文档视界 最新最全的文档下载
当前位置:文档视界 › (完整word)高考数学大题经典习题

(完整word)高考数学大题经典习题

(完整word)高考数学大题经典习题
(完整word)高考数学大题经典习题

1. 对于函数()3

2

1(2)(2)3

f x a x bx a x =-+-+-。

(1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过

22sin cos t t t -+t 的取值范围;

(2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。

1. (1)由()3

2

1(2)(2)3

f x a x bx a x =-+-+-,则

()2'(2)2(2)f x a x bx a =-+-+-

因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根

22

1(2)121(2)02

(2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2

'43f x x x ∴=-+-

因为()f x 的图像上每一点的切线的斜率不超过2

2sin cos t t t -+

所以()2

'2sin cos f x t t t x R ≤-∈恒成立,

而()()2

'21f x x =--+,其最大值为1.

故2

2sin cos 1t t t -≥

72sin 21,3412t k t k k Z πππππ?

??-≥?+≤≤+∈ ??

?

(2)当2a =-时,由()f x 在R 上单调,知0b =

当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2

'(2)2(2)f x a x bx a =-+-+-,

2244(4)0b a ∴?=+-≤可得224a b +≤

从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为

4S π=

2. 函数cx bx ax x f ++=2

3

)((0>a )的图象关于原点对称,))(,(ααf A 、))

(,(ββf B

分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f . (Ⅰ)求b 的值;

(Ⅱ)求函数)(x f 的解析式; (Ⅲ)若m

m x f x 6

)(],1,2[->-∈恒成立,求实数m 的取值范围. 2. (Ⅰ) b =0

(Ⅱ)

3'2()()30,f x ax cx

f x ax c αβ

=+∴=+=Q 的两实根是

则 03c a αβαβ+=????=??

|AB|=22

2

2

()()()()4()2f f αβαβαβ?-+-=?-= 3

4232

c c a a -?

=?=- 33()()f f a c a c αββαααβββα-=-?+--=-Q

222()1[()3]1a c a c ααββαβαβ?+++=-?+-+=-

233

()11122

c a c c ac a a a ∴-+=-?-+=-?-=-

又0

1a a >∴= 3()3

2

x f x x =-

(Ⅲ) [2,1]x ∈-时,求()f x 的最小值是-5

6(6)(1)50m m m m m

+-->-?< 106<<-

3. 已知()d cx bx ax x f +++=23是定义在R 上的函数,其图象交x 轴于A ,B ,C 三点,若

点B 的坐标为(2,0),且()x f 在]0,1[-和[4,5]上有相同的单调性,在[0,2]和[4,

5]上有相反的单调性. (1)求c 的值;

(2)在函数()x f 的图象上是否存在一点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b ?

若存在,求出点M 的坐标;若不存在,说明理由;

3. ⑴ ∵()x f 在[]0,1-和[]2,0上有相反单调性,

∴ x=0是()x f 的一个极值点,故()0'=x f , 即0232=++c bx ax 有一个解为x=0,∴c=0 ⑵ ∵()x f 交x 轴于点B (2,0) ∴()a b d d b a 24,048+-==++即

令()0'=x f ,则a

b

x x bx ax 32,0,023212-

===+ ∵()x f 在[]2,0和[]5,4上有相反的单调性

∴4322≤-≤a b , ∴36-≤≤-a

b

假设存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b ,则()b x f 30'=

即 032302

=-+b bx ax ∵ △=()()??

?

??+=+=-??-94364334222a b ab ab b b a b

又36-≤≤-a

b

, ∴△<0

∴不存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为

4. 已知函数x x f ln )(=

(1)求函数x x f x g -+=)1()(的最大值; (2)当b a <<0时,求证2

2)

(2)()(b

a a

b a a f b f +->-;

4. (1)x x f x g x x f -+==)1()(,ln )(Θ

)1()1ln()(->-+=∴x x x x g 11

1

)(-+=

'x x g 令,0)(='x g 得0=x 当01<<-x 时,0)(>'x g 当0>x 时0)(

∴ 当且仅当0=x 时,)(x g 取得最大值0

(2))1ln(ln ln

ln ln )()(b

b a b a a b a b a f b f -+-=-==-=- 由(1)知b

a

b b b a a f b f x x -=--≥-≤+)()()1ln(

又2

2222

2)(2212,0b

a a

b b b a b b a a b ab b a b a +->-∴+>∴>+∴<<Θ

2

2)

(2)()(b a a b a a f b f +->

-∴

5. 已知)(x f 是定义在1[-,0()0Y ,]1上的奇函数,当1[-∈x ,]0时,2

1

2)(x ax x f +=(a 为实数).

(1)当0(∈x ,]1时,求)(x f 的解析式;

(2)若1->a ,试判断)(x f 在[0,1]上的单调性,并证明你的结论; (3)是否存在a ,使得当0(∈x ,]1时,)(x f 有最大值6-. 5. (1)设0(∈x ,]1,则1[-∈-x ,)0,2

1

2)(x ax x f +

-=-,)(x f 是奇函数,则21

2)(x

ax x f -

=,0(∈x ,]1; (2))1(222)(33x a x a x f +=+=',因为1->a ,0(∈x ,]1,11

3≥x ,013>+x a ,

即0)(>x f ',所以)(x f 在0[,]1上是单调递增的.

(3)当1->a 时,)(x f 在0(,]1上单调递增,2

5

)1()(max -

=?==a a f x f (不含题意,舍去),当1-≤a ,则0)(=x f ',3

1a x -=,如下表)1

()(3

max a

f x f -=

0(2

2

226∈=

?-=?-=x a ]1,

所以存在22-=a 使)(x f 在0(,]1上有最大值6-. .

6. 已知5)(2

3

-+-=x x kx x f 在R 上单调递增,记ABC ?的三内角C B A ,,的对应边分别为c b a ,,,若ac b c a +≥+2

22时,不等式[]

)4

33

2()cos(sin 2+<+++m f C A B m f 恒成立.

(Ⅰ)求实数k 的取值范围; (Ⅱ)求角B cos 的取值范围; (Ⅲ)求实数m 的取值范围.

19. (1)由5)(2

3

-+-=x x kx x f 知123)(2

+-='x kx x f ,Θ)(x f 在R 上单调递增,

∴0)(>'x f 恒成立,∴03>k 且0k 且0124<-k ,∴3

1

>k ,

当0=?,即3

1=k 时,2

2)1(123)(-=+-='x x kx x f ,

∴1'x f ,1>x 时,0)(>'x f ,即当3

1

=k 时,能使)(x f 在R 上单调递增,

3

1≥∴k .

(2)Θac b c a +≥+2

2

2

,由余弦定理:2122cos 222=≥-+=

ac ac ac b c a B ,∴3

(3) Θ)(x f 在R 上单调递增,且[

]

)4

33

2()cos(sin 2

+

<+++m f C A B m f ,所以 4

332)cos(sin 2+<+++m C A B m =++=++-=+

+--429cos cos 433cos sin 433)cos(sin 222B B B B C A B 87)2

1

(cos 2≥++B ,

---10分 故82<-m m ,即9)1(2

<-m ,313<-<-m ,即40<≤m ,即160<≤m

7. 已知函数36)2(2

3

)(23

-++-

=x x a ax x f (I )当2>a 时,求函数)(x f 的极小值

(II )试讨论曲线)(x f y =与x 轴的公共点的个数。 7. (I ))1)(2

(36)2(33)(2

--=++-='x a

x a x a ax x f ,2>a Θ 12<∴

a ∴当a x 2<或1>x 时,0)(>'x f ;当12

<

(a

内单调递减

故)(x f 的极小值为2

)1(a

f -=

(II )①若,0=a 则2

)1(3)(--=x x f )(x f ∴的图象与x 轴只有一个交点。……6分

②若,0

12

∴当12>'x f )(x f ∴的极大值为02)1(>-=a

f

)(x f Θ的极小值为0)2

(

③若20<

>a 。

∴当a x x 21><或时,0)(>'x f ,当12

<

时,0)(<'x f

)(x f ∴的图象与x 轴只有一个交点

④若2=a ,则0)1(6)(2

≥-='x x f )(x f ∴的图象与x 轴只有一个交点 ⑤当2>a ,由(I )知)(x f 的极大值为04

3

)431(

4)2

(2<---=a a f 综上所述,若,0≥a )(x f 的图象与x 轴只有一个公共点;

若0

1. 已知点C (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足

MQ PM PM CP 2

1

,0=

=? (1)当点P 在y 轴上运动时,求点M 的轨迹C 的方程;

(2)是否存在一个点H ,使得以过H 点的动直线L 被轨迹C 截得的线段AB 为直径的圆始终过原点O 。若存在,求出这个点的坐标,若不存在说明理由。

6. (1)设M(x,y), P(0, t), Q(s, 0) 则),(),,3(t s PQ t CP -==

由0=?得3s —t 2

=0……………………………………………………① 又由21=

得),(2

1

),(y x s t y x --=-

???

????-=--=∴)(21)(21y t y x s x , ?????==∴y t x s 233……………………………………②

把②代入①得2)2

3(9y x -=0,即y 2

=4x ,又x ≠0

∴点M 的轨迹方程为:y 2

=4x (x ≠0)

(2)如图示,假设存在点H ,满足题意,则

0=?⊥OB OA OB OA 即

设),4(),,4(22

2121y y

B y y A ,则由0=?OB OA 可得

016

2122

21=+y y y y 解得1621-=y y 又2

12122124

4

4y y y y y y k AB +=--=

则直线AB 的方程为:)4

(42

1

211y x y y y y -+=-

即2

1212

1214)(y x y y y y y y -=--+把1621-=y y 代入,化简得

0)()164(1=+--y y y x

令y=0代入得x=4,∴动直线AB 过定点(4,0)

答,存在点H (4,0)

,满足题意。

2. 设j i R y x ??,,,∈为直角坐标平面内x,y 轴正方向上的单位向量,若向量

8,)2(,)2(=+-+=++=b a j y i x b j y i x a ???????

?且.

(1)求点M (x,y )的轨迹C 的方程;

(2)过点(0,3)作直线l 与曲线C 的交于A 、B 两点,设OB OA OP +=,是否存在这样的直线l ,使得四边形OAPB 为矩形?若存在,求出直线l 的方程;若不存在,说明理由. 2. (1)8),2,(),2,(=+-=+=b a y x b y x a ?

???Θ且

即点M(x,y)到两个定点F 1(0,-2)、F 2(0,2)的距离之和为8,

∴点M (x,y )的轨迹C 为以F 1(0,-2)、F 2(0,2)为焦点的椭圆,其方程为112

162

2=+x y .

(2)由题意可设直线l 方程为),(),,(,32211y x B y x A kx y +=,

由?

????==+=112

1632

2x y kx y 消去y 得:(4+3k)x 2 +18kx-21=0. 此时,△=(18k)2-4(4+3k 2

(-21)>0恒成立,且???

????

+-

=+-=+22122134213418k x x k k x x

由OB OA OP +=知:四边形OAPB 为平行四边形.

假设存在直线l ,使得四边形OAPB 为矩形,则00,=?⊥B OA OB OA 即 .

因为),(),,(2221y x OB y x OA ==,所以02121=+y y x x , 而9)(3)3()3(21212

2121+++=+?+=x x k x x k kx kx y y ,

故09)3418(3)3421)(1(2

22

=++-++-

+k

k k k k ,即45,1852

±==k k 得. 所以,存在直线l :34

5

+±=x y ,使得四边形OAPB 为矩形. 3. 一束光线从点)0,1(1-F 出发,经直线032:=+-y x l 上一点P 反射后,恰好穿过点)0,1(2F .

(Ⅰ)求点1F 关于直线l 的对称点1F '的坐标;

(Ⅱ)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;

(Ⅲ)设直线l 与椭圆C 的两条准线分别交于A 、B 两点,点Q 为线段AB 上的动点,求点Q 到2F 的距离与到椭圆C 右准线的距离之比的最小值,并求取得最小值时点Q 的坐标.

12. (Ⅰ)设1F '的坐标为),(n m ,则211-=+m n 且032

212=+--?n

m .

解得52,59=-=n m , 因此,点 1F '的坐标为)5

2

,59(-.

(Ⅱ)11PF F P ='Θ,根据椭圆定义,

得||||||22121F F PF F P a '=+'=22)05

2

()159(22=-+--=

, 2=∴a ,112=-=b .

∴所求椭圆方程为12

22

=+y x . (Ⅲ)22

=c

a Θ,∴椭圆的准线方程为2±=x . 设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭

圆的右准线的距离. 则10105)32()1(2221++=++-=

t t t t d ,22-=t d .

2

2221)2(225210105-++?=-++=t t t t t t d d , 令2

2)2(22)(-++=t t t t f )22(<<-t ,则

3

422)

2()

86()2()2(2)22()2()22()(-+-=--?++--?+='t t t t t t t t t f , Θ当0)(,342<'-<<-t f t ,0)(,234>'<<-t f t , 34

-=t ,0)(='t f .

∴ )(t f 在3

4

-=t 时取得最小值.

因此,21d d 最小值=22)34(5=-?f ,此时点Q 的坐标为)3

1,34(-.

注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.

说明:求得的点Q )3

1

,34(-即为切点P ,21d d 的最小值即为椭圆的离心

4. 已知椭圆的一个焦点)22,0(1-F ,对应的准线方程为249

-

=y ,且离心率e 满足3

2,e ,

3

4

成等比数列. (1)求椭圆的方程;

(2)试问是否存在直线l ,使l 与椭圆交于不同的两点M 、N ,且线段MN 恰被直线2

1-=x 平分?若存在,求出l 的倾斜角的取值范围;若不存在,请说明理由. 4. (1)∵

34,,32e 成等比数列 ∴34322?=e 23

2

=e 设),(y x p 是椭圆上任意一点,依椭圆的定义得

99,3222

4

9)22(2222=+=+++y x y y x 化简得 即1922

=+y x 为所求的椭圆方程.

(2)假设l 存在,因l 与直线2

1

-=x 相交,不可能垂直x 轴

因此可设l 的方程为:m kx y +=由 整理得得消去9)(9,9

92

22

2=++???=++=m kx x y y x m kx y 0)9(2)9(222=-+++m kmx x k ①

方程①有两个不等的实数根

∴090)9)(9(442

2

2

2

2

2

<-->-+-=?k m m k m k 即 ② 设两个交点M 、N 的坐标分别为),)(,(2211y x y x ∴9

2221+-=+k km

x x

∵线段MN 恰被直线21

-

=x 平分 ∴19

2221221

-=+-+=-k km x x 即 ∵0≠k ∴k

k m 29

2+= ③ 把③代入②得 0)9()29(222

<+-+k k k ∵092

>+k ∴22

9104k k

+-< ∴32>k 解得3>k 或3-

2,2()2,3(π

πππY

5. 已知向量(

,3),(1,0),(3)(3)a x y b a b a b ==+⊥-r r

r r r r

且. (Ⅰ)求点(,)Q x y 的轨迹C 的方程;

(Ⅱ)设曲线C 与直线y kx m =+相交于不同的两点M 、N ,又点(0,1)A -,当AM AN =时,求实数m 的取值范围。

5. 由题意得:

(II )由22

13

y kx m x y =+???+=??得222

(31)63(1)0k x mkx m +++-=, 由于直线与椭圆有两个不同的交点,0∴?>,即22

31m k <+ ①

(1)当0k ≠时,设弦MN 的中点为(,),p p M N P x y x x 、分别为点M 、N 的横坐标,则

2221331

231313p M N p p p AP p y x x mk m m k x y kx m k k k x mk

++++==-=+===-

++从而 又22311

,,2313m k AM AN AP MN m k mk k

++=∴⊥-

=-=+则即 ②. 将②代入①得22m m >,解得02m <<, 由②得2

2110,32

m k m -=>>解得 ,

故所求的m 取值范围是1

(,2)2

(2)当0k =时,22

,,31,11AM AN AP MN m k m =∴⊥<+-<<解得

6. 设直线)

1(:+=x k y l 与椭圆

)0(3222>=+a a y x 相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点.

(I )证明:2

2

2

313k k a +>;

(II )若OAB CB AC ?=求,2的面积取得最大值时的椭圆方程.

6. 依题意,直线l 显然不平行于坐标轴,故.11

)1(-=

+=y k

x x k y 可化为

将x a y x y k x 消去代入,311

222=+-=

,得 .012

)31(222=-+-+a y k y k ①

由直线l 与椭圆相交于两个不同的点,得

3)31(

,0)1)(31(442

22

22>+>---=

?a k

a k

k 整理得, 即.3132

22

k

k a +> (II )解:设).,(),,(2211y x B y x A 由①,得2

21312k

k

y y +=

+ 因为212,2y y CB AC -==得,代入上式,得.3122

2k k

y +-=

于是,△OAB 的面积 ||23

||||21221y y y OC S =-?=

.23

|

|32||331||32

=<+=k k k k 其中,上式取等号的条件是.3

3,132

±==k k 即 由.33

,3122

2

2±=+-=

y k k y 可得 将3

3,3333,3322=-=-==y k y k 及这两组值分别代入①,均可解出.52=a 所以,△OAB 的面积取得最大值的椭圆方程是.532

2=+y x

7. 如图,已知⊙O ':()2

228x y ++=及点A ()2,0,在 ⊙O '上任取一点A ′,连AA ′并作AA ′的中垂线l ,设l 与直线O 'A ′交于点P ,若点A ′取遍⊙O '上的点. (1)求点P 的轨迹C 的方程;

(2)若过点O '的直线m 与曲线C 交于M 、N 两点,且O N O M λ''=u u u u r u u u u u r

,则当[6,)λ∈+∞时,求直线m 的斜率k 的取值范围.

7. (1) ∵l 是线段A A '的中垂线,∴PA PA '=,

∴||PA|-|P O '||=||P A '|-|P O '||=|O 'A '|=即点P 在以O '、A 为焦点,以4

为焦距,以C 的方程为22

122x y -=.

(2)设11(,)M x y ,22(,)N x y ,则直线m 的方程为(2)y k x =+,则由O N O M λ''=u u u u r u u u u u r

,得 21(2)2x x λ=+-,21y y λ=.由2

2

(2)2

y k x x y =+??

-=?,得222(1)420k y ky k --+=.∴

2

1241k k

y y -+=

,22

1221k

k

y y -=

,22222168(1)8(1)0k k k k k ?=--=+>.

由21y y λ=,2

1241k k y y -+=,22

1221k

k

y y -=

,

消去12,y y ,得

2

2

8(1)

1

12k

λλ

λ

λ+-=

=+

+.∵6λ≥,函数1

()2g λ

λλ=+

+在[6,)+∞上单调

递增. ∴

2

814916

6

62k

-≥++=

,

2

149

1k

≤<,所以 17

1k -<≤-或1

7

1k ≤<.

故斜率k 的取值范围为1

17

7

(1,][,1)--U .

8. 如图,已知⊙O ':()2

22

640x y m m m ??++=> ? ???及点M 60,m ?? ? ???

,在 ⊙O '上任取一点M ′,连M M ′,并作M M ′的中垂线l ,设l 与O 'M ′交于点P , 若点M ′取遍⊙O '上的点.

(1)求点P 的轨迹C 的方程;

(2)设直线:(1)(0)l y k x k =+≠与轨迹C 相交于A 、B 两个不同的点,与x 轴相交于点D .若2,AD DB OAB =?u u u r u u u r

求的面积取得最大值时的椭圆方程.

8. (1) ∵l 是线段MM '的中垂线,∴PM PM '=,

∴|PM|+|P O '|=|P M '|+|P O '|=|O 'M '|=2m ()0m >.

即点P 在以O '、M 为焦点,以

26

m 为焦距,以2m 为长轴长的椭圆上,故轨迹C 的方程为22

2213

y x m m

+=,即

222

3x y m +=.

(2)由 (1)y k x =+(0)k ≠得1

1.x y k

=- 将1

1x y k

=

-代入2223x y m +=消去x ,得 22236

(1)30.y y a k k

+-+-= ① 由直线l 与椭圆相交于两个不同的点,得

222363

4(1)(3)0,

m k k

?=-+->整理得2

23(1)3m k

+>,即2223.3k m k >

+ 设).,(),,(2211y x B y x A 由①,得122

63k

y y k +=+. ∵2,AD DB =u u u r u u u r

而点(1,0)D -, ∴1122(1,)2(1,)x y x y ---=+,所以122y y =-,

代入上式,得22

6.3k

y k -=+

于是,△OAB 的面积 12213

||||||22S OD y y y =?-=2

9||33.3223||

k k k =≤=+ 其中,上式取等号的条件是2

3,k =即 3.k =±

由22

6.3k

y k

-=

+可得23y =±. 将23,3k y ==-及23,3k y =-=这两组值分别代入①,均可解出2

15.a =

∴△OAB 的面积取得最大值的椭圆方程是2

2

315.x y +=

第三组:数列不等式

一.先求和后放缩

例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

解:(1)由已知得2

)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,

所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以

2

1)12(2121)1211215131311(21<+-=+---+-=

n n n B n Λ 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和

1.放缩后成等差数列,再求和

例.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

122a S a a ==+,1011=∴>a a Θ ,又由条件

n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得

0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a Θ ∴11n n a a +-=

所以, n n a n =-?+=)1(11,(1)

2

n n n S +=

所以4

2)1(212)1(2

1

2

22++=++?<+=n n n a a n n n n S (2)因为1)1(+<+<

n n n n ,所以

2

1

2)1(2

+<

+<

n n n n ,所以 2)1(23222121+++?+?=

++n n S S S n ΛΛ2

1

2322++++

12

2312-=

+=+n S n n ;2

2

2)1(2

2

22

121n n S n n n S S S =

+=

+

++

>

++ΛΛ

2.放缩后成等比数列,再求和 例.(1)设a ,n ∈N *,a ≥2,证明:n n n

a a a a

?+≥--)1()(2;

(2)等比数列{a n }中,11

2

a =-,前n 项的和为A n ,且A 7,A 9,A 8成

等差数列.设n

n n a a b -=12

,数列{b n }前n 项的和为B n ,证明:B n <1

3.

解:(1)当n 为奇数时,a n ≥a ,于是,n n n n n

a a a a a a

?+≥+=--)1()1()(2.

当n 为偶数时,a -1≥1,且a n ≥a 2,于是

n n n n n n n a a a a a a a a a a a ?+≥?-+=?-≥-=--)1()1)(1()1()1()(22.

(2)∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比981

2

a q a =

=-. ∴n

n a )2

1

(-=. n

n n n

n n b 231

)2(41)2

1(141?≤

--=

--=

. ∴n n b b b B Λ++=2131)211(312

11)

211(213123123123122<-=--?

=?++?+?≤n n Λ. 3.放缩后为差比数列,再求和

例4.已知数列{}n a 满足:11=a ,)3,2,1()2

1(1Λ=+

=+n a n

a n n n .求证:

1

121

3-++-

≥>n n n n a a 证明:因为n n n a n

a )2

1(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=

-+n n n n a n

a a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:1212

1

2221--+++≥-n n n a a Λ.

令12212221--+++=n n n S Λ,所以n n n S 21

22212132-+++=Λ,两式相减得:

n n n n S 212121212121132--++++=-Λ,所以1212-+-=n n n S ,所以12

13-+-≥n n n a , 故得112

1

3-++-≥>n n n n a a .

4.放缩后为裂项相消,再求和

例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数

63=a .

(1)求a 4、a 5,并写出a n 的表达式; (2)令n

n n n n a a

a a

b 11+++=

,证明32221+<++

)

1(12)1(+=

+++-+=n n n n a n Λ. (2)因为Λ,2,1,22

222211==+?+>+++=+=

++n n

n n n n n n n a a a a b n n n n n , 所以n b b b n 221>+++Λ.

又因为Λ,2,1,2

22222=+-+=+++=

n n n n n n n b n , 所以)]2

1

1()4121()3111[(2221+-

++-+-+=+++n n n b b b n ΛΛ =322

21232+<+-+-

+n n n n . 综上,ΛΛ,2,1,32221=+<++

)2(1

11)1(11)1(11112≥--=-<<+=+-k k

k k k k k k k k

(2).)2)(11

1(

21

211

2)1

11(

2≥-

-=-+<

<

++=

+-

k k

k k k k

k k k k

在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论

2

232n n +、

2

2)1(+n n 为等差数列求和结果的类型,则把通项放缩为等差数

列,再求和即可;如例3要证明的结论31

)211(3

1<-

n

为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论12

1

3-+-n n 为差比数列求和结果的类

型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论2

2

1232+-

+-+n n n 为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.

虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高中数学应用题汇总

高中数学应用题汇总 1.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。 解(1)如图,由题意知AC⊥BC,, 其中当时,y=0.065,所以k=9 所以y表示成x的函数为 (2)令得所以即当时,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数 有最小值 (注:该题可用基本不等式求最小值。)

2.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。 (1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. (1)依题意,F(x)=(x-3)(11-x)2-k(11-x)2=(x-3-k)(11-x)2,x∈[7,10]. (2)因为F′(x)=(11-x)2-2(x-3-k)(11-x)=(11-x)(11-x -2x+6+2k) =(x-11)[3x-(17+2k)]. 由F′(x)=0,得x=11(舍去)或x=.(6分) 因为1≤k≤3,所以≤≤. ①当≤≤7,即1≤k≤2时,F′(x)在[7,10]上恒为负,则F(x)在[7,10]上为减函数,所以[F(x)]max=F(7)=16(4-k).(9分) ②当7<≤,即2

高考数学大题经典习题(2020年九月整理).doc

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1(2)(2)3 f x a x bx a x =-+-+-,则 ()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ?? ? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

全国名校高考数学经典复习题汇编(附详解)专题:可行域

全国名校高考数学经典复习题汇编(附详解)专题:可行域 1.(全国名校·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C 解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C. 2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为( ) 答案 B 解析 方法一:可转化为①?????x +2y +1≥0,x -y +4≤0或②? ????x +2y +1≤0,x -y +4≥0. 由于(-2,0)满足②,所以排除A ,C ,D 选项. 方法二:原不等式可转化为③?????x +2y +1≥0,-x +y -4≥0或④? ??? ?x +2y +1≤0,-x +y -4≤0. 两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B. 3.(全国名校·天津,理)设变量x ,y 满足约束条件?????2x +y ≥0, x +2y -2≥0, x ≤0,y ≤3,则目标函数z =x +y 的 最大值为( ) A.2 3 B .1

C.32 D .3 答案 D 解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合. 4.设关于x ,y 的不等式组???? ?2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0 =2,则m 的取值范围是( ) A .(-∞,4 3) B .(-∞,1 3) C .(-∞,-2 3) D .(-∞,-5 3 ) 答案 C 解析 作出可行域如图. 图中阴影部分表示可行域,要求可行域包含y =1 2x -1的上的点,只需要可行域的边界点(- m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-2 3 . 5.(全国名校·北京,理)若x ,y 满足???? ?2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( ) A .0 B .3 C .4 D .5 答案 C

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

全国名校高考数学经典复习题汇编(附详解)专题:众数、中位数

全国名校高考数学经典复习题汇编(附详解)专题:众数、中位数 1.(全国名校·云川贵百校联考)某课外小组的同学们从社会实践活动中调查了20户家庭某月的用电量,如下表所示: 则这20A .180,170 B .160,180 C .160,170 D .180,160 答案 A 解析 用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B ,C ; 将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A. 2.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的2 5,且样本容量为140,则中间一组的频数为( ) A .28 B .40 C .56 D .60 答案 B 解析 设中间一个小长方形面积为x ,其他8个长方形面积为52x ,因此x +52x =1,∴x =2 7. 所以中间一组的频数为140×2 7 =40.故选B. 3.(全国名校·山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7 答案 A

解析 根据两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以 56+62+65+74+(70+x )5=59+61+67+65+78 5 ,解得x =3.故选A. 4.(全国名校·山西长治四校联考)某学校组织学生参加数学测试,有一个班成绩的频率分布直方图如图,数据的分 组依次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15,则该班的学生人数是( ) A .45 B .50 C .55 D .60 答案 B 解析 ∵[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,∴该班的学生人数是15 0.3 =50. 5.(全国名校·陕西西安八校联考)如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值为( ) A .2,4 B .4,4 C .5,6 D .6,4 答案 D 解析 x -甲=75+82+84+(80+x )+90+93 6=85,解得x =6,由图可知y =4,故选D. 6.(全国名校·河北邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为( ) A. 10 5 B.305 C. 2 D .2 答案 D 解析 依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=1 5(12+02+12+22+22)=2,即 所求的样本方差为2. 7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高中数学应用题

函数、不等式型 1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中3

高考数学经典选择题(含答案)

高考数学经典选择题(含答案) 1、点O 在ABC ?内部且满足23OA OB OC O ++=,则AOB ?面积与AOC ?面积之比为 A 、 2 B 、 3 2 C 、 3 D 、 53 2、已知定义在R 上的函数()f x 的图象关于点3,04??- ???成中心对称图形,且满足 3()()2f x f x =-+,(1)1f -=,(0)2f =-则(1)(2)(2006)f f f ++???+的值为 A 、1 B 、2 C 、 1- D 、2- 3、椭圆1:C 22 143x y +=的左准线为l ,左右焦点分别为12,F F 。抛物线2C 的准线为l ,焦点是 2F ,1C 与2C 的一个交点为P ,则2PF 的值为 A 、4 3 B 、83 C 、 4 D 、8 4、若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为 A 、 16(12)- B 、 18π C 、 36π D 、 64(6)- 5、设32 ()f x x bx cx d =+++,又k 是一个常数,已知当0k <或4k >时,()0f x k -=只有一个实根;当04k <<时,()0f x k -=有三个相异实根,现给出下列命题: (1)()40f x -=和()0f x '=有一个相同的实根, (2)()0f x =和()0f x '=有一个相同的实根 (3)()30f x +=的任一实根大于()10f x -=的任一实根 (4)()50f x +=的任一实根小于()20f x -=的任一实根 其中错误命题的个数是 A 、 4 B 、 3 C 、 2 D 、 1 6、已知实数x 、y 满足条件2040250x y x y x y -+≥??+-≥??--≤?则 24z x y =+-的最大值为 A 、 21 B 、 20 C 、 19 D 、 18 7、三棱锥P ABC -中,顶点P 在平面ABC 的射影为O ,满足0OA OB OC ++=,A 点在侧面PBC 上的射影H 是PBC ?的垂心,6PA =,则此三棱锥体积的最大值为 A 、 36 B 、 48 C 、 54 D 、 72 8、已知函数()f x 是R 上的奇函数,且 ()0,+∞在上递增,(1,2)A -、(4,2)B 是其图象上两点,则不等式(2)2f x +<的解集为 A 、 ()(),44,-∞-?+∞ B 、 ()(){}4,11,40--??

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

近年高考数学选择题经典试题+集锦

近年高考数学选择题经典试题集锦 1、点O 在ABC ?内部且满足23OA OB OC O ++=,则A O B ?面积与AOC ?面积之比为 A 、 2 B 、 32 C 、3 D 、 5 3 2、已知定义在R 上的函数()f x 的图象关于点3,04??- ???成中心对称图形,且满足 3()()2f x f x =-+,(1)1f -=,(0)2f =-则(1)(2)(2006)f f f ++???+的值为 A 、1 B 、2 C 、 1- D 、2- 3、椭圆1:C 22 143x y +=的左准线为l ,左右焦点分别为12,F F 。抛物线2C 的准线为l ,焦 点是2F ,1C 与2C 的一个交点为P ,则2PF 的值为 A 、43 B 、8 3 C 、 4 D 、8 4、若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为 A 、 16(12)- B 、 18π C 、 36π D 、 64(6)- 5、设32()f x x bx cx d =+++,又k 是一个常数,已知当0k <或4k >时,()0f x k -=只有一个实根;当04k <<时,()0f x k -=有三个相异实根,现给出下列命题: (1)()40f x -=和()0f x '=有一个相同的实根, (2)()0f x =和()0f x '=有一个相同的实根 (3)()30f x +=的任一实根大于()10f x -=的任一实根 (4)()50f x +=的任一实根小于()20f x -=的任一实根 其中错误命题的个数是 A 、 4 B 、 3 C 、 2 D 、 1 6、已知实数x 、y 满足条件2040 250x y x y x y -+≥??+-≥??--≤?则24z x y =+-的最大值为

全国名校高三数学经典压轴题100例(人教版附详解)

好题速递1 1.已知P 是ABC ?内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r ,x 、y R ∈,则2y x +的取值范围是 ___ . 解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x y x y x y +=++,知点Q 在线段 BC 上.从而1AP x y AQ +=>?? +

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高考数学选择经典试题集锦

高考数学选择经典试题集锦(二) 1、已知()1()()f x x a x b =---,并且,m n 是方程()0f x =的两根,则实数a 、b 、m 、n 的大小关系可能是 A. m a b n <<< B. a m n b <<< C. a m b n <<< D. m a n b <<< 2、已知{}n a 、{}n b 均为等差数列,其前n 项和分别为n S 、n T ,若223n n S n T n +=+,则109a b 的值为 A. 116 B. 2 C. 22 13 D. 无法确定 3、已知C 为线段AB 上一点,P 为直线AB 外一点,满足2PA PB -=,25PA PB -=PA PC PB PC PA PB ??=,I 为PC 上一点,且()(0) AC AP BI BA AC AP λλ=++>,则 BI BA BA ?的值为 A. 1 B. 2 C. 1 D. 4、 已知()f x 与()g x 都是定义在R 上的函数, ()0,()()()(),()()x g x f x g x f x g x f x a g x ''≠? B. W N < C. W N = D.无法确定

相关文档 最新文档