文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论知识点总结

概率论知识点总结

概率论知识点总结
概率论知识点总结

概率论知识点总结

第一章 随机事件及其概率

第一节 基本概念

随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.

样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.

一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算)

包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。

事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。

事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。

互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。

对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:

Ω=?Φ=?B A B A ,。

事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA

(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC

(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ?=? B A B A ?=?

第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1

(3)可数可加性: ????n A A A 21两两不相容时

++++=????)()()()(2121n n A P A P A P A A A P

概率的性质: (1)P(Φ)=0

(2)有限可加性:n A A A ??? 21两两不相容时

)()()()(2121n n A P A P A P A A A P +++=???

当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=

(4)P(A -B)=P(A)-P(AB)

(5)P (A ∪B )=P(A)+P(B)-P(AB)

第三节 古典概率模型

1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为n

k A P =

)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)

()

()(Ω=

μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.

第四节 条件概率

条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).

)

()

()|(B P AB P B A P =

乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)

全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则

∑==

)|()()

|()()

()

()|(j

j i i i i A B P A P A B P A P B P B A P B A P

第五节 事件的独立性

两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.

三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立

三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立

独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立

总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用, 应牢固掌握。3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。

第二章 一维随机变量及其分布

第二节 分布函数

分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数 F(x)的值就表示X 落在区间

],(x -∞内的概率

分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F

第三节 离散型随机变量

离散型随机变量的分布律:设k x (k=1,2, …)是离散型随机变量X 所取的一切可能值,称

k k p x X P ==}{为离散型随机变量X 的分布律,也称概率分布.

当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。 分布律的性质:(1)10≤≤k p ;(2)

1=∑k

p

离散型随机变量的概率计算:

(1)已知随机变量X 的分布律,求X 的分布函数;

∑≤=

≤=x

x k

k x

P x X P x F )(}{)(

(2)已知随机变量X 的分布律, 求任意随机事件的概率; (3)已知随机变量X 的分布函数,求X 的分布律

)0()(}{--==k k k x F x F x X P

三种常用离散型随机变量的分布:

1.(0-1)分布:参数为p 的分布律为p X P p X P -====1}0{,}1{

2.二项分布:参数为n ,p 的分布律为k

n k k n p p C k X P --==)1(}{,n k ,,2,1,0 =。例如

n 重独立重复实验中,事件A 发生的概率为p ,记X 为这n 次实验中事件A 发生的次数,则X ~B (n ,p )

3.泊松分布:参数为λ的分布率为λλ-=

=e k k X P k

!

}{, ,2,1,0=k 。例如记X 为某段事

件内电话交换机接到的呼叫次数,则X ~P (λ)

第四节 连续型随机变量

连续型随机变量概率密度f(x)的性质 (1)f(x)≥0 (2)

1)(=?

+∞

-dx x f ,0)(}{===?a

a

dx x f a X P

(3)?

=≤≤=≤<=<≤=<

a

dx x f b X a P b X a P b X a P b X a P )(}{}{}{}{

(4)?

-=

'=x

dx x f x F x F x f )()(),()(

连续型随机变量的概率计算:

(1)已知随机变量X 的密度函数,求X 的分布函数;?

-=

x

dx x f x F )()(

(2)已知随机变量X 的分布函数,求X 的密度函数;)()(x F x f '= (3)已知随机变量X 的密度函数, 求随机事件的概率;?

=

<

a

dx x f b X a P )(}{

(4)已知随机变量X 的分布函数,求随机事件的概率;)()(}{a F b F b X a P -=<<

三种重要的连续型分布:

1.均匀分布:密度函数???

??≤≤-=else

b x a a

b x f 0

1)(,记为 X ~U[a ,b].

2. 指数分布:密度函数??

?≤>=-00

)(x x e x f x

λλ,记为X ~E (λ) 3. 正态分布:密度函数2

22)(21)(σμσ

π--=

x e

x f ,记为),(~2

σμN X

N (0,1)称为标准正态分布.标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布,然后再计算概率.

)(

)(

)()(}{σ

μ

σ

μ

-Φ--Φ=-=<

第五节 随机变量函数的分布

离散型:在分布律的表格中直接求出;

连续型:寻找分布函数间的关系,再求导得到密度函数间的关系;注意分段函数情况可能需要讨论,得到的结果也可能是分段函数。

))(()}({})({}{)(y G F y G X P y X g P y Y P y F Y =≤=≤=≤=

第三章 多维随机变量及其分布

第一节 二维随机变量的联合分布函数

联合分布函数},{),(y Y x X P y x F ≤≤=,表示随机点落在以(x ,y )为顶点的左下无穷矩形区域内的概率。 联合分布函数的性质:

(1)分别关于x 和y 单调不减; (2)分别关于x 和y 右连续;

(3)F (-∞ , y ) = 0,F ( x ,-∞ ) =0,F(-∞,-∞) = 0 F ( +∞ ,+∞ ) = 1

第二节 二维离散型随机变量

联合分布律:ij j i p y Y x X P ===},{ 联合分布律的性质:0≥ij p ;1=∑∑i

j

ij

p

第三节 二维连续性随机变量 联合密度:?

?

-∞

-=

y

x

du v u f dv y x F ),(),(

联合密度的性质:0),(≥y x f ;

1),(2

=??R dxdy y x f ;??=∈D

dxdy y x f D y x P ),(}),{(

第四节 边缘分布

二维离散型随机变量的边缘分布律:在表格边缘,对应概率相加求出;

二维连续性随机变量的边缘密度:先求出边缘分布函数,在求导求出边缘密度

第六节 随机变量的独立性 独立性判断:

(1)若Y X ,取值互不影响,可认为相互独立; (2)根据独立性定义判断)()(),(y F x F y x F Y X = 离散型可用j i ij p p p ??=

连续型可用)()(),(y f x f y x f Y X =

独立性的应用:(1)判断独立性;(2)已知独立性,由边缘分布确定联合分布

第四章 随机变量的数字特征 离散型随机变量数学期望的计算∑=

k

k k

p x

EX ,∑=k

k k p x g X g E )())((

连续型随机变量数学期望的计算?=dx x xf EX )(,?

=dx x f x g X g E )()())((

方差的计算:2)(EX X E DX -=,)()(2

2X E X E DX -=

数学期望的性质 (1)E (C ) = C

(2)E (CX ) = CE (X )

(3)E (X + Y ) = E (X ) + E (Y )

(4)当 X ,Y 独立时,E (X Y ) = E (X )E (Y ) 方差的性质 (1)D (C) = 0

(2)D (CX ) = 2

C D(X)

(3)若 X ,Y 相互独立,则D ( X ± Y ) = D ( X ) + D (Y )

常见分布的数学期望和方差

两点分布,二项分布,泊松分布,均匀分布,正态分布,指数分布

概率统计知识点汇总

概率第一章 (一)概率的加减乘除运算 (二) 概率的计算 1. 古典概型的计算 2. 条件概率的计算 (三) 全概率公式与贝叶斯公式 (四) n 重伯努利试验 概率第二章 (一)随机变量分布函数 1. 分布函数的定义及性质 2. 学会用分布函数表示随机变量落入指定区域的概率 (二)离散型随机变量 1. 具体问题会求解离散型随机变量的分布列 分布列要满足的条件 2. 由分布列会求解分布函数 3. 由分布函数会求解分布列 4. 掌握三个常见的离散型随机变量 (三)连续型随机变量 1. 由分布函数会求解分布密度 2. 由分布密度会求解分布函数 3. 利用分布密度求解未知参数 4. 掌握三个常见的连续型随机变量 (四)随机变量函数的分布 1. 离散型随机变量的函数 2. 连续型随机变量的函数 概率第三章 二维随机向量 (一)联合分布函数的定义及性质 联合概率分布函数定义为____),(=y x F 联合分布函数的性质: ___),(____,),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F y F x F 用联合概率分布函数表示二维随机向量落入指定区域的概率 ____),(2121=≤<≤

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总 一、确定事件:包括必然事件和不可能事件 1、在一定条件下必然要发生的事件,叫做必然事件。必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。 2、在一定条件下不可能发生的事件,叫做不可能事件。不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。这是不可能事件。 3、必然事件的概率为1,不可能事件的概率为0 二、随机事件 在一定条件下可能发生也可能不发生的事件,叫做随机事件。 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。 三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件? ①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破; ②明天太阳从西方升起;③掷一枚硬币,正面朝上; ④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达. 解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①② 三、概率 1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) . (1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。(2)概率指的是事件发生的可能性大小的的一个数值。 2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = m n . (1)一般地,所有情况的总概率之和为1。(2)在一次实验中,可能出现的结果有限多个. (3)在一次实验中,各种结果发生的可能性相等. (4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。 (5)一个事件的概率取值:0≤P(A)≤1 当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1 不可能事件的概率为0,即P(不可能事件)=0 随机事件的概率:如果A为随机事件,则0<P(A)<1 (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

概率论重点及课后题答案2

第2章条件概率与独立性 一、大纲要求 (1)理解条件概率的定义. (2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. (3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. (4)了解独立重复试验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 三、基础知识 1.条件概率 定义设有事件A B 、,且()0P B ≠,在给定B 发生的条件下A 的条件概率,记为(|)P A B ,有 ()(|)() P AB P A B P B = 2.乘法公式

定理若对于任意事件A B 、,都有()0,()0P A P B >>,则 ()()(|)()(|)P AB P A P B A P B P A B == 这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,,,n A A A 为任意n 个事件(2n ≥),且121()0n P A A A -> ,则有 121121312121()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列(有限或无限个)两两互不相容的事件,有 1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列(有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1 ()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、(或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、;、 中有一对是相互独立的, 则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立. 定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤ 成立: ()()()i j i j P A A P A P A =(共2n C 个)

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这 个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因 i A 的概率问题 全概率公式:()()() 1 B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球,2分 则 b a a B P += )(1,2分 111++++ ++++=b a a b a b b a a b a a b a a +=2分 依次类推2分 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少? 、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品 进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解设A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B =

概率论知识点总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。 事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。 事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。 互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。 对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质: Ω=?Φ=?B A B A ,。 事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ?=? B A B A ?=? 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时

XX考研数学概率论重要考点总结

XX考研数学概率论重要考点总结 第一章随机事件和概率 一、本章的重点内容: 四个关系:包含,相等,互斥,对立﹔ 五个运算:并,交,差﹔ 四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔ 概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔ 五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔· 条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。 近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。 二、常见典型题型: 1.随机事件的关系运算﹔ 2.求随机事件的概率﹔ 3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。 第二章随机变量及其分布 一、本章的重点内容: 随机变量及其分布函数的概念和性质(充要条件)﹔

分布律和概率密度的性质(充要条件)﹔ 八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔ 会计算与随机变量相联系的任一事件的概率﹔ 随机变量简单函数的概率分布。 近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布 二、常见典型题型: 1.求一维随机变量的分布律、分布密度或分布函数﹔ 2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔ 3.反求或判定分布中的参数﹔ 4.求一维随机变量在某一区间的概率﹔ 5.求一维随机变量函的分布。 第三章二维随机变量及其分布 一、本章的重点内容: 二维随机变量及其分布的概念和性质, 边缘分布,边缘密度,条件分布和条件密度, 随机变量的独立性及不相关性, 一些常见分布:二维均匀分布,二维正态分布, 几个随机变量的简单函数的分布。

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

统计和概率知识点总结

数据的收集、整理与描述 1、全面调查:考察全体对象的调查方式叫做全面调查。 2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3、总体:要考察的全体对象称为总体。 4、个体:组成总体的每一个考察对象称为个体。 5、样本:被抽取的所有个体组成一个样本。 6、样本容量:样本中个体的数目称为样本容量。 7、样本平均数:样本中所有个体的平均数叫做样本平均数。 8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。 9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 10、频率:频数与数据总数的比为频率。 11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。 数据的分析 1、平均数:一般地,如果有n 个数 ,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。 2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次 (这里n f f f k =++ 21)。那么,根据平均数的定义,这n 个数的平均数可以表示为 n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。 3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。 5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,

概率论和数理统计知识点与练习题集

第一章概率论的基本概念 §概率的定义 一、概率的性质 (1)1 P. ≤A ) ( 0≤ (2)0 ) P,1 φ (= P. S ) (= (3)()()()() P A B P A P B P AB. ?=+- (4)) A P- =. P (A ( 1 ) (5)) P A B B A = P P- -.特别地,若A = ( ) ( ) ( P (AB ) A B?,-,) = P- ( ) B P A P≥. (A ( B ( ) ) ) P A P (B 例设,A B为随机事件, ()0.4,()0.3 P A B ?= P A P B A,则()_____. =-= 解:,3.0 A P B B P()()()()0.7 P A B P A P B P AB ?=+-= P -AB ( ) ( ) (= = - )

§ 条件概率 一、 条件概率 定义 设B A ,是两个事件,且0)(>A P ,称)|(A B P = ) () (A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。 二、全概率公式 全概率公式:12,,,n A A A 为样本空间S 的一个事件组,且满足: (1)12,, ,n A A A 互不相容,且),,2,1(0)(n i A P i =>; (2) 12?? ?=n A A A S . 则对S 中的任意一个事件B 都有 ) ()()()()()()(2211n n A B P A P A B P A P A B P A P B P +++=

例设有一仓库有一批产品,已知其中50%、30%、20%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为20 1 ,151,101,现从这批产品中任取一件,求取得正品的概率 解 以1A 、2A 、3A 表示诸事件“取得的这箱产品分别是甲、乙、丙厂生产”;以B 表示事件“取得的产品为正品”,于是: ;20 19 )|(,1514)|(,109)|(,0102)(,103)(,105)(321321====== A B P A B P A B P A P A P A P 按全概率公式 ,有: 112233()(|)()(|)()(|)() =++P B P B A P A P B A P A P B A P A 92.010 2 20191031514105109=?+?+?= 三、 贝叶斯公式 设B 是样本空间S 的一个事件,12,,,n A A A 为S 的一个事件组, 且满足:(1)12,, ,n A A A 互不相容,且),,2,1(0)(n i A P i =>; (2) 12?? ?=n A A A S . 则 ) ()()()()()()() ()|(11n n k k k k A B P A P A B P A P A B P A P B P B A P B A P ++= = 这个公式称为贝叶斯公式。 例:有甲乙两个袋子,甲袋中有4个白球,5个红球,乙袋中有4个白球,4个红球.今从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,

高中数学概率统计知识点总结

高中数学概率统计知识 点总结 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

高中数学概率统计知识点总结 一、抽样方法 1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法。 3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模) 4.分层抽样: 二、样本估计总体的方式 1、用样本的频率分布估计总体分布 (1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。 茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。 2、用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数的算法;(2)标准差、方差公式。 3、样本均值:n x x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 2 22212)()()(-++-+-== 三、两个变量的线性相关 1、正相关 2、负相关 正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减) 四、概率的基本概念 (1)必然事件(2)不可能事件(3)确定事件(4)随机事件 (5)频数与频率(6)频率与概率的区别与联系 必然事件和不可能事件统称为确定事件 1他们都是统计系统各元件发生的可能性大小; 2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数 :一组数据中,出现次数最多的数。 2、平均数 : ①、常规平均数: x x 1 x 2 x n ②、加权平均数: x x 1 1 x 2 2 x n n n 1 2 n 3、中位数: 从大到小或者从小到大排列,最中间或最中间两个数的平均数 。 4、方差: s 2 1 [( x 1 x) 2 ( x 2 x )2 ( x n x )2 ] n 二、频率直方分布图下的频率 1、频率 =小长方形面积: f S y 距 d ;频率 =频数 / 总数 2、频率之和 : f 1 f 2 f n 1 ;同时 S 1 S 2 S n 1 ; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数: 最高小矩形底边的中点。 2、平均数: x x 1 f 1 x 2 f 2 x 3 f 3 x n f n x x 1 S 1 x 2 S 2 x 3 S 3 x n S n 3、中位数: 从左到右或者从右到左累加,面积等于 0.5 时 x 的值。 4、方差: s 2 ( x 1 x )2 f 1 ( x 2 x) 2 f 2 ( x n x) 2 f n 四、线性回归直线方程 : ? ? ? bx y a n (x i x )( y i y ) n x i y i nxy ? ? 其中: b i 1 i 1 , a? y bx n n ( x i x )2 x i 2 nx 2 i 1 i 1 1、线性回归直线方程必过样本中心 ( x , y ) ; ? ? 0 : 负相关。 2、 b 0 : 正相关; b ? 3、线性回归直线方程: y? ? bx a?的斜率 b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 ?i 1、残差 : ?i y i ?i 越小越好; e y (残差 =真实值—预报值)。分析: e 2、残差平方和 : n ? ) 2 ( y i , i 1 y i n ( y i y ) 2 ( y 1 y ) 2 ( y y ) 2 ( y y ) 2 分析:①意义:越小越好; ②计算: ?i ?1 2 ?2 n ?n i 1 n ?i ) 2 3、拟合度(相关指数) : R 2 1 ( y y ,分析:① . R 2 0,1 ②. 越大拟合度越高; i 1 的常数; n y)2 i ( y i 1 n n 4、相关系数 : r i ( x i x )( y i y) x i y i nx y 1 i 1 n x)2 n y) 2 n x) 2 n y )2 i 1( x i i ( y i ( x i ( y i 1 i 1 i 1 分析:① . r [ 1,1]的常数; ② . r 0: 正相关; r 0: 负相关 ③. r [0,0.25] ;相关性很弱; r (0.25,0.75) ;相关性一般; r [0.75,1] ;相关性很强; 六、独立性检验 x 1 x 2 1、2×2 列联表 : 合计 2、独立性检验公式 bc)2 y 1 a b a b ①. k 2 (a n( ad d ) y 2 c d c d b)(c d )(a c)(b 合计 a c b d n ②.犯错误上界 P 对照表 3、独立性检验步骤

概率论与数理统计知识点总结

《概率论与数理统计》复习参考资料 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。求:P(A)=? Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-? n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444443 ==?? A 1所含样本点数:24234=?? 8 3 6424)(1==∴A P

A 2所含样本点数: 36342 3=??C 16 96436)(2== ∴A P A 3所含样本点数:443 3=?C 16 1 644)(3==∴A P 注:由概率定义得出的几个性质: 1、0

相关文档
相关文档 最新文档