文档视界 最新最全的文档下载
当前位置:文档视界 › 泊松分布

泊松分布

泊松分布

泊松分布

概率论与数理统计:泊松分布

泊松分布 教学目标: 1.了解泊松分布与二项分布的关系。. 2. 理解二项分布模型,并能应用泊松分布解决实际问题。 教学重难点:理解泊松分布定理,并能应用泊松分布解决实际问题。 一、类比关联: 贝努利试验(伯努利试验) :一个试验E 只有两个可能结果:每次试验成功的概率都是p ,失败的概率都是q=1-p . 则称E 为贝努利(伯努利)试验或贝努利(伯努利)概型。 而人们所关心的问题是:事件A 恰好发生k 次的概率是多少?若在n 重贝努利试验中,事件A 发生的次数为X ,则X 的可能的取值为0, 1, …, n 。 二项分布、两点分布(0—1分布) 如果离散型随机变量X 可能取的值为0, 1, 2, …, n 。 且其分布律为 则称离散型随机变量X 服从二项分布,记为 特别地,当n =1时, 即为 (0--1)分布。 二、新知导入 引例:某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率。 解:将一次射击看成是一次试验(贝努利试验),设击中的次数为X ,则 X 的分布律为 所以所求概率为 ).02.0,400(~b X )10(<

计算不方便,于是有如下定理解决了这类计算问题。 定理(泊松定理): 对二项分布 B (n ,p ), 当 n 充分大, p 又很小时,对任意固定的非负整数 k ,有近似公式 ,2,1,0, !)1(lim ==---∞→k k e p p C k k n k k n n λλ (泊松分布)设随机变量 X 所有可能取的值为: 0, 1, 2,…, 概率分布为: 其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为 X~P (λ)。 说明:二项分布的逼近分布就是泊松分布)(λP , 其中np ≈λ。 泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布,如下图所示的就是在10重贝努力试验中,红色折线表示的二项分布和对应的蓝色折线表示泊松分布的概率分布图像,大家会发现两者近似程度很高。 三、实际应用 例1.某一无线寻呼台,每分钟收到寻呼的次数X 服从参数 λ=3 的泊松分布。求: (1) 一分钟内恰好收到3次寻呼的概率; 9972 .0=3991140098.002.0C -4000040098.002.01C -=}1{}0{1=-=-=X P X P }2{≥X P {}, 0, 1, 2, . !k P X k e k k λλ-===

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

泊松分布

概率论大作业 --泊松分布 班级:11011001班 姓名:郭敏 学号:2010302612 2013年1月10日

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 泊松分布在现实生活中应用非常广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。在某些函数关系泊松分布起着一种重要作用,例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质以及基本相关知识, 并讨论了这些知识在实际生活中的重要作用。 关键词:泊松分布性质及其应用、二项分布、泊松过程

近数十年来,泊松分布日益显示其重要性,成了了解概率论中最重要的几个分布之一。 一、泊松分布的由来 在历史上泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入。 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。又设0>=λn np 是常数, 则{}λλ-∞ →= =e k k x P k n n ! lim 。 证明 由λ=n np 得: {}()()n n k n k k n k n n n k n n k n n k k n n n k x P ?--??? ??-??????? ??? ??--????? ??-???? ? ?-?= ? ? ? ??-??? ??+--==λλλλ11121111!1!11 显然,当k = 0 时,故λ -n e k} x P{→=。当k ≥1 且k → ∞时,有 λλ-?-→? ? ? ??-→??? ??--????? ??-???? ??-?e n n k n n n n k n 1,11121111 从而{}λ λ-→ =e k k x P k n 1 ,故{}λλ-∞ →= =e k k x P k n n ! lim 。 在应用中,当p 相当小时(一般当p<=0.1)时,用下面近似公式 np k e k np p n k b -≈! )(),;( 对于不同λ值得泊松分布图:

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

[兰州大学]《概率论与数理统计》19秋学期考试在线考核试题(参考)

【奥鹏】-[兰州大学]《概率论与数理统计》19秋学期考试在线考核试题试卷总分:100 得分:100 第1题, A、(A) B、(B) C、(C) D、(D) 正确答案:D 第2题, A、(A) B、(B) C、(C) D、(D) 正确答案:D 第3题, A、(A) B、(B) C、(C) D、(D) 正确答案:B 第4题, A、(A) B、(B) C、(C) D、(D) 正确答案:A 第5题, A、(A) B、(B) C、(C) D、(D) 正确答案:A 第6题, A、(A)

C、(C) D、(D) 正确答案:B 第7题, A、(A) B、(B) C、(C) D、(D) 正确答案:C 第8题,已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是() A、E[E(X)]=E(X) B、E[X+E(X)]=2E(X) C、E[X-E(X)]=0 D、E(X2)=[E(X)]2 正确答案:D 第9题, A、(A) B、(B) C、(C) D、(D) 正确答案:C 第10题, A、(A) B、(B) C、(C) D、(D) 正确答案:D 第11题, A、正确 B、错误 正确答案:A

A、正确 B、错误 正确答案:A 第13题, A、正确 B、错误 正确答案:A 第14题, A、正确 B、错误 正确答案:A 第15题, A、正确 B、错误 正确答案:A 第16题,箱子中有一号袋1个,二号袋2个.一号袋中装1个红球,2个黄球,二号袋中装2个红球,1个黄球,今从箱子中任取一袋,从中任取一球,结果为红球,求这个红球是从一号袋中取得的概率. 正确答案: 第17题, 正确答案: 第18题,古典概型的定义 正确答案: 第19题,分布函数 正确答案: 第20题,随机试验的特征 正确答案:

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

GGGCGGN的正确理解

负责范从庆 GLF图纸标注解释 一、目的:规范公司技术员,检验员,操作员对客户格兰富(GLF)图纸的理解。 二、适用范围:适用于公司对GLF图纸的理解。 三、目录 1、形位公差符号 2、详细解释图纸上的部分符号 3、图纸上棱角的理解 四、内容 4.1 形位公差符号

负责范从庆序号分类英文描述代号中文 1 Local linear size 局部线性尺寸Two-point size LP 对应点尺寸 2 Local size defined by a sphere LS 球面局部尺寸 3 Global linear size 全局线性尺寸Least squares size GG 最小二乘法尺寸 4 Maximum inscribed size GX 最大内切圆尺寸 5 Minimum circumscribed size GN 最小外接圆尺寸 6 Minimum Zone size GC 最小区域法 7 Calculation size 计算尺寸Circumference diameter size CC 周长直径尺寸 8 Area diameter size CA 面积直径尺寸 9 Calculated volume size CV 体积直径尺寸

负责范从庆 10 Rank order size 顺序尺寸 (对局部和全局尺 寸的补充) Maximum statistical size SX 最大统计尺寸 11 Minimum statistical size SN 最小统计尺寸 12 Average statistical size SA 平均统计尺寸 详细解释如下: 1.LP,对应点尺寸。这表示测量时,先在测量面取一点,然后再取对应面的点,最 后计算这两点之间的距离。游标卡尺和千分尺测量的结果即为LP结果。使用LP 的目的是要求任意一处的对应点尺寸都要符合尺寸公差要求。比如测量直径时, 表示任意一处的直径都要符合公差要求。当LP和GX(内径)或GN(外径)连用时, 相当于对尺寸有包容原则要求。 2.LS,球面局部尺寸,也就是最大内接圆尺寸。不常用。 3.GG,最小二乘法尺寸。 我们一般对直径(不管是圆或圆柱)的评定默认为最小二乘法。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 中文名泊松分布外文名poisson distribution 分类数学时间1838年 台译卜瓦松分布提出西莫恩·德尼·泊松 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

你知道有多少数学知识是以“泊松”命名的

你知道有多少数学知识是以“泊松”命名的.txt24生活如海,宽容作舟,泛舟于海,方知海之宽阔;生活如山,宽容为径,循径登山,方知山之高大;生活如歌,宽容是曲,和曲而歌,方知歌之动听。你知道有多少数学知识是以“泊松”命名的? 泊松(Poisson, Simeon Denis 1781.6.21~1840.4.25)是著名的法国数学家,力学家和物理学家。泊松在积分理论、微分方程、概率论、级数理论等方面都有过较大的贡献。 1781年6月21日泊松生于法国卢瓦雷省皮蒂维耶,1840年4月25日卒于巴黎索镇。泊松的父亲是退役军人,退役后在村里作小职员,法国革命爆发时任村长。泊松最初奉父命学医,但他对医学并无兴趣,不久便转向数学。 1798年泊松进入巴黎综合工科学校深造,成为拉格朗日、拉普拉斯的得意门生。1800年泊松毕业时因学习成绩优异,而且研究论文也很优秀,他得到拉普拉斯和拉格朗日的赏识,在拉普拉斯的大力推荐下,他被留校任教。1802年任巴黎理学院教授,1806年接替付立叶任该校教授。 决定了泊松一生道路的数学趣题 据说泊松在青年时代研究过一个有趣的数学游戏:某人有12品脱啤酒一瓶(品脱是英容量单位,1品脱=0.568升),想从中倒出6品脱。但是他没有6品脱的容器,只有一个8品脱的容器和一个5品脱的容器。怎样的倒法才能使5品脱的容器中恰好装好了6品脱啤酒?想不到的是,对这个数学游戏的研究竟决定了泊松一生的道路。从此,他决心要当一位数学家。由于他的刻苦努力,他终于实现了自己的愿望。这个数学游戏有两种不同的解法,如下面的两个表所示。 第一种解法: 12 12 4 4 9 9 1 1 6 8 0 8 3 3 0 8 6 6 5 0 0 5 0 3 3 5 0 第二种解法: 12 12 4 0 8 8 3 3 11 11 6 6 8 0 8 8 0 4 4 8 0 1 1 6 5 0 0 4 4 0 5 1 1 0 5 0 泊松是法国第一流的分析学家。年仅18岁他就发表了一篇关于有限差分的论文,受到了勒让德的好评。泊松工作的特色是应用数学方法研究各种力学和物理学问题,因此他在数学和物理学两个领域都取得到丰硕的成果,作出了重要的贡献。数学家贝尔说:“泊松知道怎样做到举止非常高贵”。 泊松一生都对摆的研究非常感兴趣 泊松一生都对摆的研究非常感兴趣,他的科学生涯是从研究微分方程及其在摆的运动和声学理论中的应用开始的。直到晚年,他仍用大部分时间和精力从事摆的研究。他为什么对摆如此着迷?有一个传说,泊松小时候由于身体孱弱,他的母亲把他托给一个保姆照料,保姆一

Poisson过程

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

如何使用excel计算概率论一些题目

如何使用excel 计算概率论一些题目 简单介绍一些 1.1.1 t 分布 Excel 计算t 分布的值(查表值)采用TDIST 函数,格式如下: TDIST (变量,自由度,侧数) 其中: 变量(t ):为判断分布的数值; 自由度(v ):以整数表明的自由度; 侧数:指明分布为单侧或双侧:若为1,为单侧;若为2,为双侧. 范例:设T 服从t (n-1)分布,样本数为25,求P (T >1.711). 已知t =1.711,n =25,采用单侧,则T 分布的值: =TDIST(1.711,24,1) 得到0.05,即P (T >1.711)=0.05. 若采用双侧,则T 分布的值: =TDIST(1.711,24,2) 得到0.1,即() 1.7110.1P T >=. 1.1.2 t 分布的反函数 Excel 使用TINV 函数得到t 分布的反函数,格式如下: TINV (双侧概率,自由度) 范例:已知随机变量服从t (10)分布,置信度为0.05,求t 2 05.0(10).输入公式 =TINV(0.05,10) 得到2.2281,即() 2.22810.05P T >=. 若求临界值t α(n ),则使用公式=TINV(2*α, n ). 范例:已知随机变量服从t (10)分布,置信度为0.05,求t 0.05 (10).输入公式 =TINV(0.1,10) 得到1.812462,即t 0.05 (10)= 1.812462. 1.1.3 F 分布 Excel 采用FDIST 函数计算F 分布的上侧概率1()F x -,格式如下: FDIST(变量,自由度1,自由度2) 其中: 变量(x ):判断函数的变量值; 自由度1(1n ):代表第1个样本的自由度; 自由度2(2n ):代表第2个样本的自由度. 范例:设X 服从自由度1n =5,2n =15的F 分布,求P (X >2.9)的值.输入公式 =FDIST(2.9,5,15)

简单理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np 固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改。所以现在的大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们每天去食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数,(比如一直是200人),而应该符合某种随机规律:比如1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k 个学生到达的概率为: ,...1,0,! )(==-k k e k f k λλ 其中λ为单位时间内学生的期望到达人数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p ,如果我们让他开10枪,如果每击中一次目标就得一分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k ,但可以求出k 的概率分布,比如k=9的概率是50%,k=8的概率是30%……并且根据k 的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k 分”的概率。比如“得9分”可以是“射失第一发,而命中其余的9发”,它的概率是p 的9次方乘上(1-p ),当然,可能情况不只这种,我们用X 代表“没命中”,O 代表“命中”,“得9分”所有的可能的情况如下: XOOOO OOOOO OXOOO OOOOO OOXOO OOOOO

《交通工程学》习题解(2-5章)

第二章 交通特性 2-1下表为某高速公路观测交通量,试计算: (1)小时交通量;(2)5min 高峰流率;(3)15min 高峰流率;(4)15min 高峰小时系数。 解:⑴ 小时交通量: h Q /2493195 190210195201205220219232217208201辆=+++++++++++= ⑵ 5min 高峰流率: h Q /27845 60 2325辆=?= ⑶ 15min 高峰流率: h Q /268415 60 )220219232(15辆=? ++= ⑷ 15min 高峰小时系数: 929.04 6712493 15 =?= PHF 2-2某公路需进行拓宽改造,经调查预测在规划年内平均日交通量为50000辆(小汽车)/d ,设计小时系 数K=17.86x -1.3 -0.082,x 为设计小时时位(x 取30),取一条车道的设计通行能力为1500辆(小汽车)/小时,试问该道路需要几车道。 解:已知: % 26.131326.0082.03086.17082.086.1730 ,/h 1500C ,/d 50000AADT 3 .13.11==-?=-====--x K x 辆辆 设计小时交通量: h K AADT DHV /66301326.050000100辆=?=?= 车道数: 42.41500 6630 1===C DHV n 该道路需修6车道。 注:此题5.0=D K 。 如果6.0=D K ,3.5=n 。 2-3在一条24小时Km 长的公路段起点断面上,在6min 内测得100辆汽车,车流量是均匀连续的,车速 V=20km/h ,试求Q ,h t ,h s ,K 以及第一辆车通过该路段所需的时间t 。 解: 1000606 100 =?= Q 辆/h 车头时距:6.31000/3600/3600===Q h t s/辆 车头间距:206.36 .3206.3=?== t d h V h m/辆 车流密度:5020/1000/1000===s h K 辆/km

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

泊松分布

泊松分布 ),是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。

泊松分布的概率质量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 性质 服从泊松分布的随机变量,其数学期望与方差相等,同为参数λ: E(X)=V(X)=λ 动差生成函数: 泊松分布的来源 在二项分布的伯努力试验中,如果试验次数n很大,二项分布的概率p很小,而乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。这在现实世界中是很常见的现象,如DNA 序列的变异、放射性原子核的衰变、电话交换机收到的来电呼叫、公共汽车站候车情况等等。 证明如下。首先,回顾e的定义: 二项分布的定义: 如果令p = λ / n, n趋于无穷时P的极限:

[编辑]最大似然估计 给定n个样本值k i,希望得到从中推测出总体的泊松分布参数λ的估计。为计算最大似然估计值, 列出对数似然函数: 对函数L取相对于λ的导数并令其等于零: 解得λ从而得到一个驻点(stationary point): 检查函数L的二阶导数,发现对所有的λ与k i大于零的情况二阶导数都为负。因此求得的驻点是对数似然函数L的极大值点: [编辑]例子 对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相独立发生的。观察每20秒区间来到候车的乘客批次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100个、81个、34个、9个、6个。使用极大似真估计(MLE),得到λ的估计为0.8696。实际上各批次发生的频率与λ = 0.87的泊松分布吻合的非常好。

正确理解-泊松分布-通俗解释

正确理解-泊松分布-通俗解释

年由贝尔发明,一台电话由几个部分构成”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一比如在一段个常数(比 如一直是200人),而应该符合某种随机规律: 学生的概率是10%,来180个学生的概率是假如在1个小时内来200个20%'般认为,这种随机规 若要公式化定义,那就是:若 当一个随 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在 只会做题”的阶段,因为试卷上不会出现请发表一下你对泊松公式的看法”这 样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一 样东西,那么我们就有必要停下来去思考一下诸如为什么要有泊松分布?” 泊松分布的物理意义是什么?”这样的哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:电话是 一种机器,两个距离很远的人可以通过它进行交谈”而不会说:电话在1876 律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布, 随机变量X只取非负整数值0,1,2,…,且其概率分布服 从"k!则随机变量X的分布称为泊松分布,记作P(入。)这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (/中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。生活中,当 机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜 F某区域中的白血球等等,以固定的平均瞬时速率入或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地

概率论与数理统计附表1 泊松分布表

附表1 泊松分布表 ()! m P X m e m λλ-==

390.0000070.000056 附录 附录A A1 正态分布函数表 2 2 ()e d(0) 2π t x x t x Φ -∞ =-≥ ? x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159 0.8413 0.8643 0.8849 0.90320 0.91924 0.93319 0.94520 0.95543 0.96407 0.97128 0.97725 0.98214 0.98610 0.98928 0.99180 0.99379 0.99534 0.99653 0.99745 0.99813 0.5040 0.5438 0.5832 0.6217 0.6591 0.6950 0.7291 0.7611 0.7910 0.8186 0.8438 0.8665 0.8869 0.90490 0.92073 0.93448 0.94630 0.95637 0.96485 0.97193 0.9778 0.98257 0.98645 0.98956 0.99202 0.99396 0.99547 0.99664 0.99752 0.99819 0.5080 0.5478 0.5871 0.6255 0.6628 0.6985 0.7324 0.7642 0.7939 0.8212 0.8461 0.8686 0.8888 0.90658 0.92220 0.93574 0.94738 0.95728 0.96562 0.97257 0.97831 0.98300 0.98679 0.98983 0.99224 0.99413 0.99560 0.99674 0.99760 0.99825 0.5120 0.5517 0.5910 0.6293 0.6664 0.7019 0.7357 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.90824 0.92364 0.93699 0.94845 0.95818 0.96638 0.97320 0.97882 0.98341 0.98713 0.99010 0.99245 0.99430 0.99573 0.99683 0.99767 0.99831 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7703 0.7995 0.8264 0.8508 0.8729 0.8925 0.90988 0.92507 0.93822 0.94950 0.95907 0.96712 0.97381 0.97932 0.98382 0.98745 0.99036 0.99266 0.99446 0.99586 0.99693 0.99774 0.99836 0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8531 0.8749 0.8944 0.91140 0.92647 0.93943 0.95053 0.95994 0.96784 0.97441 0.97982 0.98422 0.98778 0.99061 0.99286 0.99461 0.99598 0.99702 0.99781 0.99841 0.5239 0.5636 0.6026 0.6406 0.6772 0.7123 0.7454 0.7764 0.8051 0.8315 0.8554 0.8770 0.8962 0.91309 0.92785 0.94062 0.95154 0.96080 0.96856 0.97500 0.98030 0.98461 0.98809 0.99086 0.99305 0.99477 0.99609 0.99711 0.99788 0.99846 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.91466 0.92922 0.94179 0.95254 0.96164 0.96926 0.97558 0.98077 0.98500 0.98840 0.99111 0.99324 0.99492 0.99621 0.99720 0.99795 0.99851 0.5319 0.5714 0.6103 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 0.8997 0.91621 0.93056 0.94295 0.95352 0.96246 0.96995 0.97615 0.98124 0.98537 0.98870 0.99134 0.99343 0.99506 0.99632 0.99728 0.99801 0.99856 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.7549 0.7852 0.8133 0.8389 0.8621 0.8830 0.90147 0.91774 0.93189 0.94408 0.95449 0.96327 0.97062 0.97670 0.98169 0.98574 0.98899 0.99158 0.99361 0.99520 0.99643 0.99737 0.99807 0.99861 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

相关文档
相关文档 最新文档