文档视界 最新最全的文档下载
当前位置:文档视界 › 简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能
简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素。

食物中含有的碳水化合物主要为淀粉,此外还包括少量的低聚糖和单糖。单糖分子无需消化可直接吸收,而低聚糖和淀粉必须经过消化酶水解成单糖后才能被机体吸收和利用。能消化淀粉的部位包括口腔和小肠。由于唾液中含有α-淀粉酶,摄入的淀粉首先在口腔中进行初步水解,产生少量的麦芽糖和葡萄糖,但因食物在口腔中的停留时间很短,因此这种水解量很小。拌和着唾液的食物经食道进入胃,由于胃酸能使淀粉酶失去活性,且胃中不存在水解淀粉的酶,故胃中不能消化淀粉。小肠是淀粉消化的主要场所。肠腔中由胰腺制造的胰α-淀粉酶是水解淀粉的最主要的酶,它能将进入小肠的淀粉水解为α-糊精、麦芽寡糖和麦芽糖。这些水解产物再经小肠液中的α-糊精酶、麦芽糖酶分别将α-糊精水解成葡萄糖,将麦芽寡糖和麦芽糖水解成葡萄糖。食物中所含的蔗糖和乳糖进入小肠后,分别在蔗糖酶和乳糖酶的催化下水解成葡萄糖等单糖。

食物中糖类经消化后几乎全部被水解成单糖,主要为葡萄糖,其次为果糖和半乳糖。这些单糖在小肠上部多以主动转运方式被吸收,但吸收速度各不相同。一般己糖吸收速度快于戊糖,糖醇类吸收最慢。吸收缓慢的糖到达肠的下部时,会与水结合,因此它有导泻作用,故摄入过量时会引起腹泻。果糖和木糖醇食用过多会发生腹泻就是这个道理。

碳水化合物主要的生理功能是构成机体的重要物质,提供热能,调节食品风味,维持大脑功能必须的能源,调节脂肪代谢,提供膳食纤维。膳食中缺乏碳水化合物将导致全身无力,疲乏、血糖含量降低,产生头晕、心悸、脑功能障碍等。严重者会导致低血糖昏迷。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。因此我们要严格注意碳水化合物的摄入。

最新碳水化合物教案

教案 第二章,第四节人体对碳水化合物的需要 教学目标: 1、通过本节教学,使学生了解碳水化合物的主要生理功能;常见活性多糖的生理功能;血糖指数( GI )的升高对糖类食物选择的重要作用。 2、通过学习掌握碳水化合物、膳食纤维概念、分类和食物来源; 3、理解糖类(碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用)、膳食纤维主要生理功能;了解常见活性多糖的生理功能;血糖指数( GI )的对糖类食物选择的重要作用。 4、通过对本节内容的学习,运用所学知识指导人们合理选取糖类,保障健康。 教学重点:碳水化合物、膳食纤维概念、营养分类和食物来源; 教学难点:碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用、膳食纤维主要生理功能 新课导入:开运动会的时候,班里的班委会给运动员买点葡萄糖口服液来服用,还有前两年流行的PTT饮料,同学们想一下,这些现象说明了什么问题呢?由此引入要讲的内容。 教学内容:

一、碳水化合物的功能 1 、供能与的节约蛋白质作用 当摄入足够的碳水化合物时,可以防止体内和膳食中的蛋白质转变为葡萄糖,这是所谓的节约蛋白质作用。 2 、构成机体细胞的成分 碳水化合物是构成机体的重要物质,并参与细胞的许多生命活动。 3 、维持神经系统的功能 尽管大多数体细胞可由脂肪和蛋白质代替糖作为能源,但是脑、神经和肺组织却需要葡萄糖作为能源物质,若血中葡萄糖水平下降,脑缺乏葡萄糖可产生不良反应。 4、抗生酮作用 碳水化合物摄取不足,脂肪代谢产生脂肪酸,氧化增多,会产生较多的酮体,高过肾的回收能力时,会影响人的健康,即所谓的酸中毒。 5、提供膳食纤维,活性多糖果,有益肠道功能 如乳糖可促进肠中有益菌的生长,也可加强钙的吸收。低聚糖:有利于肠道菌群平衡。 6 、食品加工能够中的重要原、辐材料(对食品) 很多工业食品都含有糖,并且对食品的感官性状有重要作用。 二、碳水化合物 (carbohydrate) 的分类: 按其化学组成、生理作用和健康意义可分为: 1 、糖:包括单糖 (monosaccharide 、双糖 (disaccharide) 和糖醇。

单一碳水化合物比复合碳水化合物更易被身体吸收

单一碳水化合物比复合碳水化合物更易被身体吸收 碳水化合物是热量的主要来源,主要可分为复合碳水化合物和单一碳水化合物。复合碳水化合物主要存在于淀粉质食物中,例如谷物、面包、马铃薯、麦、豆和部蔬菜。单一碳水化合物比复合碳水化合物更易被身体吸收,主要存在于精制糖类,包括蔗糖、蜜糖、糖果及奶制品等。 专家建议淀粉质食物的摄入应该占餐单的1/3,最好每天能够摄取5种不同的蔬菜和水果。应该保持均衡的饮食,不应省略任何一类食物。 新加坡营养师也赞成均衡营养,他们认为,长期多吃肉无益身体健康。一般营养师和医生并不鼓励人们以高蛋白、低碳水化合物饮食来减肥。低碳水化合物之所以流行,是因为许多减肥者的体重会明显减轻,但这种减肥方法体重减轻的正原因是减少了体内水分和肌肉,而不是脂肪。所以低碳水化合物减肥法是不健康的,而其减肥效果也不能持久。 专家建议,要达到减肥目的,每天的饮食应以水果、蔬菜为主,要多喝水,还要多运动,最好一星期运动3次,每次30分钟。减轻体重不可操之过急,一个月减1公斤至1.5公斤,千万不要在短期间大幅度减轻体重。减肥并不难,最难的还是长期维持健康的体重。 编辑支招:如果你想要再瘦个几公斤,那可要抓紧啦!以下为你提供的10天减肥餐单,以蔬菜与水果为主,辅以必要的蛋白质及维生素,在保证基础营养的同时,可以达到清理肠胃、排除毒素的美容功效。 1、此餐单提供的热量不超过1000大卡,因此请勿长期使用,以免造成营养不良; 2、请完全遵守餐单组合,请勿随意增加或减少食物; 3、每周请泡澡或足浴最少2次,经常泡澡可以有效地促进新陈代谢,同时有利于皮肤的美容。 4、可选用合格的纤体消脂霜,每天按摩皮肤可以防止减肥带来的皮肤细纹。 如果你记住了以上事项,那么就赶快来看神奇的减肥餐单吧! Day 1-3 早餐:起床后先喝一大杯温水,再选择下列任何一个早餐组合。

人教版七年级生物下册教学设计消化和吸收教案

消化和吸收》 本节课是人教版《生物学》七年级下册第四单元第二章第三节的内容。 本节主要描述消化系统的组成,以及食物在消化道内消化和营养物质的吸收过程。同第一章 比较,本章加大了探究性学习的力度,让学生进一步学会提出问题、作出假设,并能积极动手实践。同时,在已学习第一节《食物中的营养物质》的基础上,本节对营养物质在人体中的 变化进行了具体的阐述,认识小肠是主要的消化和吸收器官。 1、描述人体消化系统的及主要消化腺的组成、位置及功能; 2、口腔的结构和唾液对淀粉的初步消化作用; 3、概述食物在消化道内的消化和吸收过程; 4、说出小肠的结构特点。 【能力目标】 1、观察小肠结构的活动,解释小肠是消化和吸收的主要场所,认同结构与功能相统一; 2、养成实验的设计、实际操作及科学探索的能力; 3、养成良好卫生习惯,提高注意口腔卫生、保护消化系统的能力。【情感态度价值观目标】 1、通过了解常见消化系统病症,关注人体的健康,培养良好的卫生习惯; 2、通过设计实验探究唾液在消化过程中的作用,养成严肃、认真、实事求是的科学态度。 ◆ 教学重难点 ◆ 【教学重点】 三大营养物质(淀粉、脂肪、蛋白质)的消化过程。 【教学难点】 1、小肠的结构与功能; 2、探究实验的操作过程的控制。 A.

A.◆ 课前准备 ◆ 1、学生准备:查相关资料,了解常见引起消化系统疾病的原因及对笑话器官的危害; 2、教师准备:实验“口腔的消化”和“观察小肠结构”的用具; 3、口腔及消化系统的模型或挂图; 4、FLASH:人体消化和吸收的过程;人体消化系统的组成及主要消化腺的作用。 一疑问导入 [ 引言] :我们每天都要从外界摄取大量的食物以满足生长发育、各项生命活动的需要,你们 知道食物的消化和吸收是依靠人体八大系统中哪个系统来完成的吗? [ 提问] :对照自己的身体想一想,我们吃的食物直到排出体外都经过那些结构? 二新知探究 (一)消化系统组成 [ 小故事] :一位小朋友吃西瓜时不小心将种子咽下去了。大人们说,慢点吃,别一会把种子 吃下去,在肚子里长出一个大西瓜来咯!教师:同学们,我们都误吃了许多西瓜子,可是,它们长成西瓜了吗?为什么呢?同学回答:没有。被消化了。 教师:如果把人体的消化系统比作是一家“食品加工厂” ,厂里有一条“食品加工流水线” ,它大概有8—10 米长,这个长度也达到了人体身高的六倍,那这条流水线从上到下会设有哪 些工作车间呢?我们一起去这家食品加工厂逛逛吧,看看我们的种子在小朋友的消化道内经历了什么? 他先遇到了像轧钢似的上下坚硬的怪物,差点被压得粉身碎骨;然后咯噔一下掉进了万丈深渊;刚打算离开就遇到酸雨;后来又钻进了一条又长又窄的迷宫;走出迷宫又钻进死胡同,幸亏及时改变方向;后来又与很臭的东西混在一起;最后在姗姗上厕所时离开了姗姗。 (请同学们注意老师的比喻) [ 出示] :消化系统模式图,请同学们描述消化系统的器官组成。学生:牙齿,食道—胃,消化液,小肠,盲肠—大肠,肛门。 [ 讲述] :刚才同学们按照食物的经过路线描述的消化系统的组成,即食品加工流水线,我

习题七+碳水化合物的测定教学内容

习题七、碳水化合物的测定 一、填空题 1.用直接滴定法测定食品还原糖含量时,所用的斐林标准溶液由两种溶液组成,分别是碱性酒石酸铜甲液,碱性酒石酸铜乙液,应单独贮存,用时才混合; 2.测定还原糖含量时,对提取液中含有的色素、蛋白质、可溶性果胶、淀粉、单宁等影响测定的杂质必须除去。常用的方法是使用澄清剂,常用澄清剂有三种:醋酸锌及亚铁氰化钾,碱性硫酸铜,中性醋酸铅。弱在直接滴定法测定食品还原糖含量时,影响测定结果的主要操作因素有碱性酒石酸铜甲液乙液应该分开存放,铜盐不能作为澄清剂,滴定时在沸腾下进行,次甲基蓝这种弱氧化剂作为指示剂,预滴定与正式滴定家册标准一致。 二、选择题 1.( 1 )测定时糖类定量的基础。 (1)还原糖(2)非还原糖(3)葡萄糖(4)淀粉2.直接滴定法测定还原糖含量时,在滴定过程中(3 )(1)边加热边振摇(2)加热沸腾后取下滴定

(3)加热保持沸腾,无需振摇(4)无需加热沸腾即可滴定 3.直接滴定法在测定还原糖含量时用( 4)作指示剂。(1)亚铁氰化钾(2)Cu2+的颜色(3)硼酸(4)次甲基蓝 4.为消除反应产生的红色Cu2O沉淀对滴定的干扰,加入的试剂是( 2) (1)铁氰化钾(2)亚铁氰化钾(3)醋酸铅(4)NaOH 5.用水提取水果中的糖分时,应调节样液至(2 ) (1)酸性(2)中性(3)碱性 6.直接滴定法测定牛乳的糖分,可选用( 2)作澄清剂。(1)中性醋酸铅(2)乙酸锌和亚铁氰化钾(3)硫酸铜和氢氧化钠 7.费林氏A液、B液(1 )。 (1)分别贮存,临用时混合(2)可混合贮存,临用时稀释(3)分别贮存,临用时稀释并混合使用。 8.在标定费林试液和测定样品还原糖浓度时,都应进行预备滴定,其目的是(1 ) (1)为了提高正式滴定的准确度(2)是正式滴定的平行实验,滴定结果可用于平均值的计算(3)为了方便终点的观察 三、论述题

碳水化合物的消化吸收与代谢

碳水化合物的消化吸收与代谢 碳水化合物的吸收和代谢有两个重要步骤:小肠中的消化和细菌帮助下的结肠发酵。这一认识改变了我们过去几十年对膳食碳水化合物消化吸收的理解。例如,我们现在知道淀粉并不能完全消化,实际上有些是非常难消化的。难消化的碳水化合物不仅只提供少量能量,最重要的是其发酵产物对人体有重要的生理价值。“糖”并不是对健康普遍不利的,而淀粉也不一定对血糖和血脂产生有利影响。这些研究结果充实和扩展了碳水化合物与人类健康关系的理论,使我们对碳水化合物消化和吸收的认识进入一个崭新的阶段。 4.3.1碳水化合物的消化和吸收 碳水化合物的消化是从口腔开始的,但由于停留时间短,消化有限;胃中由于酸的环境,对碳水化合物几乎不消化。因此其消化吸收主要有两种形式:小肠消化吸收和结肠发酵。消化吸收主要在小肠中完成。单糖直接在小肠中消化吸收;双糖经酶水解后再吸收;一部分寡糖和多糖水解成葡萄糖后吸收。在小肠不能消化的部分,到结肠经细菌发酵后再吸收(详见第1章)。 碳水化合物的类型不同,消化吸收率不同,引起的餐后血糖水平也不同。食物血糖生成指数(GI)表示某种食物升高血糖效应与标准食品(通常为葡萄糖)升高血糖效应之比。GI 值越高,说明这种食物升高血糖的效应越强。不同的碳水化合物食物在肠胃内消化吸收的速度不同,而消化、吸收的快慢与碳水化合物本身的结构(如支链和直链淀粉)、类型(如淀粉或非淀粉多糖)有关。此外,食物的化学成分和含量(如膳食纤维、脂肪、蛋白质的多少),加工方式,如颗粒大小、软硬、生熟、稀稠及时间、温度、压力等对GI都有影响。总之,越是容易消化吸收的食物,GI值就越高。高升糖指数的食物对健康不利。高“升糖指数”的碳水化合物食物则会造成血液中的葡萄糖和胰岛素幅度上下波动。低“升糖指数”的食品,能大幅减少心脏疾病的风险。一般果糖含量和直链淀粉含量高的食物,GI值偏低;膳食纤维高,一般GI值低,可溶性纤维也能降低食物GI值(如果胶和瓜尔豆胶),脂肪可延长胃排空和减少淀粉糊化,因此脂肪也有降低GI值作用。但是,值得注意的是,尽管含脂肪高的个别食物(如冰淇淋)GI值较低,但对糖尿病病人来说仍是应限制的食物。当血糖生成指数在55以下时,可认为该食物为低GI食物;当血糖生成指数在55~75时,该食物为中等GI食物;当血糖生成指数在75以上时,该食物为高GI食物。 4.3.2碳水化合物的分布和利用 碳水化合物经消化吸收后,在肠壁和肝脏几乎全部转变为葡萄糖,主要合成为肝糖原储存,也可氧化分解供给肝脏本身所需的能量。另一部分,则经肝静脉进入体循环,由血液运送到各组织细胞,进行代谢或合成糖原储存,或氧化分解供能,或转变成脂肪等。综上所述,糖的代谢包括氧化分解直接提供能量,合成糖原储存备用,转变成脂肪等,这些过程相互联系和制约,共同组成复杂而有序的糖代谢。 4.3.2.1直接利用 葡萄糖被称为“首要燃料”,可直接被机体组织所利用。尤其是大脑神经系统需要大量的能量来维持活动,约有1/5的总基础代谢发生在脑中,所以葡萄糖是机体中大脑的主要能源。在正常环境中,大脑的神经系统并不储存能量,而是直接利用葡萄糖来维持生命活动,所以脑中没有糖原这个中间物。如果注射过量的胰岛素,会使葡萄糖骤然减少,并很快引起神经系统变化。当然,饥饿状态下,大脑也可以利用其他形式的燃料来维持生命活动。 4.3.2.2转化成糖原 早在1850年,人类在动物体内第一次证明葡萄糖合成糖原。目前,人体中的糖代谢也已基本了解,肝脏是糖原最丰富的器官,骨骼肌的浓度比较低。但是,由于肌肉量多,肌肉仍是储存糖原的主要场所。正常情况下,人体碳水化合物储存的量是较少的。例如,如果在不进食情况下,一个成人走2~3h就几乎消耗全部储存。最后的呼吸商是0.75或更低,表明

31第三节碳水化合物的代谢

碳水化合物的消化 (一)口腔内消化 碳水化合物的消化自口腔开始。口腔分泌的唾液中含有α-淀粉酶(α-amylase),又称 唾液淀粉酶(ptyalin),唾液中还含此酶的激动剂氯离子,而且还具有此酶最合适pH6~7 的环境。α-淀粉酶能催化直链淀粉、支链淀粉及糖原分子中α-1,4-糖苷键的水解,但不能水解这些分子中分支点上的α-1,6-糖苷键及紧邻的两个α-1,4-糖苷键。水解后的产物可有葡萄糖、麦芽糖、异麦芽糖、麦芽寡糖以及糊精等的混合物。 (二)胃内消化 由于食物在口腔停留时间短暂,以致唾液淀粉酶的消化作用不大。当口腔内的碳水化合物食物被唾液所含的粘蛋白粘合成团,并被吞咽而进人胃后,其中所包藏的唾液淀粉酶仍可使淀粉短时继续水解,但当胃酸及胃蛋白酶渗入食团或食团散开后,pH 下降至1~2 时,不 再适合唾液淀粉酶的作用,同时该淀粉酶本身亦被胃蛋白酶水解破坏而完全失去活性。胃液不含任何能水解碳水化合物的酶,其所含的胃酸虽然很强,但对碳水化合物也只可能有微少或极局限的水解,故碳水化合物在胃中几乎完全没有什么消化。 (三)肠内消化 碳水化合物的消化主要是在小肠中进行。小肠内消化分肠腔消化和小肠粘膜上皮细胞表面上的消化。极少部分非淀粉多糖可在结肠内通过发酵消化。 1.肠腔内消化肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉酶(amylopsin),其作用和性质与唾液淀粉酶一样,最适pH 为6.3~7.2,也需要氯离子作激动剂。胰淀粉酶对末端α-1,4-糖苷键和邻近α-1,6-糖苷键的α-1,4-糖苷键不起作用,但可随意水解淀粉分子内部的其他α-1,4-糖苷键。消化结果可使淀粉变成麦芽糖、麦芽三糖(约占65%)、异麦芽糖、α-临界糊精及少量葡萄糖等。α-临界糊精是由4~9 个葡萄糖基构成。 2.小肠粘膜上皮细胞表面上的消化淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠粘膜上皮细胞表面进一步彻底消化。小肠粘膜上皮细胞刷状缘上含有丰富的α- 糊精酶(α-dextrinase)、糖淀粉酶(glycoamylase)、麦芽糖酶(mahase)、异麦芽糖酶(isomahase)、蔗糖酶(sucrase)及乳糖酶(|actase),它们彼此分工协作,最后把食物中可 消化的多糖及寡糖完全消化成大量的葡萄糖及少量的果糖及半乳糖。生成的这些单糖分子均可被小肠粘膜上皮细胞吸收。 3.结肠内消化小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷气、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。碳水化合物在结肠发酵时,促进了肠道一些特定菌群的生长繁殖,如双歧杆菌、乳酸杆菌等。 二、碳水化合物的吸收 碳水化合物经过消化变成单糖后才能被细胞吸收。糖吸收的主要部位是在小肠的空肠。单糖首先进入肠粘膜上皮细胞,再进入小肠壁的毛细血管,并汇合于门静脉而进入肝脏,最后进入大循环,运送到全身各个器官。在吸收过程中也可能有少量单糖经淋巴系统而进人大循环。 单糖的吸收过程不单是被动扩散吸收,而是一种耗能的主动吸收。目前普遍认为,在肠粘膜上皮细胞刷状缘上有一特异的运糖载体蛋白,不同的载体蛋白对各种单糖的结合能力不同,有的单糖甚至完全不能与之结合,故各种单糖的相对吸收速率也就各异。

牛羊对碳水化合物的吸收及代谢_李莉

四川畜牧兽医·2012·2期·总第256期 编辑S I C H U A N X U M U S H O U Y I 2 植物以CO 2和H 2O 为原料,通过光合作用合成碳水化合物。 碳水化合物分为粗纤维和无氮浸出物,粗纤维是细胞壁的主要组成成分,无氮浸出物主要存在于细胞内容物中,它们易被牛羊消化吸收,一般消化率在95%以上。 1牛羊对碳水化合物的消化吸收1.1 对粗纤维的消化吸收 粗 纤维由纤维素、 半纤维素、果胶、木质素、二氧化硅等组成。1.1.1 从植物细胞壁的最外层 往里数,第一层叫间隔层,分布的主要是果胶,牛羊消化道中的酶不能将其水解,其主要依赖肠道细菌的作用而被消化。1.1.2 从细胞壁往里数的第二 层叫初生壁,其含纤维素10%~20%,含半纤维素2.5%~10%,含木质素1.25%~2.5%。纤维素是葡萄糖分子的聚合物,半纤维素是戊糖和已糖的混聚物,其不溶解于水和盐酸。 瘤胃细菌能产生纤维素酶和半纤维素酶而将二者分解成挥发性脂肪酸。1.1.3 再往里的第三层叫次生 壁,其含纤维素10%~20%,含半纤维素7.5%~30%,含木质素3.75%~7.5%。木质素不是碳水化合物,它几乎不受瘤胃细菌的作用。试验表明,饲料中木质素每增加1%,牛羊对饲料有机质 的消化率就下降0.8%。1.2 对无氮浸出物的消化吸收 无氮浸出物包括淀粉、糖、多缩戊糖、配糖体、单宁物质、维生素C 等。1.2.1 牛羊前胃的特点牛羊的消化器官由口腔、 食管、胃(包括瘤胃、网胃、瓣胃和真胃,前三胃合称前胃)、小肠、大肠等组成。牛羊的瘤胃和网胃相当于发酵罐,是消化碳水化合物,特别是粗纤维的器官。瘤胃细菌区系中纤维分解菌约占瘤胃活菌的1/4,另外还有分解淀粉和糖的细菌存在。其次,瘤胃和网胃的容积大,如羊的前胃容纳内容物重量可达4~6kg , 牛的前胃容纳内容物重量达30~60kg 。饲料在前胃停留时间长,为细菌消化提供了条件。1.2.2 牛羊对碳水化合物的消化吸收 牛羊采食的碳水化合 物在口腔、食管内不发生变化,其进入瘤胃和网胃后,在细菌的作用下按以下步骤进行降解:第一步是高分子的碳水化合物降解为单糖。例如淀粉降解为糊精、麦芽糖至葡萄糖;纤维素降解为纤维多糖、纤维二糖至葡萄糖;半纤维素降解为纤维多糖、木糖和葡萄糖等。第二步是单糖进一步降解为以乙酸、丙酸和丁酸为主的挥发性脂肪酸以及CO 2、CH 4和H 2等。挥发性脂肪 酸被瘤胃壁吸收,而CH 4和H 2则随嗳气由口腔逸出。 在瘤胃中未被消化的碳水化合物和在其中合成的细菌多糖体通过真胃进入小肠。纤维素、半纤维素在小肠内不发生变化,淀粉、糖和细菌多糖体等经胰、肠碳水化合物酶的作用生成葡萄糖被吸收。小肠未消化吸收的碳水化合物和细菌多糖体进入大肠后,被细菌降解为挥发性脂肪酸。脂肪酸部分由大肠壁吸收,未被降解和吸收的碳水化合物随粪便排出。1.3 影响瘤胃挥发性脂肪酸之间摩尔浓度比例的因素 正常 情况下,碳水化合物在瘤胃内所形成的挥发性脂肪酸之间的摩尔浓度的比值是:乙酸70%(40.6%~74%)、丙酸20%(16.5%~39%)、丁酸10%(6.6%~13.9%)。当日粮精料比例较高时,瘤胃pH 值处于酸性,利于淀粉分解菌的活动,可使纤维分解菌受到抑制,其结果是丙酸产生量增多。反之,当日粮粗饲料的比例较高时,瘤胃pH 值处于近中性,适合纤维分解菌的活动,其结果为乙酸产量增加,丙酸减少。 提高丙酸的比例可提高饲料的利用率。一些饲料添加剂,例如瘤胃素可调节瘤胃发酵功能,提高丙酸比例,若用于肉牛,可提高饲料利用率10%以上。 牛羊对碳水化合物的吸收及代谢 李 莉 (四川省盐边县桐子林镇兽医站,四川盐边617100) 中图分类号:S858.215 文献标识码:C 文章编号:1001-8964(2012)02-0053-02 收稿日期:2012-01-10 动物保健 %%%%% %徐海鹰53

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素。 食物中含有的碳水化合物主要为淀粉,此外还包括少量的低聚糖和单糖。单糖分子无需消化可直接吸收,而低聚糖和淀粉必须经过消化酶水解成单糖后才能被机体吸收和利用。能消化淀粉的部位包括口腔和小肠。由于唾液中含有α-淀粉酶,摄入的淀粉首先在口腔中进行初步水解,产生少量的麦芽糖和葡萄糖,但因食物在口腔中的停留时间很短,因此这种水解量很小。拌和着唾液的食物经食道进入胃,由于胃酸能使淀粉酶失去活性,且胃中不存在水解淀粉的酶,故胃中不能消化淀粉。小肠是淀粉消化的主要场所。肠腔中由胰腺制造的胰α-淀粉酶是水解淀粉的最主要的酶,它能将进入小肠的淀粉水解为α-糊精、麦芽寡糖和麦芽糖。这些水解产物再经小肠液中的α-糊精酶、麦芽糖酶分别将α-糊精水解成葡萄糖,将麦芽寡糖和麦芽糖水解成葡萄糖。食物中所含的蔗糖和乳糖进入小肠后,分别在蔗糖酶和乳糖酶的催化下水解成葡萄糖等单糖。 食物中糖类经消化后几乎全部被水解成单糖,主要为葡萄糖,其次为果糖和半乳糖。这些单糖在小肠上部多以主动转运方式被吸收,但吸收速度各不相同。一般己糖吸收速度快于戊糖,糖醇类吸收最慢。吸收缓慢的糖到达肠的下部时,会与水结合,因此它有导泻作用,故摄入过量时会引起腹泻。果糖和木糖醇食用过多会发生腹泻就是这个道理。 碳水化合物主要的生理功能是构成机体的重要物质,提供热能,调节食品风味,维持大脑功能必须的能源,调节脂肪代谢,提供膳食纤维。膳食中缺乏碳水化合物将导致全身无力,疲乏、血糖含量降低,产生头晕、心悸、脑功能障碍等。严重者会导致低血糖昏迷。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。因此我们要严格注意碳水化合物的摄入。

七年级下册生物《消化和吸收》知识点整理

七年级下册生物《消化和吸收》知识点 整理 一.消化系统的组成(32页图) .消化道:口腔、咽、食道、胃、小肠(十二指肠)、大肠(盲肠)、肛门 2.消化腺:唾液腺:分泌唾液; 胃腺:分泌胃液; 肠腺:分泌肠液 肝脏(人体最大的消化腺):分泌胆汁。胆汁不含消化酶,把脂肪变成脂肪微粒。 胰腺(人体最重要的消化腺):分泌胰液 二.消化: .物理性消化:牙齿的咀嚼、舌的搅拌、胃肠的蠕动、胆汁把脂肪变成脂肪微粒 2.化学性消化:主要在小肠中进行 酶 酶 淀粉 麦芽糖 葡萄糖(遇碘变蓝是淀粉的特性) 从口腔开始 酶

蛋白质 氨基酸 从胃开始 胆汁 酶 脂肪 脂肪微粒 甘油+脂肪酸 从小肠开始 三.吸收 .口腔、咽、食道没有吸收功能。 2.胃只吸收少量水、无机盐和酒精。(喝酒损伤胃) 3.小肠可吸收所有物质:水、无机盐、维生素、葡萄糖、氨基酸、甘油和脂肪酸。(其中甘油和脂肪酸被吸收进小肠绒毛内的毛细淋巴管,其余的进入毛细血管。)4.大肠可吸收少量水、无机盐和维生素 四.小肠为什么是消化食物和吸收营养物质的主要场所? .消化液多。小肠内有胰液、肠液和胆汁三种消化液,消化液中含有消化各种营养物质的酶。 2.吸收的面积大。小肠的内表面有许多环形的皱襞和小肠绒毛,大大增加了小肠的吸收面积。(33页图)3.壁薄。小肠绒毛壁、毛细血管壁、毛细淋巴管壁都

只由一层上皮细胞构成。 .在下列器官中,基本没有消化功能的是()。 A.小肠 B.口腔 c.胃 D.大肠 2.下列食物不能被消化道直接吸收的是( )。 A.鱼肝油 B.矿泉水 c.面包 D.食盐 3.肝炎病人怕吃油腻食物的原因是( )。 A.唾液分泌过少 B.胆汁分泌过少 c.胃液分泌过少 D.肠液分泌过少 4.用下列两张纸做小肠壁结构的模型,( )作小肠外壁;( )作小肠内壁。

表常见食物碳水化合物含量表

高糖(碳水化合物)食物 碳水化合物是机体能量的主要来源,特别是提供唯一可被脑细胞及红血球所需的能量。不被使用的葡萄糖,可变成脂肪储存在体内。碳水化合物中含有一些不被消化的纤维,它有吸水及吸脂作用,所以有助清洗大肠及降低胆固醇,令大便畅通、体内废物顺利排出体外(见膳食纤维节)。 碳水化合物主要可分为糖、寡糖和多糖。糖主要存在于精制糖类中(如:蔗糖、蜜糖、糖果等)、蔬菜以至奶类制品。多糖则主要存在于淀粉类食物中,例如谷类、面包、土豆等。 高含量碳水化合物的食物很多,除了纯品(如糖类和淀粉)大约含量在90%~100%之外,碳水化合物含量高的食物主要是谷类(如面粉、大米、玉米等)和薯类(如白薯、土豆等)谷类食物一般含碳水化合物60%~80%;薯类脱水后高达80%左右;豆类为40%~60%。它们是血糖的主要来源。 我国营养学会建议,碳水化合物摄入量占总能量的55%左右,相当于一天摄入300g~500g的谷类食物。 表1—13 高碳水化合物食物含量表(以100g可食部计) 食物名称含量g 食物名称含量g 白砂糖99.9 麦芽糖82.0 冰糖99.3 无核蜜枣81.9

什绵糖98.9 脱水洋葱(白)81.9绵白糖98.9 籼米粉81.5酸梅晶98.4 枣(干)81.1水晶糖98.2 白薯粉80.9固体桔子饮料97.5 脱水马铃薯80.7宝宝福97.3 脱水洋葱(紫)80.6猕猴桃晶97.1 白薯干80.5红塘96.6 糜子米(炒)80.5桔子晶96.5 牛奶饼干80.3山查晶95.9 香油炒面80.1豌豆粉丝91.7 芡食米79.6泡泡糖89.8 南瓜粉79.5麻香糕88.7 脱水百合79.3麻烘糕87.2 陈皮79.0米花糖85.8 五谷香78.9

膳食纤维是一种不能被人体消化的碳水化合物

由吸收食物中有毒物质预防便秘和憩室炎,并且减低消化道中细菌排出的毒素。大多数植物都含有水溶性与非水溶性纤维,所以饮食均衡摄取水溶性与非水溶性纤维才能获得不同的益处。 每日摄入量标准 国际相关组织推荐的膳食纤维素日摄入量: 美国防癌协会推荐标准:每人每天30~40克; 欧洲共同体食品科学委员会推荐标准:每人每天30克。 世界粮农组织建议正常人群摄入量:每人27克/日。 中国营养学会提出中国居民摄入的食物纤维量及范围: 低能量饮食1800kcal为25g/天; 中等能量饮食2400kcal为30g/天; 高能量饮食2800 kcal为35g/天。 主要作用

2.降低血液中的胆固醇、甘油三酯,利于肥胖 3.清除体内毒素,预防色斑形成、青春痘等皮肤问题 4.减少糖类在肠道内的吸收,降低餐后血糖 5.促进肠道有益菌增殖,提高人体吸收能力 适宜人群 1.大便干结、习惯性便秘、腹胀、消化不良、肥胖者 3.糖尿病人士,特别是餐后血糖不稳定者 4.色斑沉着、面部暗黄、长痘者 食物来源 糙米和胚牙精米,以及玉米、小米、大麦、小麦皮(米糠)和麦粉(黑面包的材料)等 杂粮;此外,根菜类和海藻类中食物纤维较多,如牛蒡、胡萝卜、四季豆、红豆、豌豆、薯类和裙带菜等。膳食纤维是植物性成分,植物性食物是膳食纤维的天然食物来源。膳食纤维在蔬菜水果、粗粮杂粮、豆类及菌藻类食物中含量丰富。部分常见食物原料中膳食纤维的含量状况为:小白菜0 .7%、白萝卜0 .8%、空心菜1. 0%、茭白1 .1%、韭菜1. 1%、蒜苗1. 8%、黄豆芽1. 0%、鲜豌豆1 .3%、毛豆2 .1%、苦瓜1 .1%、生姜1 .4%、草莓1. 4%、苹果1. 2%、鲜枣1 .6%、枣(干)3 .1%、金针菜(干)6. 7%、山药0 .9%、小米1. 6%、玉米面1 .8%、绿豆4 .2%、口蘑6 .9%、银耳2 .6%、木耳7 .0%、海带9 .8%随着人们对膳

最新人体的消化与吸收教案(苏教版)七年级下册

总第课时 第二节人体的消化与吸收 一、教学目标: 知识目标 1.描述人体消化系统的组成 2.说出小肠的结构特点 能力目标 1.培养学生实验的观察、操作能力。 2.以学生自主学习、合作学习为主要方式,培养自主学习、合作学习的能力。 情感目标 1.通过小肠结构的观察活动,理解小肠是消化和吸收的主要场所,认同结构与功能相统一的观点。 2.培养学生关爱牙齿,养成良好的习惯,为今后工作和学习拥有良好的身体打下基础。 3.培养学生学习生物学的兴趣,体会在活动中与他人合作的重要性。 二、教学重点: 1.描述人体消化系统的组成。 2.说出小肠的结构特点 三、教学难点: 说出小肠的结构特点 四、课时安排: 3课时 五、教学过程: 第一课时 导入 CAI:有关食物的录像片 提问:他们在干什么?为什么要吃?食物进入人体后将发生怎样的变化呢?导入新课——人体对食物的消化吸收 (一)、人体消化系统的组成

[小故事]:姗姗小朋友吃苹果时不小心将种子咽下去了。这粒种子在姗姗的消化道内经历了一天的历险。他先遇到了像轧钢似的上下坚硬的怪物,差点被压得粉身碎骨;然后咯噔一下掉进了万丈深渊;刚躲过一劫又遇到酸雨;后来又钻进了一条又长又窄的迷宫;走出迷宫又钻进死胡同,幸亏及时改变方向;后来又与很臭的东西混在一起;最后在姗姗上厕所时离开了姗姗。 [出示]:消化系统模式图,请同学们描述消化系统的器官组成。 [讲述]:刚才同学们按照食物的经过路线描述的消化系统的组成,我们把食物经过的通道称之为消化道。但大分子的营养物质要在消化道内被分解成简单的溶于水的物质才能被人体细胞吸收,而起关键作用的则是消化腺。 [提问]:你知道消化道周围有哪些消化腺吗?它们分泌什么消化液?你能在自己身体上指出它们的部位吗? [小结]:消化系统组成: 消化道——口腔、咽、食道、胃、小肠、大肠、肛门 唾液腺——分泌唾液 肝脏——分泌胆汁 消化腺胰腺——分泌胰液 胃腺——分泌胃液 肠腺——分泌肠液 教师活动 [讲述]:口腔是消化道的起始端。口腔中有哪些器官呢?它们对食物的消化起什么作用? [出示]:牙齿的模型。牙齿是人体最坚硬的器官,让我们先来认识一下牙齿。 [自学]:书9-7图,了解牙齿的基本结构。 [讲述]:构成牙齿的基本物质是牙本质,牙冠的牙本质外有牙釉质,白色,是最坚硬的部分,因此牙齿是最坚硬的器官。牙齿的中央有牙髓腔,内充满着牙髓,并有丰富的血管和神经。我们常感到牙疼等是触及了牙神经。 [讲述]:如果我们不注意口腔卫生,就可能患龋齿。 [调查]:请同学们汇报在课前调查的同组同学中患龋齿的人数,我们一起来计算全班同学的龋齿发生率。 [讨论]:龋齿发生的可能原因。

植物组织中碳水化合物含量的测定(Somogyi法)

测定植物碳水化合物的含量,通常用80梍85%的酒精抽提,在此浓度的酒精溶液中,还原糖和蔗糖溶解而淀粉沉淀。过滤后在溶液中测定可溶性糖(包括还原糖和蔗糖),在残渣中测定淀粉。还原糖可根据其还原能力大小直接测定其含量。蔗糖和淀粉经水解后生成还原糖,测得其含量,然后换算成蔗糖和淀粉。纤维素用称重法,测得经酸、碱和有机溶剂处理过的样品。 Ⅰ.还原糖含量的测定 原理 重要反应如下; 1.还原糖(如葡萄糖)在碱性溶液中能将Cu2+还原为Cu+,产生Cu2O 沉淀。 2.加酸使KI与KIO3作用,放出I2来。 5KI+KIO2+3H2SO4→3I2+3K2SO4+3H2O 3.放出的I2立即与Cu2O作用。 Cu2O+H2SO4→Cu2SO4+H2O Cu2SO4+I2+K2SO4→2CuSO4+2KI 4.多余的I2用Na2S2O3滴定。 2Na2S2O3+I2→2NI+N2S4O6 将结果与空白滴定相比较,即知消耗I2量,可间接推算出测定液中还原糖含量。 仪器药品

分析天平台天平 烘箱水浴锅 电动粉碎机容量瓶 移液管烧杯 三角烧瓶漏斗 酒精5%硫酸锌 1%酚酞溶液:1g酚酞溶解在100ml95%酒精溶液中。 饱和氢氧化钡溶液:将蒸馏水煮沸,除去水中二氧化碳,冷却后加入固体Ba(OH)2盖好,过液,次日过滤。 铜碘试剂: 溶液A:取硫酸铜6.5g溶于100ml水中。 溶液B:取酒石酸钾钠12g,无水碳酸钠20g,碳酸氢钠25g溶于500ml 水中。 溶液C:取碘酸钾0.8g,碘化钾10g,草酸钾18g溶于200梍300ml 水中。用时将溶液B倒入溶液A中,再倒入溶液C中,混合后稀释至1000ml,混匀。 2.5mol/L H2SO4:浓硫酸143ml加入水中,稀释成1000ml。 淀粉指示剂:1g淀粉溶解在100ml水中,加热使之溶解即可。 0.005mol/L硫代硫酸钠标准溶液:参照实验39。 操作步骤 1.抽提 将采回的植物样品,分开部位,迅速放在60℃烘箱中烘干至恒重。剪碎后,放入电动粉碎机中粉碎。用电动分析天平分别称取样品1g,放入250ml三角烧瓶中,加入80%酒精50ml,放在70℃水浴锅中抽提3小时,将上清液过滤(瓶内残渣不要过滤出来),再往残渣内倒入80%酒精20ml,继续抽提3小时,过滤。如此提取3─5次,合并所有滤液,定容至500ml。最后将残渣烘干,留作分析淀粉用。 2.澄清.

碳水化合物的来源及参考摄入量

碳水化合物的来源及参考摄入量 碳水化合物的营养学意义 碳水化合物是生命细胞结构的主要成分及主要供能物质,并且有调节细胞活动的重要功能。 (一)供给能量 膳食碳水化合物是人类获取能量的最主要、最经济的来源。碳水化合物在体内被消化后,能够迅速氧化给机体提供能量,每克葡萄糖在体内氧化可以产生4lkcal的能量,氧化的最终产物是二氧化碳和水。碳水化合物消化吸收后转变成的葡萄糖除了被机体直接利用,还以糖原的形式储存在肝脏和肌肉中,一旦机体需要,月干脏中的糖原即被分解成葡萄糖以提供能量。 碳水化合物释放能量较快,是火脑神经系统和肌肉的主要能源,对维持其生理功能有着非常重要的作用。中枢神经系统只能利用葡萄糖提供能量,婴儿时期缺少碳水化合物会影响脑细胞的生长发育。 (二)构成机体重要生命物质 碳水化合物是构成机体组织细胞的重要物质,并参与多种生理活动。细胞中的碳水化合物含量约为2%~10%,主要以糖脂、糖和蛋白结合物的形式存在于细胞膜、细胞器、细胞质和细胞间质中。核糖和脱氧核酸参与构成生命遗传物质核糖核酸和脱氧核糖核酸。维持机体正常生理功能的一些重要物质,如抗体、酶和激素也需碳水化合物参与构成。 (三)节氮作用 当碳水化合物摄人不足,能量供给不能满足机体需要时,膳食蛋白中会有一部分通过糖原异生分解成葡萄糖以满足机体对能量的需要,而不能参与构成机体需要的重要物质。摄入充足的碳水化合物则可以节约这一部分蛋白质的消耗,不需要动用蛋白质来供能,增加体内氮的潴留,这一作用被称为碳水化合物对蛋白质的节约作用或者节氮作用(sparing protein action)。 (四)抗生酮作用 脂肪在体内代谢也需要碳水化合物参与,因为脂肪代谢所产生的乙酚基需要与草酰乙酸结合进入三羧酸循环,才能最终被彻底氧化。草酰乙酸是葡萄糖在体内氧化的中间产物,如果膳食中碳水化合物供应不足,体内的草酰乙酸相应减少,脂肪酸不能被完全氧化而产生大量的酮体,酮体不能及时被氧化而在体内蓄积,会导致酮血症和酮尿症。膳食中充足的碳水化合物可避免脂肪不完全氧化而产生过量的酮体,这一作用称为碳水化合物的抗生酮作用(antiketogenesis)。 人体每天至少摄人50g的碳水化合物,可以防止这些由于低碳水化合物饮食所导致的代谢反应的发生。碳水化合物的调节血糖、节氮和抗生酮作用,对于维持机体的正常代谢、酸碱平衡、组织蛋白的合成与更新有非常重要的意义。 (五)解毒作用 肝脏中的葡萄糖醛酸是一种非常重要的解毒剂,它能与许多有害物质如细菌毒素、酒精、砷等结合并排出体外。不能消化的碳水化合物在肠道细菌作用下发酵产生的短链脂肪酸也有一定的解毒作用。 (六)增强肠道功能 非淀粉多糖如纤维素、果胶、抗性淀粉、功能性低聚糖等不易消化的碳水化合物,能刺激肠道蠕动,增加粪便容积,选择性地刺激肠道中有益菌群的生长,对于维持正常肠道功能,减少毒物与肠道细胞的接触时间,保护人体免受有害菌的侵袭有重要作用。

碳水化合物的全部作用

基本介绍 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素,是人体必须的物质。 糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。因此,糖类化合物对医学来说,具有更重要的意义。 自然界存在最多、具有广谱化学结构和生物功能的有机化合物。可用通式Cx(H2O)y来表示。有单糖、寡糖、淀粉、半纤维素、纤维素、复合多糖,以及糖的衍生物。主要由绿色植物经光合作用而形成,是光合作用的初期产物。从化学结构特征来说,它是含有多羟基的醛类或酮类的化合物或经水解转化成为多羟基醛类或酮类的化合物。例如葡萄糖,含有一个醛基、六个碳原子,叫己醛糖。果糖则含有一个酮基、六个碳原子,叫己酮糖。它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。是人类生存发展必不可少的重要物质之一。 编辑本段发现历史 在人们知道碳水化合物的化学性质及其组成以前,碳水化合物已经得到很好的作用,如今含碳水化合物丰富的植物作为食物,利用其制成发酵饮料,作为动物的饲料等。一直到18世纪一名德国学者从甜菜中分离出纯糖和从葡萄中分离出葡萄糖后,碳水化合物研究才得到迅速发展。1812年,俄罗斯化学家报告,植物中碳水化合物存在的形式主要是淀粉,在稀酸中加热可水解为葡萄糖。1884年,另一科学家指出,碳水化合物含有一定比例的C、H、O三种元素,其中H和O的比例恰好与水相同为2:1,好像碳和水的化合物,故称此类化合物为碳水化合物,这一名称,一直沿用至今。 编辑本段化学组成 糖类化合物由C(碳),H(氢),O(氧)三种元素组成,分子中H和O的比例通常为 分子式 2:1,与水分子中的比例一样,故称为碳水化合物。可用通式Cm(H2O )n表示。因此,曾把这类化合物称为碳水化合物。但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2O )n 通式,如鼠李糖(C6H12O5)、脱氧核糖(C5H10O4)等;而有些化合物如甲醛、乙酸(C2H4O2)、乳酸(C3H6O3)等,其组成虽符合通式Cm(H2O )n,但结构与性质却与糖类化合物完全不同。所以,碳水化合物这个名称并不确切,但因使用已久,迄今仍在沿用。(另外像碳酸(H2CO3)、碳酸盐(XXCO3)、碳单质(C)、碳的氧化物(CO2、CO)、水(H2O)都不属于有机物,也就是不属于碳水化合物。

食物中碳水化合物的分析方法

食物中碳水化合物的分析方法 1997年FAO/WHO举办了关于碳水化合物的专家会议。这次会议的报告(FAO,1998)对各种类型的碳水化合物进行了详细描述,并总结所用的分析方法。本次技术委员会会议讨论了1997年专家会议提出的其他建议,如碳水化合物的术语。 多年来食物中总碳水化合物的含量都是用减差法计算出来的,而不是直接测定的。该方法是先分别测定食物中其他成分(蛋白质、脂肪、水、酒精、灰分),再用食物总重量减去这些成分。这被称为“减差法所得的总碳水化合物”,通过以下公式计算:100-(蛋白质+脂肪+水+灰分+酒精)g/100g食物。这种方法计算出的碳水化合物包括纤维以及一些严格上讲不能称为碳水化合物的成分,如有机酸(Merrill和Watt,1973)。总碳水化合物也可以通过直接测定单个碳水化合物和纤维的重量,然后采用加和法进行计算。可利用碳水化合物是指那些可以被体内的酶消化,从而被吸收并进入中间代谢过程的那部分碳水化合物(它不包括膳食纤维,膳食纤维只有在发酵后才能成为能量来源,见下文)。可利用碳水化合物可通过两种不同的方式得出:通过减差法计算,或直接测定。[原文注:不鼓励使用减差法计算可利用碳水化合物,因为这个值将所有非碳水化合物成分的检测误差都包括了进去,在直接分析中则不存在这种误差。]利用减差法计算可利用碳水化合物时,需要测定膳食纤维的量并从总碳水化合物中减去,即:100 -(蛋白质+脂肪+水+灰分+酒精+膳食纤维)g/100g食物,这样就可以计算出可利用碳水化合物的量,但不能反映出其所含的各种糖成分。此外,可利用碳水化合物也可以通过测定单个可利用碳水化合物再相加来计算。不论用哪种方法,可利用碳水化合物都可以表示为碳水化合物的重量或者单糖当量。膳食纤维是一个生理学和营养学上的概念,指在小肠中不被消化的碳水化合物成分。膳食纤维未被消化,通过小肠到达结肠后可被细菌(菌群)发酵,最终形成不同数量的短链脂肪酸和气体——二氧化碳、氢气和甲烷。短链脂肪酸是结肠粘膜细胞的一个重要的直接能量来源;也可被吸收并进入中间代谢(Cummings,1981)。 从化学上讲,膳食纤维包括:来自于细胞壁的纤维素、半纤维素、木质素和胶质,

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

精品文档 . 简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样, 故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素。 食物中含有的碳水化合物主要为淀粉,此外还包括少量的低聚糖和单糖。单糖分子无需消化可直接吸收,而低聚糖和淀粉必须经过消化酶水解成单糖后才能被机体吸收和利用。能消化淀粉的部位包括口腔和小肠。由于唾液中含有α-淀粉酶,摄入的淀粉首先在口腔中进行初步水解,产生少量的麦芽糖和葡萄糖,但因食物在口腔中的停留时间很短,因此这种水解量很小。拌和着唾液的食物经食道进入胃,由于胃酸能使淀粉酶失去活性,且胃中不存在水解淀粉的酶,故胃中不能消化淀粉。小肠是淀粉消化的主要场所。肠腔中由胰腺制造的胰α-淀粉酶是水解淀粉的最主要的酶,它能将进入小肠的淀粉水解为α-糊精、麦芽寡糖和麦芽糖。这些水解产物再经小肠液中的α-糊精酶、麦芽糖酶分别将α-糊精水解成葡萄糖,将麦芽寡糖和麦芽糖水解成葡萄糖。食物中所含的蔗糖和乳糖进入小肠后,分别在蔗糖酶和乳糖酶的催化下水解成葡萄糖等单糖。 食物中糖类经消化后几乎全部被水解成单糖,主要为葡萄糖,其次为果糖和半乳糖。这些单糖在小肠上部多以主动转运方式被吸收,但吸收速度各不相同。一般己糖吸收速度快于戊糖,糖醇类吸收最慢。吸收缓慢的糖到达肠的下部时,会与水结合,因此它有导泻作用,故摄入过量时会引起腹泻。果糖和木糖醇食用过多会发生腹泻就是这个道理。 碳水化合物主要的生理功能是构成机体的重要物质,提供热能,调节食品风味,维持大脑功能必须的能源,调节脂肪代谢,提供膳食纤维。膳食中缺乏碳水化合物将导致全身无力,疲乏、血糖含量降低,产生头晕、心悸、脑功能障碍等。严重者会导致低血糖昏迷。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。因此我们要严格注意碳水化合物的摄入。

相关文档
相关文档 最新文档