文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法
纳米材料的制备方法

纳米材料的制备方法

一、前言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

二、纳米材料的制备方法

(一)、机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。

机械力化学方法制备纳米材料的基本原理是利用机械能来诱发化学反应和诱导材料组织、结构和性能变化,以此来达到制备纳米材料的目的。一般来说,有固相参加的多相化学反应过程是反应剂之间达到原子级别结合、克服反应势垒而发生化学反应的过程,其特点是反应剂之间有界面存在。影响反应速度的因素有反应过程的自由能变化、温度、界面特性、扩散速度和扩散层厚度等。粉末颗粒在高能球磨过程中机械力化学作用使晶格点阵排列部分失去周期性,形成晶格缺陷,发生晶格畸变。粉末颗粒被强烈塑性变形,产生应力和应变,颗粒内产生大量的缺陷,颗粒非晶化。这显著降低了元素的扩散激活能,使得组元间在室温下可显著进行原子或离子扩散;颗粒不断冷焊、断裂和组织细化,形成了无数的扩散/反应偶,同时扩散距离也大大缩短。应力、应变、缺陷和大量纳米晶界、相界的产生,使系统储能很高(达十几kJ/mol),粉末活性大大提高,甚至产生多相化学反应,从而成功合成新物质。

评论:

机械力化学法在制备纳米陶瓷材料和纳米复合材料方面有了较大的发展,不仅能够制备出尺寸较均匀的纳米材料,同时对机械力化学法机理和过程的研究也有了进一步的发展。此外,机械力化学法在制备其他纳米材料的应用上也有新的突破,再加上其具有工艺简单,成本低,易于实现工业化的特点,足以说明它已成为制备纳米材料的一种重要方法并具有广阔的应用前景。然而,机械力化学法理论提出了已有几十年,但对它的机理研究和本质的认识还有待进一步深入,以及在机械力化学法制备的纳米粉体粒度均匀性、粉料分散和团聚问题以及能耗大、粉体易被污染等问题上需要进一步的研究和探讨。

(二)气相法

化学气相沉积是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程。它利用挥发性的金属化合物的蒸发,通过化学反应生成所需

化合物在保护气体环境下快速冷凝,从而制备各类物质的纳米微粒。

化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。

评论:

化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体

辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

(三)、溶胶—凝胶法

溶胶-凝胶法是用易水解的金属化合物(无机盐或金属盐)在某种溶剂中形成均质溶液,溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶(该法为低温反应过程,允许掺杂大剂量的无机物和有机物),再经干燥、烧结等后处理得到所需的材料,其基本反应有水解反应和聚合反应。该法涉及到溶胶和凝胶两个概念。所谓溶胶是指分散在液相中的固态粒子足够小,以致可以通过布朗运动保持无限期的悬浮;凝胶是一种包含液相组分且具有内部网络结构的固体,此时的液体和固体都呈现一种高度分散的状态。采用溶胶-凝胶法制备材料的具体技术或工艺过程相当多,但按其产生溶胶-凝胶过程的机制不外乎三种类型,即传统胶体型、无机聚合物型和配合物型。

中国科学院固体物理研究所张立德研究员利用碳热还原、溶胶-凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体二氧化硅纳米

电缆。在溶剂热合成纳米材料方面作了许多工作,并取得了很大的成果。薛天峰,胡季帆等[9]在200mL烧杯中用少量水溶解一定比例的Al(NO3)39H2O,加入适量柠檬酸和少许聚乙二醇,65℃下搅拌,形成溶胶,直至脱水,形成原粉,前驱体450℃热处理,制备得掺杂Al3+的纳米ZnO,其平均晶粒分别为40nm和35nm。Ken等[10]用凝胶法制备出粒径为2.5-4.7nm的CdSe纳米晶体,通过改变喷射时间和温度以及加入到TOPO溶剂中的(Me)2Cd/TOP和TOP-Se混合物的质量,可以控制晶体的尺寸。Zhang等[11]用无水乙醇作为溶剂,盐酸作为水解催化剂,钛酸四丁酯水解得到二氧化钛溶胶,将二氧化硅溶胶与苯酚混合加入到庚烷中,在搅拌的同时,滴入甲醛溶液,然后在90℃下静止该反应体1.5h,得到象牙色的微球,最后在高温下焙烧象牙色的微球得到TiO2多孔球形纳米晶体,粒径为20-40nm。试验过程中发现合适的热处理条件对纳米球体的体积和结构都有较大的影响,在300℃下焙烧得到无定形结构,700℃下焙烧得到金红石结构。

评论:

溶胶-凝胶法可在低温下制备纯度高、粒径分布均匀、化学活性高的单、多组份混合物,并可制备传统方法不能或难以制备的产物。溶胶-凝胶法制备的材料具有多孔状结构,表面积大,有利于在气敏、湿敏及催化方面的应用,可能会使气敏、湿敏特性和催化效率大大提高。这种方法得到的粉体均匀分布、分散性好、纯度高,且锻烧温度低、反应易控制、副反应少、工艺操作简单。但一般来说,这种方法所用原料成本较高,所制的膜致密性较差,易收缩,开裂,适用范围不够广泛。

(四)分子束外延法

子束外延法是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸汽,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地生长在基片上形成薄膜。随子束外延法是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸汽,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地生长在基片上形成薄膜。随着超高真空技术的发展、源控制技术的进步、衬底表面处理技术以及生长过程实时监测技术的改进,这种方法已经成为比较先进的薄膜生长技术。典型的MBE设备由束源炉、样品台、

加热器、控制系统、超高真空系统和检测分析系统。

MBE技术自1986年问世以来有了较大的发展,MBE作为一种高级真空蒸发形式,因其在材料化学组分和生长速率控制等方面的优越性,非常适合于各种化合物半导体及其合金材料的同质结和异质结外延生长,并在技术半导体场效应晶体管、高电子迁移率晶体管、异质结构场效应晶体管、异质结双极晶体管等微波、毫米波器件及电路和光电器件制备中发挥了重要作用。近几年来,随着器件性能要求的不断提高,器件设计正向尺寸微型化、结构新颖化、空间低维化、能量量子化方向发展。目前世界上有许多国家和地区都在研究MBE技术,包括美国、日本、英国、法国、德国和我国台湾[13]。国外已有报道取得了一些重要的成果,美国的Ryu Y R, Zhu S等已经制作出掺As的p型ZnO薄膜。日本的Tamura K 等用晶格匹配衬底制作了与体单晶质量相近的ZnO薄膜。近年来,尤其是激光分子束外延法取得了显著的成果。激光分子束外延法是集脉冲激光沉积和传统的分子束外延于一身,特别适合于多元素、高熔点、复杂层状结构的薄膜或超晶格的制备,它可以利用原位实时监控设备对生长条件进行实时控制,以实现原子尺度地控制薄膜的外延生长。

评论:

分子束外延法的优点是:生长温度底,能把诸如扩散这类不希望出现的热激活过程减少到最低;生长速率慢,外延层厚度可以精确控制,生长表面或界面可以达到原子级光滑度,因而可以制备极薄的薄膜;超高真空下生长,与溅射方法相比更容易进行单晶薄膜生长,并为在确定条件下进行表面研究和外延生长机理的研究创造了条件;生长的薄膜能保持原来靶材的化学计量比;可以把分析测试设备,如反射式高能电子衍射仪、四极质谱仪等与生长系统相结合以实现薄膜生长的原位监测。缺点有衬底选择、掺杂技术以及其他辅助技术要求较高,激光器

效率低,电能消耗较大,投资较大;由于分子束外延设备昂贵而且真空度要求很高,所以要获得超高真空以及避免蒸发器中的杂质污染需要大量的液氮,因而提高了日常维持的费用。目前,用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子阱微结构材料。总之,分子束外延技术在制备纳米材料方面将会更成熟。

(五)、脉冲激光沉积发

脉冲激光沉淀是将脉冲激光器产生的高功率脉冲激光束聚焦于靶材料表面,使其产生高温熔蚀,继而产生金属等离子体,同时这种等离子体定向局域发射沉积在衬底上而形成薄膜。整个物理过程分为:等离子体产生、定向局域膨胀发射、衬底上凝结。由于高能粒子的作用,薄膜倾向于二维生长,这样有利于连续纳米薄膜的形成。PLD技术的每一次发展都伴随着新型激光器的产生和研究激光与物质相互作用的进展。脉冲沉积系统一般由脉冲激光器、光路系统、沉积系统、辅助设备组成,如图4所示。

二十世纪70年代起,短脉冲Q开关激光器出现,其瞬时功率可达到106W以上,可以用于复合成分薄膜的沉积,这为PLD的广泛应用奠定了基础。自成功制作高温的Tc超导膜开始,用作膜制造技术的脉冲激光沉积获得普遍赞誉,并吸引了广泛的注意。脉冲激光沉积已用来制作具备外延特性的晶体薄膜。陶瓷氧化物、

氮化物膜、金属多层膜,以及各种超晶格都可以用PLD来制作。近来亦有报告指出,利用PLD可合成纳米管、纳米粉末、量子点。关于复制能力、大面积递增及多级数的相关生产议题,亦已经有人开始讨论。因此,薄膜制造在工业上可以说已迈入新纪元[16]。随着科技的发展,超快脉冲激光、脉冲激光真空弧、双光束脉冲激光等最 9 新的激光发生器用于激光沉淀纳米粒子膜制备技术[17]。复旦大学许宁等用248nm的KrF准分子脉冲激光烧蚀ZnSe靶材沉积ZnSe薄膜。波兰Bylica A等在ITO衬底上PLD生长CdTe、CdS及CdTe/CdS多层结构

评论:

脉冲激光沉积法的优点是能在较低的温度下进行,易获得的多组分薄膜,即具有良好的保成分性,过程易于控制;沉积速率高,试验周期短,衬底温度要求低;工艺参数任意调节,对靶材的种类没有限制;发展潜力巨大,具有极大的兼容性;便于清洁处理,可以制备多种薄膜材料。脉冲激光沉积法的缺点是不易于制备大面积的薄膜;在薄膜表面存在微米-亚微米尺度的颗粒物污染,所制备薄膜的均匀性较差;某些材料靶膜成分并不一致。对于多组元化合物薄膜,如果某些种阳离子具有较高的蒸气压,则在高温下无法保证薄膜的等化学计量比生长,并且设备的投入成本较大。随着科研人员的不断努力,脉冲激光沉积法在制备纳米材料方面将会取得更大的成就。

(六)、静电纺丝法

静电纺丝的工作原理是:利用高压电场使聚合物溶液或熔体带上几千至上万伏高压静电,当电场力足够大时,聚合物液滴克服表面张力形成喷射流[18]。在喷射过程中,射流中的溶剂蒸发或射流自身发生固化形成纤维,并最终落在接收装置上,得到纳米纤维制品,如图5所示。

通过静电纺丝技术制备纳米纤维材料是近十几年来世界材料科学技术领域的最重要的学术与技术活动之一。静电纺丝技术已经制备了种类丰富的纳米纤维,包括有机、有机/无机复合和无机纳米纤维。然而,利用静电纺丝技术制备纳米纤维还面临一些需要解决的问题。首先,在制备有机纳米纤维方面,用于静电纺丝的天然高分子品种还十分有限,对所得产品结构和性能的研究不够完善,最终产品的应用大都只处于实验阶段,尤其是这些产品的产业化生产还存在较大的问题。其次,静电纺有机/无机复合纳米纤维的性能不仅与纳米粒子的结构有关,还与纳米粒子的聚集方式和协同性能、聚合物基体的结构性能、粒子与基体的界面结构性能及加工复合工艺等有关。如何制备出适合需要的、高性能、多功能的复合纳米纤维是研究的关键。此外,静电纺无机纳米纤维的研究基本处于起始阶段,无机纳米纤维在高温过滤、高效催化、生物组织工程、光电器件、航天器材等多个领域具有潜在的用途。但是,静电纺无机纳米纤维较大的脆性限制了其应用性能和范围。因此,开发具有柔韧性、连续性的无机纤维是一个重要的课题。当前,静电纺丝已经成为纳米纤维的主要制备方法之一。对静电纺丝的研究较深入而且涉及到很多方面,Fong H 等研究了静电纺纳米纤维的形成,详细分析射流的过程变化[19],Bunyan N 等研究了在牵伸过程中纳米纤维的形态、取向及沉积的变化,重新设计工艺来控制纳米纤维的在接受装置上的沉积,具体工艺是通过对射流路径、接受装置的设计和熔体性质的控制来实现的。Jun Z 等研究了静电纺丝中表面张力,溶液粘度,溶液传导率,聚合物玻璃态转变温度对纤维形状尺寸的影响,发现其中溶液粘度的影响最大。Greiner A 详细分析了影响

静电纺丝制造出的纳米纤维的外形的几乎所有的参数[20]。

评论:

静电纺丝法以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料。静电纺丝技术在构筑一维纳米结构材料领域已发挥了非常重要的作用,应用静电纺丝技术已经成功的制备出了结构多样的纳米纤维材料。通过不同的制备方法,如改变喷头结构、控制实验条件等,可以获得实心、空心、核-壳结构的超细纤维或是蜘蛛网状结构的二维纤维膜;通过设计不同的收集装置,可以获得单根纤维、纤维束、高度取向纤维或无规取向纤维膜等。随着纳米技术的发展,静电纺丝作为一种简便有效的可生产纳米纤维的新型加工技术,将在生物医用材料、过滤及防护、催化、能源、光电、食品工程、化妆品等领域发挥巨大作用。

(八)磁控溅射法

磁控溅射的工作原理是指电子在电场的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出氩离子和新的电子;新电子飞向基片,氩离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材料发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E×B所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的氩离子来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场的作用下最终沉积在基片上[21]。 2.6.2磁控溅射法的研究现状磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。1852年Grove 首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展[22]。60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。磁控溅射技术出现和发展,以及80年代用于制作反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近几年,发展出一系列新的溅射技术。Park M B等应用射频磁控溅射技术,用于在Si衬底和硅酸盐玻璃上,沉积Er或Tb掺杂纳米晶粒Si薄膜。

另外研究H2在H+Ar混合等离子体中对溅射过程所起的作用,Laidani N 等人的工作是在Ar气氛中通入H2,用射频溅射沉积C薄膜[23]。

评论:

磁控溅射法具有设备简单,成膜速率高,基片温度低,膜的粘附性好,镀膜层与基材的结合力强、镀膜层致密、均匀,可实现大面积镀膜等优点。目前,磁控溅射是应用最广泛的一种溅射沉积方法,但是磁控溅射技术在一些工程的应用方面和新出现的技术问题仍需进一步研究。无需置疑,发展稳定性好、沉积速率高、薄膜质量满足要求的磁控溅射技术永远是该领域相关科技工作者不懈的追求。

(九)、水热法

水热法是指在特制的密闭的反应容器中,采用水溶液作为反应体系,通过对反应体系加热而产生高压,从而进行无机材料的合成与制备,再经分离和热处理得到纳米微粒。在水热法中,液态或气态是传递压力的媒介。水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应。在高压下,绝大多数的反应物能部分溶解于水,促使反应在液相或气相中进行。水热法通过高压釜中适合水热条件下的化学反应,实现从原子、分子级的微粒构筑和晶体生长。在水热处理过程中,温度、压力、处理、时间、溶媒的成分、pH值、所用前驱物的种类以及有无矿化剂和矿化剂的种类对粉末的粒径和形貌有很大的影响,同时还影响反应速度、晶型等。水热合成反应温度在25-200℃之间的,通常称为低温水热合成反应;反应温度在200℃以上的,称为高温合成反应。 2.7.2水热法的研究状况水热法可以控制微粉的粒径、形态、结晶度和组成,尤其是该法生产的粉体有较低的表面能,所以粉体无团聚或少团聚,这一特性使粉体烧结性能大大提高,因而该法特别适用于陶瓷生产。水热法的不足在于其一般只能制备氧化物粉体,关于晶核形成过程和晶体生长过程的控制影响因素等很多方面缺乏深入研究,目前还没有得出令人满意的解释。另外,水热法有高温高压步骤,使其对生产设备的依赖性比较强,这也影响和阻碍了水热法的发展。因此,目前水热法有向低温低压发展的趋势,即温度小于100℃,压力接近1个标准大气压的水热条件。Bai[24]等用InCl3和Li3N在250℃环境压力下反应,用二甲苯作溶剂,通过溶剂热法制备出粒径为27~30nm的InN纳米晶体。张元广和陈友存[25]等在内衬聚四氧乙烯容器的高压釜中加入适量的油酸,再加入一定量研磨混匀的无水Na2CO3和无水CaCl2,

在120℃热处理6h,然后自然冷却到室温。将反应后的混合物离心,抽滤,得到白色沉淀,依次用蒸馏水,无水乙醇洗涤3次,再以丙酮为提取剂对白色沉淀进行提纯,得到细小的白色粉末,产物在温度为80℃时真空干燥4h,得到粒径为5nm的CaCO3微晶。郭景坤等人采用高压水热 13 处理,将化学制得的Zr(OH)4胶体置于高压釜中,控制合适的温度和压力,使氢氧化物进行相变,成功地得到了10-15nm的形状规则的ZrO2。另外,朱传高等还用电化学溶解镁阳极的方法制备了纳米氧化镁粉体,平均粒径在12nm左右。Utlye J I也用醇盐水解法制得了纳米氧化镁粉体。

评论:

水热法是指在特制的密闭的反应容器中,采用水溶液作为反应体系,通过对反应体系加热而产生高压,从而进行无机材料的合成与制备,再经分离和热处理得到纳米微粒。在水热法中,液态或气态是传递压力的媒介。水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应。在高压下,绝大多数的反应物能部分溶解于水,促使反应在液相或气相中进行。水热法通过高压釜中适合水热条件下的化学反应,实现从原子、分子级的微粒构筑和晶体生长。在水热处理过程中,温度、压力、处理、时间、溶媒的成分、pH值、所用前驱物的种类以及有无矿化剂和矿化剂的种类对粉末的粒径和形貌有很大的影响,同时还影响反应速度、晶型等。水热合成反应温度在25-200℃之间的,通常称为低温水热合成反应;反应温度在200℃以上的,称为高温合成反应。 2.7.2水热法的研究状况水热法可以控制微粉的粒径、形态、结晶度和组成,尤其是该法生产的粉体有较低的表面能,所以粉体无团聚或少团聚,这一特性使粉体烧结性能大大提高,因而该法特别适用于陶瓷生产。水热法的不足在于其一般只能制备氧化物粉体,关于晶核形成过程和晶体生长过程的控制影响因素等很多方面缺乏深入研究,目前还没有得出令人满意的解释。另外,水热法有高温高压步骤,使其对生产设备的依赖性比较强,这也影响和阻碍了水热法的发展。因此,目前水热法有向低温低压发展的趋势,即温度小于100℃,压力接近1个标准大气压的水热条件。Bai[24]等用InCl3和Li3N在250℃环境压力下反应,用二甲苯作溶剂,通过溶剂热法制备出粒径为27~30nm的InN纳米晶体。张元广和陈友存[25]等在内衬聚四氧乙烯容器的高压釜中加入适量的油酸,再加入一定量研磨混匀的无水Na2CO3和无水CaCl2,在120℃热处理6h,然后自然冷却到室温。将反应后的混合物离心,抽滤,得到

白色沉淀,依次用蒸馏水,无水乙醇洗涤3次,再以丙酮为提取剂对白色沉淀进行提纯,得到细小的白色粉末,产物在温度为80℃时真空干燥4h,得到粒径为5nm的CaCO3微晶。郭景坤等人采用高压水热 13 处理,将化学制得的Zr(OH)4胶体置于高压釜中,控制合适的温度和压力,使氢氧化物进行相变,成功地得到了10-15nm的形状规则的ZrO2。另外,朱传高等还用电化学溶解镁阳极的方法制备了纳米氧化镁粉体,平均粒径在12nm左右。Utlye J I也用醇盐水解法制得了纳米氧化镁粉体。

(十)、有机热熔法

有机溶剂热法合成采用类似于水热法的原理,在高温、高压溶剂热的条件下,提供一个在常压条件下无法得到的特殊的物理化学环境。使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉体或纳米晶,这样制备出在水溶液中无法长成、易氧化、易水解或对水敏感的材料。反应过程的驱动力是可溶的前驱物或中间产物与稳定新相之间的溶解度差。

尽管在有机溶剂热反应中不能绝对避免无水,如作为反应物的盐的结晶水和反应生成的水,但由于以下两点原因的存在使得水对产物的影响变得可以忽略:第一,有机溶剂热反应的高温高压条件使得有机溶剂对水的溶解度大为增加,实际上对水起到了稀释作用;第二,相对于大大过量的有机溶剂,水的量小得可以忽略。溶剂能影响反应路线,对于同一个反应,若选用不同的溶剂,可能得到不同的目标产物,或得到产物的颗粒大小、形貌不同,同时也能影响颗粒的分散性。因此,选用合适的溶剂和添加剂,一直是溶剂热反应的一个研究方向。

溶剂选择应遵循下列原则:

(1)溶剂应该有较低的临界温度。因为具有低临界温度的溶剂其黏度较低,使得离子的扩散更加迅速,这将有利于反应物的溶解和产物的结晶。

(2)对于金属离子而言,溶剂应该有较低的吉布斯溶剂化能,因为这将有利于产物从反应介质中结晶。

(3)溶剂不能与反应物反应,及在所选择的溶剂中不会发生反应物的分解。

(4)在选择溶剂时,还应考虑溶剂的还原能力以至于共结晶析出的可能性。

溶剂热反应中常用的溶剂有:乙二胺、甲醇、乙醇、二乙胺、三乙胺、吡啶、苯、甲苯、二甲苯、1,2一二甲基乙烷、苯酚、氨水、四氯化碳、甲酸等

在溶剂热反应过程中溶剂作为一种化学组分参与反应,既是溶剂,又是矿化的促进剂,同时还是压力的传递媒介。溶剂热反应路线主要是由钱逸泰领导的课题组研究并广泛应用的。一些常用有机溶剂的物理化学参数如表7一l所示。

评论:

有机溶剂热反应是将含有前驱体和有机溶剂的体系置于高温高压密闭容器中,反应一定时间后,经分离和热处理得到产物,因而,与其他方法相比,有机溶剂热反应具有如下特点。

(1)反应条件温和。溶剂热条件下,反应在有机溶剂中进行,可在较低的温度和压力下制备出通常在极端条件(如超高压力)下才能存在的性能独特的亚稳相,如金刚石的制备。

(2)在加压条件下,溶剂的性质(密度、黏度、分散作用)与通常条件下相比变化很大,使得常规条件下难以进行的反应能够得以实现。

(3)有机溶剂具有沸点低、介电常数小和黏度较大等特点,在同样温度下,溶剂热合成可达到比水热合成更高的气压,从而有利于产物的结晶。

(4)溶剂热合成的密闭条件有利于那些对人体健康有害的有毒反应体进行,减少环境污染,而且在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或空气中氧污染,有利于产品的纯化。

(5)由于较低的反应温度,反应物中的结构单元可以保留在产物中而不受破坏,有利于有机溶剂的官能团和反应物或产物作用,生成一些新型的催化和储能方面有潜在应用的纳米材料。

(6)非水溶剂的采用使得溶剂热法可选择的原料的范围大大扩大,如氟化物、氮化物、硫属化合物等均可作为溶剂热反应的原材料。同时,非水溶剂在亚临界或超临界状态下独特的物理化学性质极大地扩大了所能制备的目标产物的范围。

(7)能够有效地避免表面羟基的存在,这是其他多种化学方法包括共沉淀法、溶胶一凝胶法、金属醇盐水解法、水热法、微乳液法、模板法等都无法比拟的。(十一)、喷雾热解法

喷雾热解法的工艺过程

(1)前驱体溶液配制。根据最后粉末的组成来配置溶液,使不同的金属盐能在分子级范围内混合均匀。一般选用去离子水作溶剂,也可选用酒精、醋酸等有机溶剂或有机溶剂和去离子水的混合物。溶质常用盐酸盐、硝酸盐、硫酸盐、醋酸盐等。

(2)溶液雾化。溶液雾化直接影响粉末的粒度、形貌、产量。各种雾化方式,如单流体喷雾化、双流体雾化、超声雾化及静电雾化等,被应用于喷雾热解法中。不同的雾化方式,参数是不同的,如雾化粒径、液滴尺寸分布、雾化量、液滴速率,前驱体溶液的黏度和密度、表面张力将直接影响雾化的结果。以超声雾化方式雾化的液滴,粒径可达lOl山m甚至更小,尺寸分布均匀。雾化后的液滴用载气带入加热炉膛中,可方便地控制液滴通过炉膛的速度,保证有足够的反应时间,

缺点是雾化量小,不适合工业化生产。希望得到的雾化效果是:有比较小的雾化粒径;雾化后的雾滴速度慢,保证在炉膛内的停留时间:雾化液滴尺寸均匀,同时保证单位时间内有一定雾化量。

3)液滴干燥。这一过程可分为两个阶段。

①溶剂从液滴表面蒸发,并由液滴表面向气相主体的扩散,液滴体积减小,同时,溶质由液滴表面向液滴中心扩散,随着溶剂的蒸发,出现溶质过饱和,在液滴底部析出细微的固相,再逐渐扩散到整个液滴表面,形成一层固相壳层。

②沉淀可能在整个液滴内生成,得到实心颗粒;也可能析出沉淀达不到整个球体,形成中空壳状颗粒;或者壳体内的压力过高,造成壳体破碎,形成碎片状。这些因素包括金属盐的物理化学性质,如透气性、热特性、溶液的物理特性,如溶解度、过饱和浓度、平衡浓度及外界环境温度、湿度等。外界环境温度低、湿度大,溶剂的蒸发速率较小,有利于形成实心固体颗粒。较高的平衡浓度及平衡浓度与溶液过饱和浓度差值较大,有利于形成实心粒子。合理选择溶剂、溶质配置前驱体溶液及改变过程工艺参数,对形成实心球形粒子有意。

(4)热解和烧结过程。热解过程在400—500。C下进行,常伴随有气体生成。生成的气体增加了壳内气压,若壳层致密、透气性差,将导致球壳爆炸。烧结过程在1000。C以上,由于颗粒在炉膛中碰撞概率小、时间短且微米级粒子黏度系数小,难烧结成块。较高的热解温度和足够长的烧结时间,有利于形成实心球形颗粒。

(5)产物收集和尾气处理。反应完的粉体通过引风机进入旋风分离器和布袋,收集得到。尾气含有对环境有污染的酸性气体,经处理后,可直接排放。

评论:

喷雾热分解实际上是气溶胶过程,属气相法范畴,但与一般的气溶胶过程不同的是它以液相溶液作为前驱体,因此兼具气相法和液相法的诸多优点:

(1)由于微粉是由悬浮在空中的液滴干燥而来的,所以制备的颗粒一般呈规则的球形,且在尺寸和组成上都是均匀的。这对于如沉淀法、热分解法和醇盐水解法等其他制备方法来说是难以实现的,这是因为在一个液滴内形成了微反应器且干燥时间短。整个过程迅速完成。

(2)产物组成可控。因为起始原料是在溶液状态下均匀混合,故可以精确地控制所合成化合物或功能材料的最终组成。而且工艺过程简单,组分损失少,可精确控制化学计量比,尤其适合制备多组分复合粉末。

(3)产物的形态和性能可控。通过控制不同的操作条件,如合理地选择溶剂、反应温度、喷雾速度、载气流速等来制得各种不同形态和性能的微细粉体。由于方法本身利用了物料的热分解,所以材料制备过程中反应温度较低。特别适用于晶状复合氧化物超细粉末的制备。与其他方法制备的材料相比,产物的表观密度小、比表面积大、微粉的烧结性能好。

(4)工序简单,制备过程为一连续过程,一步即获得成品,无须各种液相法

中后续的过滤、洗涤、干燥、粉碎过程,操作简单方便。

(5)在整个过程中无须研磨,可避免引入杂质和破坏晶体结构,从而保证产物的高纯度和高活性。

(十二)、溶胶一凝胶法制备纳米材料的工艺过程

溶胶一凝胶法是一种可以制备从零到三维材料的全维材料制备技术。首先,由于溶胶颗粒本身十分细小,因此,从该技术制得的粉末材料很容易达到纳米量级,反应活性好,烧结温度低,制成的材料强度韧性大大提高。其次,在一定条件下,溶胶液的成纤性能很好,因此可以用以生产氧化物,特别是难熔氧化物纤维。再者,用溶胶采取浸涂、喷涂和流延的方法制备薄膜也非常方便,厚度在几纳米到微米量级可调。最后,用溶胶一凝胶法制备材料时,反应物可以在液相中充分分散和混合,因此在制备多相陶瓷材料时各组元分散性和相容性都可能大大提高。由此可见,溶胶—凝胶法是一种宽范围、亚结构、大跨度的全维材料制备的湿化学方涂层.图3—49所示是溶胶一凝胶法的基本工艺过程第一步是制取一包含金属醇盐和水的均相溶液,以保证醇盐的水解反应在分子平均的水平上进行。由于金属醇盐在水中的溶l干,阻解度不大,一般选用醇作为溶剂,醇和水的加入应适量,习惯上以水/醇盐的摩尔比计量,催化剂对水解速率、缩聚速率、溶胶、凝胶。在陈化过程中的结构演变都有重要影响,常用的酸性和碱性催化l热处理剂分别为HCl和NH40H,催化剂加入量也常以催化剂/醇盐的摩尔比计量。因为醇是醇盐水解产物,对水解反应有抑制作用,为保证黑胶法基本过程中易挥发组分散失,造成组分变化,一般需要加回流冷凝装置。第二步是制备溶胶。制备溶胶有两种方法:聚合法和颗粒法,两者间的差别是加水量多少。所谓聚合溶胶,是在控制水解的条件下使水解产物及部分未水解的醇盐分子之间继续聚合而形成的,因此加水量很少,而粒子溶胶则是在加入大量水,使醇盐充分水解的条件下形成的。金属醇盐的水解反应和缩聚反应是均相溶液转变为溶胶的根本原因,控制醇盐的水解缩聚的条件如加水量、催化剂和溶液的pH值以及水解温度等,是制备高质量溶胶的前提。第三步是将溶胶通过陈化得到湿凝胶。溶胶在敞口或密闭的容器中放置时,由于溶剂蒸发或缩聚反应继续进行而导致向凝胶的逐渐转变,此过程往往伴随粒子的Ostward熟化,即因大小粒子溶解度不同而造成的平均粒径增加。在陈化过程中,胶体粒子逐渐聚集形成网络结构,整个体系失去流动特性,溶胶从牛顿(Newton)体向宾汉(Bingham)体转变,并带有明显的触变性,

制品的成形如成纤、涂膜、浇注等可在此期间完成。第四步是凝胶的干燥。湿凝胶内包裹着大量溶剂和水,干燥过程往往伴随着很大的体积收缩,因而很容易引起开裂。防止凝胶在干燥过程中开裂是溶胶一凝胶工艺中至关重要而又较为困难的一环,特别对尺寸较大的块状材料。为此需要严格控制干燥条件,或添加控制干燥的化学添加剂,或采用超临界干燥技术。最后对干凝胶进行热处理,其目的是消除干凝胶中的气孔,使制品的相组成和显微结构能满足产品性能要求。在加热过程中,干凝胶先在低温下脱去吸附在表面的水和醇,260—300℃发生一0R 基团氧化,300℃以上则脱去结构中的一0H基。由于热处理伴随有较大的体积收缩、各种气体(c02、H20、ROH)的释放,加之一OR基在非充分氧化时还可能碳化成碳质颗粒,所以升温速率不宜过快。在热处理时发生导致凝胶致密化的烧结过程,由于凝胶的高比表面积、高活性,其烧结温度比通常的粉料坯体低数百度,采用热压烧结工艺可以缩短烧结时间,提高制品质量。

评论:

溶胶一凝胶法在纳米氧化物制备上一般是利用金属有机或无机化合物经过溶液、溶胶、凝胶而固化,再经热处理后成氧化物。相对于传统的氧化物固相烧结法,溶胶一凝胶法制备金属氧化物具有多方面的优势l35J:(1)纯度高。例如,

溶胶一凝胶法的原料可以用蒸馏方法或结晶方法提纯,保证了原料的纯度;没有机械研磨等过程所引入的杂质,制得的材料纯度高。(2)化学组成均匀。各组分在分子级混合,可以得到化学组成准确、相结构均匀的多组分固溶体。(3)加工温度较低。较低的合成温度使产物粒度分布均匀且细小;较低的烧结温度可以有效控制某些易挥发成分的挥发。(4)可以控制颗粒尺寸。(5)工艺操作简单,不需要昂贵的设备,易于工业化。溶胶一凝胶法制备纳米氧化物虽然有许多优点,且已有一些工业化生产,但仍存在工艺周期长、原材料利用不够充分以及产物易团聚的不足,因而缩短工艺周期、充分利用原材料和解决产物团聚等是今后需研究解决的重要课题。

三、结论

纳米材料作为一种新兴的材料门类,必将有着十分广阔和诱人的发展前景。纳米材料的制备方法必将随着科技的发展取得更大的进步,将对人类的生活和生产力的发展产生深远的影响。随着时代的发展,纳米材料在各个学科领域的应用都十分广泛,必然会不断涌现出更新更好的制备方法,希望能在以下几个方面取得突破,(1) 在结构、组成、排布、尺寸、取相等方面,制备出更适合各领域发展需要,具有更多预期功能的纳米材料; (2) 从节能、节约材料、提高效率等角度出发,研制出更多的新设备,以便制备出更多的新型纳米材料;(3) 设计出新的制备方法,采用新的制备工艺,在原有纳米材料的基础上,提高纳米材料的功能。

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:222015316210016同组人:向泽灵 一、预习部分 1.1氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 3.1共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.docsj.com/doc/3f16464320.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。 ,缓慢滴加到冰水混合物中。 3.用量筒量取2mL的无水TiCl 4

国家自然科学基金标书-集成微流控芯片纳米材料制备与分析应用研究

集成微流控芯片纳米材料制备与分析应用研究 申请人: ***

摘要 本项目提出用流体动力学聚焦法在集成微流控芯片的微管道中合成金属, 有机导电聚合物及它们的核/壳结构的纳米颗粒, 并在线对纳米颗粒表面进行修饰与功能化. 然后用于样品标记, 实现在这一集成芯片上完成纳米颗粒合成, 修饰, 标记, 样品分析. Abstract The project proposes synthesizing various nanoparticles (NPs) such as metal NPs, conducting polymer NPs, and core/shell NPs in the microchannel of an integrated microfluidic chip by means of hydrodynamic focusing and on-line functioning those synthesized NPs. Then the use of these functionalized NPs directly to label the analyte of interest from samples and completing synthesis, modification, labeling and detection on the integrated microfludic system.

重要意义 本项目利用微流控芯片合成纳米颗粒并在同一芯片上集成纳米材料合成系统与样品分析系统,实现同一芯片完成纳米材料合成, 在线标记与样品检测. 将纳米分 析技术与微流控芯片分析有机结合, 由于纳米材料的独特的功能与性质, 从而大大提高了芯片分析的灵敏度, 同时不失芯片分析具有的其他优点. 本项目提出的微流控芯片集成电分析化学技术将实现该芯片分析仪的微型化, 可携带并可用于现场分析. 本项目提出的利用流体动力学原理调控纳米材料的合成等方面的基础研究, 对于纳米材料的形成机制及其结构特征也将富有成果. 因此, 本项目的研究将为促进新一代微流控芯片分析的出现和发展有积极和重要意义. 目前研究现状 集成微流控芯片, 通称为芯片实验室, 是指把生物, 环境和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术.1, 2它是在1990年提出的微全分析系统概念的基础上发展起来的.3目前, 芯片实验室分析已成为一个非常热门的研究领域.4-9它之所以倍受人们关注是因为其特点所决定的: (一), 集成性.10集成的单元部件越来越多,集成的规模也越来越大, 功能也越来越强; (二), 分析速度极快;11 (三), 高通量;10, 11 (四), 微型化可携带, 适于即时, 在线与现场分析; (五), 能耗低,物耗少,污染小因而非常廉价,安全, 被人为是一种环境友好的分析方法与“绿色”技术. 因此,芯片实验室研究显得非常重要. 例如, 在生物医学领域, 它可以使珍贵的生物样品和试剂消耗降低到微升甚至纳升级,而且分析速度成倍提高,成本成倍下降; 在化学领域它可以使以前需要在一个实验室花大量样品、试剂和很多时间才能完成的分析和合成,将在一块小的芯片上花很少量样品和试剂以很短的时间同时完成大量实验;在分析化学领域,它可以使以前 大的分析仪器变成平方厘米尺寸规模的分析仪,将大大节约人力与物力资源和能源. 在环境领域, 它使现场分析及遥控环境分析成为可能. 芯片实验室是一个跨多学科的研究领域, 它涉及物理, 化学, 工程, 医学等. 因而研究的范围非常广泛. 不同的学科研究的侧重点可能不一样. 分析化学家侧重于把芯片实验室用做全分析系统, 而有机化学家则把它用作微反应器用来化学合成. 目前, 芯片实验室主要用于分析,4-7分离12, 13与化学合成14等领域. 芯片实验室本身的一 些理论和应用基础研究,3制作工艺研究,15, 16适用新型材料开发等也在发展之中. 例如, 以芯片制作工艺而言, 芯片制造已由手工为主的微机电(MEMS)技术生产逐渐朝自动化、数控化的亚紫外激光直接刻蚀微通道方向发展, 同时其他技术如, 模板技术(Soft Lithography)10等也广泛应用起来; 芯片实验室的驱动源从以电渗流发展到流体动力、气压、重力、离心力、剪切力等多种手段. 芯片实验室所用材料由最初的价格较为昂贵的玻璃和硅片,发展成以便宜的聚合物为材料,如聚二甲基硅烷(PDMS)、聚甲基异丁烯酸(PMMA)及其他各种塑料等.

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

纳米材料的制备方法

纳米材料的制备方法 1 纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度围或由它们作为基本单元构成的晶体,非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。 纳米材料大致可分为纳米粉末(零维),纳米纤维(一维),纳米膜(二维),纳米块体(三维),纳米复合材料,纳米结构等六类。[2] 纳米材料的物理化学性质不同于微观原子、分子,也不同于宏观物体,纳米介于宏观世界与微观世界之间。纳米材料的特殊结构使得它具有特殊的力学、磁学、光学等特殊的性能。这些有益的性能让纳米材料的研究空前火热。现在,纳米材料已经广泛应用于工业和民用领域。比如纳米疏水涂料可以用来制成衣服、汽车玻璃膜等,这样衣服不会湿,汽车玻璃也不会在下雨天模糊了;再如纳米吸波材料,可以作为隐身战机的涂层,配合特殊的气动布局能使战机的雷达反射面积减小到几平方厘米。 2 纳米材料的制备方法 2.1 溶胶凝胶法 溶胶-凝胶法是以无机物或金属醇盐做前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的

溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。可在低温下制备纯度高、粒度尺寸均匀的纳米材料。 在制备过程中无需机械混合,不易掺入杂质,产品纯度高。由于在溶胶-凝胶过程中,溶胶由溶液制得,化合物在分子级水平混合,因此胶粒及胶粒间的化学成分完全一致,化学均匀性好;颗粒细,胶粒尺寸小于0.1μm ;工艺、设备简单。 余家国等[3]用该法制备了锐钛矿型TiO 2纳米粉体,甲基橙水溶液的光催化降解实验表明,TiO 2纳米粉体的光催化活性明显高于普通TiO 2粉体。 图1 溶胶-凝胶法的过程图 2.2 水热合成法 水热合成法是通过高温高压在水溶液或蒸汽等流体中合成物质,再经分离和热处理得到纳米微粒。水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应。依据反应类型不同分为: 水热氧化、还原、沉淀、合成、水解、结晶等。 该法制得的纳米粒子纯度高、分散性好、晶形好且大小可控。

纳米材料制备简述

新型材料及其应用期末论文纳米材料制备简述 作者:盛建飞 班级:冶金1班 学号:1045562119

摘要:由于纳米材料的特殊结构以及所表现出来的特异效应和性能, 使得纳米材料具有不同于常规材料的特殊用途。行之有效的制备方法将会成为纳米材料得以快速发展的基础。本文就纳米材料的制备方法进行简述。 关键词:纳米材料制备方法问题措施 0前言:通常我们把组分或晶粒结构控制在100nm以下的材料称为纳米材料。广义地说,纳米材料是指在三维空间中至少有一维处于纳米尺寸范围的基本单元。纳米材料因其小尺寸效应,使其在热力学、电性能、性能、光性能、化学性能等方面具有诸多优良特性。纳米技术以其带给人类的全新的对物质领域的认识, 无疑正在掀起一场技术革命,因此提高纳米材料的制备技术就显得尤其重要,本文就纳米材料的的制备作一些简单的论述。 1纳米微粒的制备方法: 纳米微粒的制备方法一般可分为物理方法和化学方法,制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1物理方法 1.1.1蒸发冷凝法 又称为物理气相沉积法( PhysicsVapor Depos-ition 简称PVD 法),是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中急冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但其技术设备要求高。 根据加热源的不同可分为: (1)真空蒸发-冷凝法。其原理是在高纯度惰性气氛(如Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。此法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒;但其仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时存在局限性。 (2)激光加热蒸发法。它是以激光为快速加热源,使气相反应物分子内部快速吸收和传递能量,瞬间完成气相反应的成核、长大和终止。特点:可获得粒径小(小于50nm)且粒度均匀的纳米微粒。但由于激光器的效率低,电能消耗较大,投资大,难以实现规模化生产。 (3)高压气体雾化法。它是利用高压气体雾化器将﹣20~﹣40℃的氦气和氩气以3倍于音速的速度射入熔融材料的液流内,熔体被破碎成极细颗粒的射流,然后急剧骤冷得到超微粒。特点:微粒粒径小且粒度分布较窄。 (4)高频感应加热法。是以高频线圈为热源,使坩埚内的物质在低压(1~10kPa)的He、N2等惰性气体中蒸发,蒸发后的金属原子与惰性气体原子碰撞,冷却凝聚成颗粒。特点: 微粒纯度高,粒度分布较窄;但成本较高,难以获得高沸点的金属。 (5)热等离子体法。它是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。 (6)电子束照射法。1995年许并社等人利用高能电子束照射母材, 成功地获得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物, 如用电子束照射Al2O3后,表层的Al -O键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝、形核、长大,形成Al的纳米微粒。但目前该方法获得的纳米微粒限于金属纳米微粒。 1.1.2物理粉碎法

相关文档