文档视界 最新最全的文档下载
当前位置:文档视界 › 医学图像分割方法研究论文

医学图像分割方法研究论文

医学图像分割方法研究论文
医学图像分割方法研究论文

医学图像分割方法研究

摘要:医学图像分割属于图像分割技术领域,它能把医生感兴趣的图像提取出来,从而进行定量分析或识别。医学图像分割方法众多,但是没有一种通用的方法可以适应于任何医学图像。本文详细研究了两种实用的医学图像分割方法:阈值法和区域生长法。

关键词:医学图像分割,阈值法,区域生长法

近年来,随着信息技术和计算机技术的飞速发展,医学成像技术也迈上了一个新的台阶,人们能够获得大量高分辨率的医学图像,如:计算机断层成像(computed tomography,ct)、核磁共振成像(magnetic resonance imaging,mri)、超声成像(ultrasonography,us)等技术已经广泛应用于医疗诊断、术前计划、治疗、术后监测等各个环节。但是,各种医学成像设备得到的图像包含了大量多余的信息,而医生往往只对图像中的一部分感兴趣,于是医学图像分割技术应运而生,它实质上属于图像分割技术领域。目前,医学图像分割主要以各种细胞、组织和器官的图像作为处理的对象或内容。

1 医学图像分割

所谓图像分割,就是把不同的区域块分开,这些区域块之间不能出现交集。医学图像分割具有重要的现实意义,因为医学成像设备拍摄的图像中含有大量的器官或组织等结构,而医生只需要其中的某一部分结构进行病灶分析,所以需要借助分割技术提取出重要信息。为了区分开不同的区域块,在医学图像分割时可以借助灰度、

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

医学图像分割方法综述

医学图像分割方法综述 林瑶,田捷1 北京,中国科学院自动化研究所人工智能实验室,100080 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 关键词:医学图像分割 综述 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...: g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。 (b) 是连通的区域。 g k (c) ,即任意两个子区域不存在公共元素。 (d) 区域满足一定的均一性条件。均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。 医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。这些都给医学图像分割的分割带来了困难。传统的分割技术或者完全失败,或者需要一些特殊的处理技术。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),x g x 1 联系人:田捷 电话:82618465 E-mail:tian@https://www.docsj.com/doc/374571428.html,

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

图像分割方法的比较研究

图像分割方法的比较研究 在计算机视觉的相关研究中,图像分割是连接低级视觉和高级视觉的桥梁和纽带,而图像分割是计算机视觉系统中最关键和重要的一个环节。在概要介绍几种常用图像分割方法的基础上,比较了每种图像分割算法的优缺点及其适应范围,结果表明:不同工程应用中,应根据其需求与图像特点合理采用不同的图像分割方法以达到更好的处理效果。 标签:图象分割;图象处理 1 引言 近年来,随着工业、农业、医学、军事等领域自动化和智能化需求的迅速发展,对图像处理技术的要求也日益提高。其中,对图像的自动识别与理解就是一项重要任务,而对图像进行分割来提取目标是其关键步骤之一,如果得不到合理的图像分割图,也就无法对图像进行正确的识别与理解。在过去的四十多年里,图像分割的研究一直受到人们高度的重视。迄今为止,研究者提出了上千种不同类型的分割算法,而且近年来每年都有上百篇相关研究成果发表。但是,现有的方法多是为特定应用设计的,有很大的针对性和局限性,对图像分割的研究还缺乏一个统一的理论体系。Fu和Mui从细胞学图像处理的角度将图像分割技术分为三大类:特征阈值或聚类、边缘检测和区域提取。依据算法所使用的技术或针对的图像,Pal and Pal把图像分割算法分成了6类:阈值分割、像素分割、深度图像分割、彩色图像分割、边缘检测和基于模糊集的方法。本文将依据上述两种分类方法进行深入研究。 2 图象分割方法 简而言之,图像分割(Image Segmentation)就是把图像中的物体与背景或物体与物体分割开,实现不同区域的特殊处理。 2.1 基于阈值的分割方法 这类方法简单实用,在过去的几十年间备受重视,其分类也不一而足。根据使用的是图像的整体信息还是局部信息,可以分为上下文相关方法和上下文无关方法;根据对全图使用统一阈值还是对不同区域使用不同阈值,可以分为全局阈值方法和局部阈值方法;另外,还可以分为单阈值方(bileverthresholding)和多阈值方法。 阈值分割的核心问题是如何选择合适的阈值。其中,最简单和常用的方法是从图像的灰度直方图出发,先得到各个灰度级的概率分布密度,再依据某一准则选取一个或多个合适的阈值,以确定每个像素点的归属。选择的准则不同,得到的阈值化算法就不同。 下面就常见的几种阈值分割算法进行比较:

医学图像分割方法汇总

医学图像分割方法汇总 本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。 1阈值法分割 1-1 简单阈值分割 简单的阈值处理是图像分割中最为简单基础的一种分割方法。对于一副灰度图像,使用给定的阈值。图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图1.2是利用五个不同的阈值对脑部图像(图 1.1)的分割结果。(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。 图1.1原始脑部图像

图1.2 使用不同阈值分割后的结果 从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。 1-2 otsu阈值分割法 Otsu阈值分割法又称大津阈值分割法。它的原理是对图像所有的像素围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。 原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。 假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

医学图像的分割

第六章医学图像分割 医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。 第一节医学图像分割的意义、概念、分类和研究现状 医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。 所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。一般说来,有意义的图像分割结果中至少存在一个包含感兴趣目标的区域。

图像分割技术的研究背景及意义

图像分割技术的研究背景及意义 1概述 2图像分割技术的研究背景及意义 2.1阈值分割方法 2.2基于边缘的分割方法 2.3基于区域的分割方法 2.4 结合特定理论工具的分割方法 1概述 图像的研究和应用中,人们往往对图像中的某些部分感兴趣,这些感兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单一区域,也可以对应多个区域),称之为目标或前景;而其他部分称为图像的背景。为了辨识和分析目标,需要把目标从一幅图像中孤立出来,这就是图像分割要研究的问题。 2图像分割技术的研究背景及意义 图像分割是图像处理中的一项关键技术,也是一经典难题,发展至今仍没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,对近几年来出现的图像分割方法作了较为全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研人员具有一定的启发作用。 图像分割是图像分析的第一步,图像分割接下来的任务,如特征提取、目标识别等的好坏,都取决于图像分割的质量如何。由于该课题的难度和深度,进展比较缓慢。图像分割技术自20世纪70年代起一直受到人们的高度重视,虽然研究人员针对各种问题提出了许多方法,但迄今为止仍然不存在一个普遍适用的理论和方法。另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述,并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法4类。

2.1阈值分割方法 阈值分割方法的历史可追溯到近40前,现已提出了大量算法。阈值分割法就是简单的用一个或几个阈值将图像的直方图分成几类,图象中灰度值在同一个灰度类内的像素属于同一个类。它是一种PR法。其过程是决定一个灰度值,用以区分不同的类,这个灰度值就叫阈值。它可以分为全局阈值分割和局部阈值分割。所谓全局阈值分割是利用整幅图像的信息来得到分割用的阈值,并根据该阈值对整幅图像进行分割;而局部阈值分割是根据图像中的不同区域获得对应的不同区域的阈值,利用这些阈值对各个区域进行分割,即一个阈值对应一个相应的子区域,这种方法也叫称为适应阈值分割。可以看出,确定一个最优阈值是分割的关键。现有的大部分算法都是集中在阈值确定的研究上。阈值分割方法根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松驰法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。 目前提出了许多新方法,如严学强等人提出了基于量化直方图的最大熵阈值处理算法,将直方图量化后采用最大熵阈值处理算法,使计算量大大减小。薛景浩、章毓晋等人提出基于最大类间后验交叉熵的阈值化分割算法,从目标和背景的类间差异性出发,利用贝叶斯公式估计象素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。这种方法结合了基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能,取得很好的通用性和有效性,该算法也容易实现二维推广,即采用二维统计量(如散射图或共生矩阵)取代直方图,以提高分割的准确性。俞勇等人提出的基于最小能量的图像分割方法,运用了能量直方图来选取分割阈值。任明武等人提出的一种基于边缘模式的直方图构造新方法,使分割阈值受噪声和边缘的影响减少到最小。程杰提出的一种基于直方图的分割方法,该方法对Ostu准则的内在缺陷进行了改进,并运用对直方图的预处理及轮廓追踪,找出了最佳分割阈值。此方法对红外图像有很强的针对性,付忠良提出的基于图像差距度量的阈值选取方法,多次导出Ostu方法,得到了几种与Ostu类似的简单计算公式,使该方法特别适合需自动产生阈值的实时图像分析系统。陈向东、常文森等人提出了基于小波变换的图像分数维计算方法,利用小波变换计算图像的分数维准确性高的特性。结果表明计算出的图像分数维准确,而且通过应用快速小波变换可以满足实时计算的要求,为实时场景分析提供有效的方法。建立在积分几何和随机集论基础之上的数学形态学以其一整套变换、概念和算法为数学工具,提供了并行的、具有鲁棒性的图像分割技述。它不仅能得到图像中各种几何参数的间接测量,反映图像的体视特性,而

图像分割技术在医学图像处理中的应用研究

2007年3月第期 3TAIYU ANSCI-TECH 图像分割是指将图像分割成各具特征的区域并提取出感兴趣的目标的技术和过程,是图像处理到图像分析的关键步骤。在医学领域中,图像分割常常用于病变区域提取,特定组织测量以及实现三维重建研究,因此研究图像分割技术在医学图像处理过程中具有十分重要的意义。 1基于区域的分割方法 基于区域的分割方法是利用区域内的特征的相 似性把图像划分为一系列有意义的区域。 1.1阈值法 阈值法是一种最常用的并行区域技术,阈值是 用于区分不同目标的灰度值。阈值分割方法的结果依赖于阈值的选取,确定阈值是阈值分割的关键,阈值分割实质上就是按照某个准则求出最佳阈值的过程。 阈值法的优点是计算简单、运算速度快,特别是不同物体或结构之间有较大的强度对比时,能够得到很好的分割效果,此分割方法通常是交互式的,由于阈值法能实现实时操作,所以它更易于建立在用户视觉估计的基础上。 阈值法的缺陷是:最简单形式的阈值法只能产 生二值图像来区分两个不同的类别。此外,阈值法在考虑像素本身灰度值的同时并不考虑图像的空间分布,这样其分割结果就对噪声很敏感。针对它的不足,一些学者提出了许多经典的算法,如局部阈值、模糊阈值,随机阈值等方法。阈值分割对于 CT图像的效果较好,但在选取阈值时需要用户依 经验判断,或者先做多次尝试性分割后再对阈值进行调整,直至用户满意为止。Kim等用多次阈值分割法检测螺旋CT图像中的肺结性病变,共检测了 24例病人的827张图像,检测结果灵敏度为96%, 并且没有出现假阳性结果[1]。 1.2区域生长法 区域生长法是根据预先定义的标准,提取图像 中相连接的区域的一种分割方法。采用区域生长法的关键在于种子点的位置选择、生长准则和生长顺序。 区域生长法对面积不大的区域进行分割时,效果显著,如果对面积较大的区域进行分割,则计算速度就会减慢。另外,对于图像中不相邻而灰度值相同或相近的区域,不能一次分割出来,只能一次分割一个区域。 2基于边界的分割方法 基于边界的分割方法是利用不同区域间像素灰 度不连续的特点检测出区域间的边缘,从而实现图像分割。根据边缘检测方法的不同,通常把边缘检测方法分成串行边缘检测和并行边缘检测两大类。 2.1串行边缘检测法 串行边缘检测法首先要检测出一个边缘起始 点,然后根据某种相似性准则寻找与前一点同类的 边缘点,这种确定后续相似点的方法称为跟踪。根据跟踪方法的不同,这种串行边缘检测方法又可分为轮廓跟踪、光棚跟踪和全向跟踪3种。 图像分割技术在医学图像处理中的 应用研究 马春梅1,刘贵如2,王陆林3 文章编号:1006-4877(2007)03-0064-02 收稿日期:2007-01-19;修回日期:2007-02-10 作者简介:马春梅(1978-),女,山西朔州人。2005年9月就 读于山西大学,攻读硕士学位,助教。 (1.山西忻州师范学院数学系,山西 忻州 034000;2.云南师范大学计算机科学与信息技术学院,云南 昆明650092; 3.西南交通大学,四川 成都 610031) 摘 要:图像分割是图像处理、图像分析的关键步骤,而医 学图像分割是图像分割的一个重要的应用领域,也是一个经典难题。从应用的特定角度,论述了医学图像处理中图像分割的几种算法,对近年来医学图像分割的新方法或改进算法进行了阐述,并简要介绍了每种算法的特点及应用。关键词:图像分割;医学图像处理;边缘检测中图分类号:TP391.41 文献标识码:A 应用技术

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

医学图像分割方法综述

医学图像分割方法综述 随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。文章针对近年来提出的图像分割方法进行了总结。 标签:图像分割;区域生长;聚类;水平集;图割 1 概述 图像分割是图像处理和计算机视觉领域的基础。分割结果直接影响着后续任务的有效性和效率[1]。图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。 2 图像分割方法分类 医学图像有各种成像模态,比如CT、MRI、PET、超声等。由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。 2.1 聚类法 聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。 K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下: 其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x 表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。显然,J越小表明聚类效果越好。 K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中隨机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上

医学图像分割综述

医学图像分割综述 郭爱心 安徽大学 摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。 关键字:医学图像分割意义方法评估标准发展前景 A Review of Medical Image Segmentation Ai-Xin Guo Anhui University Abstract:Image segmentation is the key of image processing and analysis.With the development of medical image,image segmentation is of great significance in medical applications.From the perspective of medical applications,this paper made a simple review of the medical image segmentation on it’s significance、methods、evaluation standards and development prospects. Key words:medical image,segmentation,significance,methods,evaluation standards,development prospects 1.医学图像分割的意义 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超声)及其它医学影像设备所获得的图像[2]。医学图像分割是将原始的2D或3D图像划分成不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来[1]。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。 医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,由于人与人之间有很大的差别,且人体组织结构形状复杂。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 2.医学图像分割的方法 2.1.基于区域的分割方法 基于区域的分割方法有阈值法,区域生长和分裂合并,分类器与聚类和基于随机场的方法等。 阈值分割是最常见的并行直接检测区域的图像分割方法。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开[2]。阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围

医学图像处理技术

医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。 2.2关键技术: 图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自

相关文档