 12(110)1×(12)1=110, P (X =40)=C 22(25)2=425, P (X =60)=C 12(25)1×(12)1=25, P (X =80)=C 22(12)2=14. ∴X 的分布列为

(10分)

∴数学期望E (X )=10(-4×1100+0+2×110+4×425+6×25+8×1

4)=52.(12分)

9.(2014·安徽)(本小题满分12分)

某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

附:K2=n(ad-bc)

(a+b)(c+d)(a+c)(b+d)

.

思路(1)根据抽样比计算分层抽样中应抽取的人数;

(2)利用对立事件或互斥事件的概率公式求运动时间超过4小时的概率;

(3)根据K2的计算公式求解.

解析(1)300×4 500

15 0000

=90,所以应收集90位女生的样本数据.(2分)

(2)由频率分布直方图,得1-2×(0.025+0.100)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(5分)

(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,

90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:(7分)

每周平均体育运动时间与性别列联表

结合列联表可算得

K 2=

300×(45×60-165×30)275×225×210×90

=100

21≈4.762>3.841. 所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.(12分) 探究 知识:分层抽样、频率分布直方图、独立性检验.能力:根据频率分布直方图求概率、分层抽样计算女生的人数以及根据K 2进行独立性检验,考查运算求解能力、分析解决问题的能力、数据处理能力以及逻辑思维运算能力.试题难度:中等.

10.(2014·山东六校联考)(本小题满分12分)

为改善城市雾霾天气造成的空气污染,社会各界掀起净化、美化环境的热潮.某单位计划在办公楼前种植A ,B ,C ,D 四棵风景树,受本地地理环境的影响,A ,B 两棵树种成活的概率均为1

2

,另外两棵树种的成活率都为a (0

(1)若出现A ,B 有且只有一棵成活的概率与C ,D 都成活的概率相等,求a 的值; (2)当a =2

3

时,记ξ为最终成活的树的数量,求ξ的分布列和数学期望E (ξ).

思路 本题以社会热点问题为命题背景,考查概率的计算、随机变量ξ的分布列和数学期望E (ξ)的计算.

(1)根据A ,B 有且只有一棵成活的概率与C ,D 都成活的概率相等列出等式即可求出a 的值;

(2)考查离散型随机变量的期望值,求解离散型随机变量的问题,首先根据题意分别求出随机变量ξ的可能取值对应的概率,列出ξ的分布列,再根据期望公式计算E (ξ)的值.

解析 (1)由题意,得2×12×(1-12)=a 2,解得a =2

2.(4分)

(2)依题意,随机变量ξ的所有可能取值为0,1,2,3,4, 则P (ξ=0)=C 02×(1-12)2×C 0

2×(1-23)2=136

P (ξ=1)=C 12×12×(1-12)×C 02×(1-23)2+C 02×(1-12)2×C 1

2×23×(1-23)=16

, P (ξ=2)=C 22×(12)2×C 02×(1-23)2+C 12×12×(1-12)×C 12×23×(1-23)+C 02×(1-12)2

×C 2

2

×(23)2=13

36

, P (ξ=3)=C 22×(12)2×C 12×23×(1-23)+C 12×12×(1-12)×C 22×(23)2=13, P (ξ=4)=C 22×(12)2×C 22×(23)2=19.(9分) 所以ξ的分布列为

E (ξ)=0×136+1×16+2×1336+3×13+4×19=7

3.(12分)

11.(2014·南昌二模)(本小题满分12分)

某公司生产产品A ,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于80小于90为二等品,小于80为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利30元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:

估计为他们生产产品A 为一等品、二等品、三等品的概率.

(1)计算新工人乙生产三件产品A 给工厂带来盈利大于或等于100元的概率;

(2)记甲、乙两人分别生产一件产品A 给工厂带来的盈利和为X ,求随机变量X 的概率分布和数学期望.

解析 甲生产一件产品A 为一等品、二等品、三等品的概率分别为310,610,1

10,(3分)

乙生产一件产品A 为一等品、二等品、三等品的概率分别为110,710,2

10.(6分)

(1)记“新工人乙生产三件产品A 给工厂带来盈利大于或等于100元”为事件D ,则D 包含的情况有:三件都是一等品;两件是一等品,一件是二等品或一件是一等品,两件是二等品.

故P (D )=(110)3+3×(110)2×710+3×110×(710)2=169

1 000.(8分)

(2)随机变量X 的所有可能取值为100,80,60,40,20,-20. P (X =100)=310×110=3

100,

P (X =80)=310×710+110×610=27

100,

P (X =60)=610×710=42100=21

50,

P (X =40)=310×210+110×110=7

100,

P (X =20)=610×210+110×710=19

100,

P (X =-20)=110×210=2100=1

50.

所以随机变量X 的概率分布为

(10分)

E (X )=300+2 160+2 520+280+380-40100=56.(12分)

12.(本小题满分12分)

甲、乙、丙三人参加某次招聘会、假设甲能被聘用的概率是2

5,甲、丙两人同时不能被

聘用的概率是625,乙、丙两人同时能被聘用的概率是3

10

,且三人各自能否被聘用相互独立.

(1)求乙、丙两人各自能被聘用的概率;

(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与数学期望.

解析 (1)记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足

?????

P (A 1)=2

5

[1-P (A 1

)][1-P (A 3

)]=625

,P (A 2

)P (A 3

)=310

.(3分)

解得P (A 2)=12,P (A 3)=3

5

.

所以乙、丙两人各自能被聘用的概率分别为12,3

5.(6分)

(2)ξ的所有可能取值为1,3.

因为P (ξ=3)=P (A 1A 2A 3)+P (A 1 A 2 A 3) =P (A 1)P (A 2)P (A 3)+[1-P (A 1)][1-P (A 2)][1-P (A 3)] =25×12×35+35×12×25=6

25,(8分) 所以P (ξ=1)=1-P (ξ=3)=1-625=19

25.

所以ξ的分布列为

所以E (ξ)=1×1925+3×625=37

25

.(12分)

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总 一、确定事件:包括必然事件和不可能事件 1、在一定条件下必然要发生的事件,叫做必然事件。必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。 2、在一定条件下不可能发生的事件,叫做不可能事件。不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。这是不可能事件。 3、必然事件的概率为1,不可能事件的概率为0 二、随机事件 在一定条件下可能发生也可能不发生的事件,叫做随机事件。 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。 三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件? ①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破; ②明天太阳从西方升起;③掷一枚硬币,正面朝上; ④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达. 解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①② 三、概率 1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) . (1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。(2)概率指的是事件发生的可能性大小的的一个数值。 2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = m n . (1)一般地,所有情况的总概率之和为1。(2)在一次实验中,可能出现的结果有限多个. (3)在一次实验中,各种结果发生的可能性相等. (4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。 (5)一个事件的概率取值:0≤P(A)≤1 当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1 不可能事件的概率为0,即P(不可能事件)=0 随机事件的概率:如果A为随机事件,则0<P(A)<1 (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.

概率与统计 大题练习3(含解析)

概率与统计 大题练习3 1.某校决定为本校上学所需时间超过30分钟的学生提供校车接送服务(所有学生上学时间均不超过60分钟).为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分),将600人随机编号,为001,002,…,600,将抽取的50名学生的上学所需时间分成六组:第一组(0,10],第二组(10,20],…,第六组(50,60],得到如图所示的频率分布直方图. (1)若抽取的50个样本是用系统抽样的方法得到的,且第一个抽取的编号为006,则第5个抽取的编号是多少? (2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为a 分钟,b 分钟,求满足|a -b |>10的概率. (3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车? 解析:(1)因为600÷50=12,且第一个抽取的编号为006, 所以第5个抽取的数是6+(5-1)×12=54,即第5个抽取的编号是054. (2)第四组的人数为0.008×10×50=4,设这4人分别为A ,B ,C ,D ,第六组的人数为0.004×10×50=2,设这2人分别为x ,y , 随机抽取2人的可能情况有AB ,AC ,AD ,BC ,BD ,CD ,xy ,Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共15种,其中他们上学所需时间满足|a -b |>10的情况有Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共8种. 所以满足|a -b |>10的概率P =8 15 . (3)全校上学所需时间超过30分钟的学生约有600×(0.008+0.008+0.004)×10=120(人), 所以估计全校应有120÷40=3辆这样的校车. 2.某教师统计甲、乙两位同学20次考试的数学成绩(满分150分),根据所得数据绘制茎叶图如图所示. (1)根据茎叶图求甲、乙两位同学成绩的中位数; (2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可); (3)现从甲、乙两位同学的不低于140分的成绩中任意选出2个,设事件A 为“选出的2个成绩分别属于不同的同学”,求事件A 发生的概率. 解析:(1)甲同学成绩的中位数是116+1122=119,乙同学的中位数是128+128 2 =128. (2)从茎叶图可以看出,乙同学成绩的平均值比甲同学成绩的平均值高,乙同学的成绩比甲同学的成绩更稳定.

大学概率统计复习题(答案)

第一章 1.设P (A )=31,P (A ∪B )=21 ,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=31,P (A ∪B )=21 ,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

概率论重点及课后题答案2

第2章条件概率与独立性 一、大纲要求 (1)理解条件概率的定义. (2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. (3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. (4)了解独立重复试验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 三、基础知识 1.条件概率 定义设有事件A B 、,且()0P B ≠,在给定B 发生的条件下A 的条件概率,记为(|)P A B ,有 ()(|)() P AB P A B P B = 2.乘法公式

定理若对于任意事件A B 、,都有()0,()0P A P B >>,则 ()()(|)()(|)P AB P A P B A P B P A B == 这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,,,n A A A 为任意n 个事件(2n ≥),且121()0n P A A A -> ,则有 121121312121()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列(有限或无限个)两两互不相容的事件,有 1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列(有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1 ()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、(或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、;、 中有一对是相互独立的, 则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立. 定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤ 成立: ()()()i j i j P A A P A P A =(共2n C 个)

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率与统计练习题

概率与统计练习题 (出题人 董贞) 一、填空题 1、小明五次测试成绩如下:91、89、88、90、92,则这五次测试成绩的平均数是_______________。 2五名同学目测同一本教科书的宽度时,产生的误差如下(单位:㎝):2、-2、-1、1、0,则这组数据的极差为_________________㎝。 3、十位同学分别购买如下尺码的鞋子:20、20、21、22、22、22、22、23、23、24(单位:㎝)这组数据的平均数、中位数、众数三个指标中,鞋店老板最喜欢的是______________。 4、已知一组数据:-2、-2、3、-2、x 、-1,若这组数据的平均数是0.5,则这组数据的中位数是____________。 5、小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,根据图中的信息,估计两人中谁的方差小___________________。 6、抛掷两枚分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件是___________________。 7、长度分别是1、3、5、7、9的五条线段,从中任取三条,则恰能围成三角形的概率是______________________。 8、小明和小丽按如下规则做游戏:桌上放有5支铅笔,每一次取一只或两只,有小明先取,最后取完铅笔的人获胜。如果小明获胜的概率为1,那么小明第一次应该取走___________只。 9、下表示对某校10名女生进行身高测量的数据表(单位:厘米),但其中一个数据不慎丢失(有x 表示)。 从这10名女生中任意抽出一名身高不低于162㎝的事件的可能性,可以用下图中的点____表示 (在A 、B 、C 、D 、E 五个字母中选择一个符合题意的) 。 10、某路公交车每20分钟一班,王义由于要急着上班,他最多只有5分钟的候车时间,否则他只能打出租车上班,那么他打出租车上班的概率是_________。 二、选择题 11、十字路口的信号灯每分钟红灯亮30秒,绿灯亮秒25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是( ) 12、一个均匀的立方体六个面上分别标有数1、2、3、4、5、6。如图是这个立方一半的概率是( )。 13、甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( )。 A 、3种 B 、4种 C 、6种 D 、12种 14、王大爷在工商银行存入5000元人民币,并在存单上留下4位数的密码,每个数字都是0~9这十个数字中的一个,但由于年龄的原因,王大爷忘了密码中间的两个数字,那么王大爷最多可能试验( )次,才能正确输入密码。 A 、1次 B 、50次 C 、100次 D 、200次 15、体育课上,八年级一班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的是( )。 A 、频率分布 B 、平均数 C 、方差 D 、众数 身高/㎝ 156 162 x 165 157 168 165 163 170 159 0 1 23 4 5 6 7 8 9 10 2 4 6 8 10 · · · · · · · · · · ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ·小张 ◎小李 2 1 6 4 5 3

XX考研数学概率论重要考点总结

XX考研数学概率论重要考点总结 第一章随机事件和概率 一、本章的重点内容: 四个关系:包含,相等,互斥,对立﹔ 五个运算:并,交,差﹔ 四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔ 概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔ 五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔· 条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。 近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。 二、常见典型题型: 1.随机事件的关系运算﹔ 2.求随机事件的概率﹔ 3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。 第二章随机变量及其分布 一、本章的重点内容: 随机变量及其分布函数的概念和性质(充要条件)﹔

分布律和概率密度的性质(充要条件)﹔ 八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔ 会计算与随机变量相联系的任一事件的概率﹔ 随机变量简单函数的概率分布。 近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布 二、常见典型题型: 1.求一维随机变量的分布律、分布密度或分布函数﹔ 2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔ 3.反求或判定分布中的参数﹔ 4.求一维随机变量在某一区间的概率﹔ 5.求一维随机变量函的分布。 第三章二维随机变量及其分布 一、本章的重点内容: 二维随机变量及其分布的概念和性质, 边缘分布,边缘密度,条件分布和条件密度, 随机变量的独立性及不相关性, 一些常见分布:二维均匀分布,二维正态分布, 几个随机变量的简单函数的分布。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率统计常见题型及方法总结

概率统计常见题型及方法 总结 Prepared on 22 November 2020

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P +=)(1, 2分

)()()()()(1111111B A P B P B A P B P A P += 111++++ ++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少 、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为,而一件次品被误判为正品的概率为。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概率分别为和,由于存在干扰,发出‘0’时,分别以概率和接收到‘0’和‘1’,以的概率收为模糊信号‘x ’;发出‘1’时,分别以概率和收到‘1’和‘0’,以概率收到模糊信号‘x ’。

相关文档
相关文档 最新文档