文档视界 最新最全的文档下载
当前位置:文档视界 > 高等数学专升本考试大纲

高等数学专升本考试大纲

湖南工学院“专升本”基础课考试大纲

《高等数学》考试大纲

总要求

考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

内容

一、函数、极限和连续

(一)函数

1.考试范围

(1)函数的概念:函数的定义函数的表示法分段函数

(2)函数的简单性质:单调性奇偶性有界性周期性

(3)反函数:反函数的定义反函数的图象

(4)函数的四则运算与复合运算

(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数

(6)初等函数

2. 要求

(1)理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=?(x)与其反函数y=?-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限

1. 考试范围

(1)数列极限的概念:数列数列极限的定义

(2)数列极限的性质:唯一性 有界性 四则运算定理 夹逼定理 单调有界数列 极限存在定理

(3)函数极限的概念

函数在一点处极限的定义 左、右极限及其与极限的关系 x 趋于无穷(x →∞,x →+∞,x →-∞)时函数的极限 函数极限的几何意义

(4)函数极限的定理:唯一性定理 夹逼定理 四则运算定理

(5)无穷小量和无穷大量

无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量与无穷大量的性质 两个无穷小量阶的比较

(6)两个重要极限

1x sinx lim 0x =→ e x

11lim x x =+∞→)( 2. 要求

(1)理解极限的概念(对极限定义中“ε- N ”、“ε- δ”、“ε- M ”的描述不作要求),能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等阶)。会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

(三)连续

1. 考试范围

(1)函数连续的概念

函数在一点连续的定义 左连续和右连续 函数在一点连续的充分必要条件 函数的间断点及其分类

(2)函数在一点处连续的性质

连续函数的四则运算 复合函数的连续性 反函数的连续性

(3)闭区间上连续函数的性质

有界性定理 最大值和最小值定理 介值定理(包括零点定理)

(4)初等函数的连续性

2. 要求

(1)理解函数在一点连续与间断的概念,掌握判断简单函数(含分段函数)在一点的连续性,理解函数在一点连续与极限存在的关系。

(2)会求函数的间断点及确定其类型。

(3)掌握在闭区间上连续函数的性质,会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

二、一元函数微分学

(一)导数与微分

1. 考试范围

(1)导数概念

导数的定义左导数与右导数导数的几何意义与物理意义可导与连续的关系

(2)求导法则与导数的基本公式

导数的四则运算反函数的导数导数的基本公式

(3)求导方法

复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数

(4)高阶导数的概念:高阶导数的定义高阶导数的计算

(5)微分:微分的定义微分与导数的关系微分法则一阶微分形式不变性

2. 要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的n阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)中值定理及导数的应用

1. 考试范围

(1)中值定理:罗尔(Rolle)中值定理拉格朗日(Lagrange)中值定理(2)洛必达(L’Hospital)法则

(3)函数增减性的判定法

(4)函数极值与极值点最大值与最小值

(5)曲线的凹凸性、拐点

(6)曲线的水平渐近线与垂直渐近线

2. 要求

(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。

(2)熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法。

(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。

(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。

(5)会判定曲线的凹凸性,会求曲线的拐点。

(6)会求曲线的水平渐近线与垂直渐近线。

(7)会作出简单函数的图形。

三、一元函数积分学

(一)不定积分

1. 考试范围

(1)不定积分的概念:原函数与不定积分的定义原函数存在定理不定积分的性质

(2)基本积分公式

(3)换元积分法:第一换元法(凑微分法)第二换元法

(4)分部积分法

(5)一些简单有理函数的积分

2. 要求

(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

(二)定积分

1. 考试范围

(1)定积分的概念:定积分的定义及其几何意义可积条件

(2)定积分的性质

(3)定积分的计算

变上限的定积分牛顿一莱布尼茨(Newton - Leibniz)公式换元积分法分部积分法

(4)无穷区间的广义积分

(5)定积分的应用:平面图形的面积旋转体的体积

2. 要求

(1)理解定积分的概念与几何意义,了解可积的条件。

(2)掌握定积分的基本性质。

(3)理解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。

(4)掌握牛顿—莱布尼茨公式。

(5)掌握定积分的换元积分法与分部积分法。

(6)理解无穷区间广义积分的概念,掌握其计算方法。

(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。

四、多元函数的微积分学及应用

(一)多元函数的微分学

1. 考试范围

(1)多元函数的概念二元函数的几何意义二元函数的极限与连续的概念

(2)多元函数偏导数的概念与几何意义全微分的概念

(3)全微分存在的必要条件和充分条件

(4)多元复合函数隐函数的求导方法二阶偏导数

2. 要求

(1)理解多元函数的概念;了解二元函数的几何意义;了解二元函数的极限的连续的概念。

(2)理解多元函数偏导数和全微分的概念,知道全微分存在的必要条件和充分条件。

(3)掌握偏导数与微分的四则运算法则,掌握复合函数的求导法则法,会求一些函数

的二阶偏导数。

(二)多元函数的微分学的应用

1. 考试范围

(1)多元函数极值和条件极值的概念

(2)多元函数极值的必要条件二元函数极值的充分条件

(3)多元函数极值和最值的求法及简单应用

2. 要求

(1)了解多元函数极值和条件极值的概念,知道多元函数极值存在的必要条件。

(2)了解二元参数极值存在的必要条件和充分条件。

(3)掌握二元函数极值、最值问题的求法,会解简单应用问题。

(三)二重积分

1.考试范围

(1)二重积分的概念和性质

(2)二重积分的计算和应用

2.要求

(1)了解二重积分的概念与性质,了解二重积分的中值定理。

(2)掌握二重积分的计算方法,会用二重积分求一些简单几何量。

五、常微分方程

(一)一阶微分方程

1. 考试范围

(1)微分方程的概念:微分方程的定义阶解通解初始条件特解(2)可分离变量的方程

(3)一阶线性方程

2. 要求

(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。

(2)掌握可分离变量方程的解法。

(3)掌握一阶线性方程的解法。

(二)可降价方程

1. 考试范围

(1)y(n)= ?(x)型方程(2)y″= ?(x,y′)型方程

2. 要求

(1)会用降价法解(1)y(n)= ?(x)型方程

(2)会用降价法解y″= ?(x,y′)型方程

(三)二阶线性微分方程

1. 考试范围

(1)二阶线性微分方程解的结构

(2)二阶常系数齐次线性微分方程

(3)二阶常系数非齐交线性微分方程

2. 要求

(1)了解二阶线性微分方程解的结构。

(2)掌握二阶常系数齐次线性微分方程的解法。

(3)掌握二阶常系数非齐次线性微分方程的解法(自由项限定为?(x)=P n (x)e ax,其中P n(x)为x的n次多项式。α为实常数).

试卷结构

试卷总分:100分

考试时间:120分钟

试卷题型比例:

选择题约15%

填空题约25%

计算题约40%

综合题约20% 试题难易比例:

容易题约40%

中等难度题约50%

较难题约10% 章节比例:

一、函数、极限和连续约25%

二、一元函数微分学约25%

三、一元函数积分学约25%

四、多元函数的微积分学及应用约15%

五、常微分方程约10%

指定教材:

《高等数学》(上、下册)第五版,同济大学应用数学系编

《高等数学》王国政主编復旦大学出版社

《高等数学学习指导》(上)黎国玲主编復旦大学出版社

《高等数学学习指导》(下练习册)湖南工学院数学教研室编復旦大学出版社

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

TOP相关主题