文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米金属粉末制备方法综述

纳米金属粉末制备方法综述

纳米金属粉末制备方法综述
纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。

关键词纳米粉末;制备方法;机械法;物理法;化学法

一.绪论

超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。

二.方法综述

2.1机械法

机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。

2. 1. 1球磨法

球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。

2. 1. 2气流磨粉碎法

气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

2.2物理法

物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在收集器内冷凝而得到超细金属粉末,该过程不发生化学变化。目前应用的物理法很多,本文主要介绍以下几种。

2.2.1等离子旋转电极法

等离子旋转电极法的原理是将金属或合金制成特定规格的棒料,然后装入旋转模腔,再将等离子枪移至棒料前,在等离子束的作用下,棒料端部开始熔化,形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒,最终冷凝成球形金属粉末。该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。优点是所得粉末球度好,氧含量低;缺点是超细粉末不易制取,每批次的材料利用率不高。

2.2.2低压气体中蒸发法

该法是在低压的惰性气体(比如:氩气,氮气)中加热金属,使其蒸发后形成纳米粉末。加热源一般有以下几种:(1)电阻加热;(2)等离子喷射;(3)高频感应;(4)电子束;(5)激光; (6) 辉光等等。电阻加热蒸发法是比较传统的方法, 适用于熔点不太高的金属。目前有人采用石墨电阻加热器, 在 66.7~533.3Pa的氩气中蒸发了Al、Mg、Zn、Fe、Ni、Ca 等金属, 得到了10nm 左右的纳米粉末。等离子法根据具体工艺的不同又可以分为熔融蒸发法、粉

末蒸发法、活性等离子弧蒸发法。运用粉末蒸发法可以制备几乎所有的金属纳米粉末。现在有人用活性等离子弧蒸发法制备了粒径在 8~ 8nm 范围内变化的高纯 TiN 纳米粉末。清华大学的王加龙等人用直流等离子法,采用5~ 40微米的 Zn 粉作为原料制备了粒径小于

50nm 的 ZnO 粉末。激光加热法首先是由日本人提出的,该法是将连续的高能量密度CO2

激光通过窗户照射到金属样品上使其蒸发而制备纳米粉末。在0.54~ 87kPa 的 He、

Ar、 Xe气氛中,用 100W 的CO2激光束,可以制得金属氧化物的纳米粉末。

2.2.3 溅射法

该法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两极间充入氩。在一定的电压下, 两极间的辉光放电形成氩离子, 在电场作用下氩离子冲击阴极靶材表面, 使靶材原子从其表面蒸发出来形成纳米粒子。用这种方法可以制备多种纳米金属, 而且可以通过加大被溅射的阴极表面来提高纳米微粒的获得量。缺点就是投资比较大。

2.2.4雾化法

该法分为普通雾化法和快速凝固雾化法,前者主要用于传统工业中生产一些普通铁钢粉。而采用快速凝固工艺是由金属熔体直接雾化获得金属粉末的方法可以制备纳米金属粉末。尤其使用于不锈钢纳米粉末的制备。该法一般分为三个阶段:(1)先将金属熔融成为液态;(2)使液态金属在雾化室里雾化分散为微小的液滴;(3)将液滴迅速冷凝形成固体粉末。

2.2.5机械合金化

机械合金化是美国 Benjamin 等于1969年研制成功的一种制粉技术,通过两种或两种以上的金属或非金属粉体的球磨,在固态下完成固相反应和相变,获得细晶合金粉体。目前机械合金化广泛用于制备纳米晶、准晶、金属间化合物和非晶合金等亚稳材料。

HililArik 研究了机械合金化工艺参数对Si3N4颗粒对于铝基复合材料力学性能的影响。MostaanH研究了机械和进化过程中形成 NbAl3金属间化合物的形成机理。张宏等采用机械合金化制备了Sn-Cu合金超细粉体,粒径为1~3μm。陈维平采用机械合金化制备了钛基

非晶粉末。何培研究了转速和球磨时间对于氧化物弥散强化合金粉末的微观形貌和结构的影响。

2.3化学法

该法是指在粉末的制备过程中要发生化学变化,一般是通过氧化还原、水解等等方式获得纳米粉末。目前使用该法已经制备出了高纯纳米金属粉末。但同样要面对收集难的问

题。应用于制备纳米金属粉末的化学法很多,不能一一介绍,主要介绍常用的以下几种。

2.3.1溶胶 -凝胶法

溶胶 -凝胶法是20 世纪60年代发展起来的一种制备玻璃、陶瓷等无机材料的新工艺, 近年来许多人用来制备纳米粉末。其基本原理是: 将金属醇盐或无机盐在一定条件下控制

水解, 不产生沉淀而形成溶胶,然后使溶质聚合凝胶化, 再将凝胶干燥、焙烧去除有机成分, 最后得到金属纳米粉末。该法的优缺点有:化学均匀性好;纯度高;粉末细;可容纳不溶性组

分或不沉淀组分;粉末之间的烧结性差;干燥时收缩大。

2.3.2激光诱导化学气相沉积

LICVD制备纳米粉末是近几年来兴起来的制备纳米粉末的一种方法。以激光为加热热源,诱发气相反应来合成纳米粉末。主要用于合成一些用常规办法难以获得的化合物纳米粉末,如: SiC, Si3N4,B4C 等。但也可以用来制备单质金属粉末,如银粉和铜粉等。

激光制备纳米粉的基本原理是利用反应气体分子( 或光敏剂分子)对特定波长激光束的吸收, 引起反应气体分子激光光解( 紫外光解或红外光子光解)、激光热解、激光光敏化和激光诱导化学合成反应,在一定工艺条件下( 激光功率密度、反应池压力、反应气体配比和流速、反应温度等),获得纳米粉末。该法具有清洁表面、粒子大小可精确控制、无粘结,

粒度分布均匀等优点,并容易制备出粒径几纳米至几十微米的非晶态或晶态粉末。缺点是制备成本高、产率低。

2.3.3水热法(高温水解法)

水热法是指在高温高压下,在水( 水溶液) 或水蒸汽等流体中进行有关化学反应来达到制备纳米粉末目的的方法。用该法制备的超细粉末已经达到数纳米的水平。根据反应类型

的不同可以分为水解氧化、水热沉淀、水热合成、水热还原、水热分解、水热结晶。

该法工艺简单,易于控制且纯度高、粒度细。近年来备受关注。目前用它制备纳米粉末的实际例子很多。陶昌源等报道,用碱式碳酸镍及氢氧化镍水热还原工艺,可以成功的制备

出最小粒径为30nm的镍粉。

2.3.4液相化学还原法

该法是制备金属纳米粉末常用方法。它主要通过液相氧化还原反应来制备金属纳米材料。该法具有制粉成本低、设备要求不高、工艺参数容易控制等优点。易于实现工业化大

生产。

2.3.5电解法

电解法在粉末生产中具有重要作用,但耗电较多,成本比还原粉和雾化粉高,因此限

制了其应用。电解制粉可分为:直接沉积电解熔盐电解和液体金属阴极电解,其中用的较

多的是水溶液电解和熔盐电解,熔盐电解主要是用来制取一些稀有难熔金属粉末。电解沉

积法所生产的金属或合金粉末纯度高,颗粒呈树枝状。用电解法可生产 Ni、Fe、Ag、Sn、Pb、Cr 、Mn 及 Cu-Zn、Cu-Ni、Fe-Ni 等多种金属和合金粉末,粉末粒径均匀,颗粒平均大小为80nm。王旭采用熔盐电解法制备了CaB6,粉末粒度为 2~8μm,颗粒为规则长方体。

2.3.6无机聚合物型溶胶-凝胶法( 醇盐水解法)

该法是传统胶体型溶胶凝胶法进一步发展得到的,即金属醇盐水解法,是利用金属醇盐

的水解、聚合反应得到无机高分子集合体,其颗粒尺寸约2~ 5nm, 处于溶胶范围内,再经凝

胶固化、干燥、煅烧可制得纳米粉末。该法优点是制得颗粒尺寸小,分布范围窄,团聚轻,

烧结活性高等,但缺点是原料昂贵,成本太高,因此只局限于实验室研究用。

2.3.7络合物型溶胶-凝胶法

该法是将某种络合剂与金属离子反应生成可溶性络合物,经缓慢蒸发溶剂得到溶胶、凝胶, 再经干燥、煅烧即得纳米粉末。该法具有传统的溶胶-凝胶法的优点,且粉末成分均匀可控,成本较低,并且可用于制备含碱金属或碱土金属的多组分复合纳米粉末。王零森等人

用 EDTA 络合物性溶胶-凝胶法制备了平均粒径为10nm的ZrO2-8% Y2O3 纳米粉末。有

人用 EDTA 做络合剂, 制得 PZT 纳米粉末。该方法目前正受到越来越多的重视。

三.结语

以上对已公开发表的制造纳米粉末的方法进行了分类和介绍。尽管目前对纳米粒子的

制造方法研究的已经很多,但仍上述的方法中,有的因反应条件苛刻(如高温、高压和设备复杂、成本高等)难以实现工业化生产,现在还只停留于做理论上的探讨;有的方法适合用于制备一些常规方法难以制取的或实际需求量比较少的金属粉末(如气相沉积法、雾化法、气相还原法等)。此外,常用的纳米粉末制备方法也在不断改善。在此种情况下有人把两种或几

种方法联合使用, 以充分发挥各种方法的优点,从而获得更加优质的纳米粉末。这样便形成了把几种技术综合利用的趋势。国外虽然已有一些方法成为制备纳米粒子的通用方法, 但

并没有很好地解决大规模生产的问题。我国1990、1991 两年相继召开了全国第一届、第

二届纳米固体学术讨论会。现在全国约有80余个研究机构和大学开展了纳米材料研究工作, 已做出了变形率为 400%的超塑性 ZrO2 陶瓷, 超过了日本的相应指标;继美国、德国之后

开发出可保持清洁界面的真空压制设备;在吸收材料方面取得突破性进展,并开始投入应用; 在纳米电子学、纳米机械与工程学、纳米生物学等领域也有研究小组正在进行探索。另外,我国虽然用激光合成纳米粉体的研究发展时间不长, 但现在已开始向国内外供应商品粉末,如 SiC、Si3N4、SiCN、Si 等。因此无论从国外还是从国内来看,到目前的研究课题首先是研究制造成本低、产品性能好又能规模化生产的简便易行的研制方法,其次是解决技术产品的推广应用问题。

从目前的研究方法来看,仍存在以下问题需要在今后加以解决:(1)确立粒径、粒度分布、组分等可以控制的合金或化合物纳米粒子的高效生产方法;(2)寻求纳米粒子的非氧化

处理及特性评价方法;(3)解决纳米粒子成形、烧结等的加工技术以及如何充分利用纳米粒

子的特殊性质以服务于各种需求;(4)平均粒径在5nm以下纳米粒子的制造也是一个重要课题;(5)寻求一种有效的粒径分布狭窄的(平均粒径为100~ 1000nm)纳米粒子的制造方法。

随着科技大不断发展及人们对微观世界认识的不断提高,相信将来必定会出现更加完善的

制粉技术。

参考文献

【1】金属纳米粉末的制备方法,杨应彬, 刘颖, 金属功能材料,2003年10 月第 10 卷第 5 期

【2】几种主要的纳米粉末制备技术,解迎芳,李晓东,上海金属,2004年1月第26卷第1期

【3】金属基粉末制备技术的研究进展及发展趋势,王娜, 贺毅强,Hot Working Technology 2013,Vol.42,No.4

【4】纳米粉末制备方法综述,田春霞,粉末冶金工业,2001年 10月第11 卷第5 期

【5】超细金属粉末的制备方法,张晗亮,李增峰,稀有金属快报,2006年 25卷第 5期

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

金属粉末制取方法概述

金属粉末制取方法概述 来源:粉体圈日期:2016年06月01日 金属粉末制取方法(粉体技术),通常按转变的作用原理分为机械法和物理化学法两类,既可从固、液、气态金属直接细化获得,又可从其不同状态下的金属化合物经还原、热解、电解而转变制取。难熔金属的碳化物、氮化物、硼化物、硅化物一般可直接用化合或还原-化合方法制取。因制取方法不同,同一种粉末的形状、结构和粒度等特性常常差别很大。粉末的制取方法列表如下,其中应用最广的是还原法、雾化法、电解法。 金属粉末制取方法还原法: 利用还原剂夺取金属氧化物粉末中的氧,而使金属被还原成粉状。气体还原剂有氢、氨、煤气、转化天然气等。固体还原剂有碳和钠、钙、镁等金属。氢或氨还原,常用来生产钨、钼、铁、铜、镍、钴等金属粉末。碳还原常用来生产铁粉。用金属强还原剂钠、镁、钙等,可以生产钽、铌、钛、锆、钒、铍、钍、铀等金属粉末(见金属热还原)。用高压氢气还原金属盐类水溶液,可制得镍、铜、钴及其合金或包覆粉末(见湿法冶金)。还原法制成的粉末颗粒大多为海绵结构的不规则形状。粉末粒度主要取决于还原温度、时间和原料的粒度等因素。还原法可制取大多数金属的粉末,是一种广泛应用的方法。

雾化法: 雾化法将熔融金属雾化成细小液滴,在冷却介质中凝固成粉末。雾化法是用高压空气、氮气、氩气等(气体雾化)和高压水(水雾化)作喷射介质来击碎金属液体流。也有利用旋转盘粉碎和熔体自身(自耗电极和坩埚)旋转的离心雾化法,以及其他雾化方法如溶氢真空雾化、超声波雾化等。由于液滴细小和热交换条件好,液滴的冷凝速度一般可达到100~10000K/s,比铸锭时高几个数量级。因此合金的成分均匀,组织细小,用它制成的合金材料无宏观偏析,性能优异。气雾化粉末一般近球形,水雾化可制得不规则形状。粉末的特性如粒度、形状和结晶组织等主要取决于熔体的性能(粘度、表面张力、过热度)和雾化工艺参数(如熔体流直径、喷嘴结构、喷射介质的压力、流速等)。几乎所有可被熔化的金属都可用雾化法生产,尤其适宜生产合金粉末。此法生产效率高,并易于扩大工业规模。目前不仅用于大量生产工业用铁、铜、铝粉和各种合金粉末,还用来生产高纯净度(O2<100ppm)的高温合金、高速钢、不锈钢和钛合金粉末。此外,用激冷技术制取快速冷凝粉末(冷凝速度>100,000K/s)日益受到重视。用它可以制出高性能的微晶材料。 电解法: 在金属盐水溶液中通以直流电、金属离子即在阴极上放电析出,形成易于破碎成粉末的沉积层。金属离子一般来源于同种金属阳极的溶解,并在电流作用下自阳极向阴极迁移。影响粉末粒度的因素主要是电解液的组成和电解条件。一般电解粉末多呈树枝状,纯度较高,但此法耗电大,成本较高。电解法的应用也很广泛,常用来生产铜、镍、铁、银、锡、铅、铬、锰等多种金属粉末;在一定条件下也可制取合金粉末。对于钽、铌、钛、锆、铍、钍、铀等稀有难熔金属,常采用复合熔盐作为电解质以制取粉末。 机械粉碎法: 主要是通过压碎、击碎和磨削等作用将固态金属碎化成粉末。设备分粗碎和细碎两类。主要起压碎作用的有碾碎机、辊轧机、颚式破碎机等粗碎设备。主要起击碎和磨削作用的有锤碎机、棒磨机、球磨机、振动球磨机、搅动球磨机等粉碎设备。机械粉碎法主要适用于粉碎脆性的和易加工硬化的金属和合金,如锡、锰、铬、高碳铁、铁合金等,也用来破碎还原法制得的海绵状金属、电解法制取的阴极沉积物;还用于破碎氢化后发脆的钛,然后再脱氢制取细钛粉。机械粉碎法效率低,能耗大,多作为其他制粉法的补充手段,或用于混合不同性质的粉末。此外,机械粉碎法还包括旋涡研磨机,它靠两个叶轮造成涡流,使被气流所夹裹的颗粒相互高速碰撞而粉碎,可用于塑性金属的碎化。冷流破碎法是用高速高压

制备纳米钛酸钡粉体

化学共沉淀法 ——制备纳米钛酸钡粉体 目录 (1) 成绩考评表 (2) 中文摘要 (3) 英文摘要 (4) 1前言 (5) 1 .1制备方法介绍 (6) 1.2所制备的材料介绍 (9) 1.3本实验主要研究内容 (12) 2.实验实施阶段 2.1方案介绍 (13) 2.2方案具体实施 (15) 3实验结果分析与讨论 (17) 参考文献 (22)

综合实验感想 (23) 3Ba TiO 纳米粉体的制备 摘要 以4TiCl 为钛源,2BaCl 为钡源,采用草酸共沉淀法制备batio3粉体, 研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。 关键词:钛酸钡,草酸共沉淀,前驱体,温度

English abstract Thought of 4TiCl for titanium source 2BaCl for barium source, using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the influence of calcining temperature on the product, the experimental results show that when the calcination temperature control over 800 degrees, can be made of high purity crystal good batio3 ultrafine powders. Key words: barium titanate, oxalate coprecipitation, precursor , temperature

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

纳米粉体制备方法总结文档(最新版)

纳米粉体制备方法总结文档(最新版) Summary document on preparation methods of nano powder (latest edition) 汇报人:JinTai College

纳米粉体制备方法总结文档(最新版) 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 1、化学沉淀法: 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质 的沉淀法、沉淀转化化、直接沉淀法等。 共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完 全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中 的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,

促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。 多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的 沸点,可大于100°C,因此可用高温强制水解反应制备纳米 颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如 使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。 沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化 剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂, 加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。该法工艺流程短,操作简便,但 制备的化合物仅局限于少数金属氧化物和氢氧化物。 2、化学还原法 水溶液还原法

纳米粉末的制备方法

. 化学制备法 1.1 化学沉淀法 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质的沉淀法、沉淀转化化、直接沉淀法[2]等。 1.11共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共 沉淀法。共沉淀法可制备BaTiO 3[3-5]、PbTiO 3 [6]等PZT系电子陶瓷及ZrO 2 [7,8]等粉体。 以CrO 2为晶种的草酸沉淀法,制备了La、Ca、Co、Cr掺杂氧化物[9]及掺杂BaTiO 3 等。以Ni(NO 3) 2 ·6H 2 O溶液为原料、乙二胺为络合剂,NaOH为沉淀剂,制得Ni(OH)2 超微粉,经热处理后得到NiO超微粉[10]。 与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质[11],生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 1.12均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法。本法克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。 本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH 4 OH,促使沉淀均匀生 成。制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd 2(CO 3 ) 3 [18,19]等。 1.13多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的沸点,可大于100°C,因此可用高温强制水解反应制备纳米颗粒[20]。例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子。又如使酸化的FeCl3---乙二醇---水体系强制水解可制得均匀的Fe(III)氧化物胶粒[21]。 1.14沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚。例如:以Cu(NO3)2·3H2O、Ni(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂,加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末[22]。 该法工艺流程短,操作简便,但制备的化合物仅局限于少数金属氧化物和氢氧化物[23]。 1.2化学还原法 1.21水溶液还原法 采用水合肼、葡萄糖、硼氢化钠(钾)等还原剂,在水溶液中制备超细金属粉末或非晶合金粉末,并利用高分子保护PVP(剂聚乙烯基吡咯烷酮)阻止颗炷团聚及减小晶粒尺寸[24-26]。用水溶液还原法以KBH4作还原剂制得 Fe-Co-B(10-100nm)[27]、Fe-B(400nm)、Ni-P非晶合金[28-32]。 溶液还原法优点是获得的粒子分散性好,颗粒形状基本呈球形,过程也可控制。 1.22多元醇还原法 最近,多元醇还原法已被发展于合成细的金属粒子Cu[33]、Ni、Co[34]、Pd、Ag[35-37]。该工艺主要利用金属盐可溶于或悬浮于乙二醇(EG)、一缩二乙二醇

金属粉末的制备方法及基本原理.

金属粉末的制备方法及基本原理 1引言 金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料 的性质,如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。 2金属粉末的制备方法 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照 机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产 量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。 2.1.1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速 率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作, 生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难[3]。 2.1.2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区从而带动研磨区内的物料互相碰撞,使 粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到 粒度的物料,其余粗粉返回研磨区继续研磨,直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在

3~8 ym气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。 2.2物理法 物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在 收集器内冷凝而得到金属粉末,该过程不发生化学变化。目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。 2.2.1等离子旋转电极法 等离子旋转电极法的原理是将金属或合金制成特定规格的棒料,然后装入旋转模腔,再将等离子枪移至棒料前,在等离子束的作用下,棒料端部开始熔化,形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒,最终冷凝成球形金属粉末[4]。该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。优点是所得粉末球形度好,氧含量低;缺点是粉末不易制取,每批次的材料利用率不高。 2.2.2气体雾化法 气体雾化法是生产金属及合金粉末的主要方法之一。气体雾化的基本原理是用高速气流将液态金属流破碎成小液滴并凝固成粉末的过程。雾化粉末具有球形度高、粉末粒度可控、氧含量低、生产成本 低以及适应多种金属粉末的生产等优点,已成为高性能及特种合金 粉末制备技术的主要发展方向。喷嘴是气体雾化的关键技术,其结构和性能决定了雾化粉末的性能和生产效率。因此,喷嘴结构设计与性能的不断提高决定着气体雾化技术的进步。从雾化喷嘴结构设计的改进历程可以将雾化技术分为传统雾化技术和新型雾化技术。 2.221传统雾化技术 传统雾化技术主要包括超声雾化技术、紧耦合雾化技术和高压气体雾化技术。超

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法 摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。 关键词:钛酸钡;粉体;制备方法; 1.引言 钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直 是各国科学家的研究重点。钛酸钡的应用越来越广泛。目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。 2.钛酸钡粉体的制备工艺 2.1固相研磨-低温煅烧法 传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅 烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧 温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。 朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃ 2.2水热法合成 水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的 自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反 应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长 基元, 进行成核结晶生成粉体或纳米晶[2]。 水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的 团聚、长大和容易混入杂质等缺点[2]。 2.3 溶胶凝胶法 钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

实验二 溶胶-凝胶法制备钛酸钡纳米陶瓷粉体

醋酸钡255.21、钛酸丁酯340.3 实验二溶胶-凝胶法制备纳米钛酸钡陶瓷粉体 一、实验目的 1、了解溶胶-凝胶制备纳米粉体的方法 2、制备纳米钛酸钡陶瓷粉体 二、实验背景和原理 1. 实验背景 钛酸钡(BaTiO )具有良好的介电性,是电子陶瓷领域应用最广的材料之一。传 3 制备方法是固相合成,这种方法生成的粉末颗粒粗且硬,不能满足高统的BaTiO 3 科技应用的要求。现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,与粗晶材料相比在物理和机械性能方面有极大的差别:熔点降低,烧结温度降低、荧光谱峰向低波长移动、铁电和铁磁性能消失、电导增强等。溶液化学法是制备超细粉体的一种重要方法,其中以溶胶-凝胶法最为常用。 2. 溶胶-凝胶法合成BaTiO3纳米粉体的基本原理 溶胶—凝胶(简称Sol—Gel)法是以金属醇盐的水解和聚合反应为基础的。其反应过程通常用下列方程式表示: (1)水解反应: M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH (2)缩合-聚合反应: 失水缩合-M-OH + OH-M-=-M-O-M-+H2O 失醇缩合-M-OR + OH-M-=-M-O-M-+ROH 缩合产物不断发生水解、缩聚反应,溶液的粘度不断增加。最终形成凝胶——含金属—氧—金属键网络结构的无机聚合物。正是由于金属—氧—金属键的形成,使Sol—Gel法能在低温下合成材料。Sol—Gel技术关键就在控制条件发生水解、缩聚反应形成溶胶、凝胶。

本次实验使用的钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇盐,遇水会发生剧烈的水解反应。在Sol—Gel工艺中,让溶液系统暴露在空气中从空气中吸收水分,使水解反应不充分(或不完全),其反应式可表示为 Ti(OR)4 + χ H2O = Ti(OR)4- χ OH χ + χ ROH (1) 式中,R=C 4H 9 为丁烷基,RO或OR为丁烷氧基。未完全水解反应的生成物 Ti(R) 4-χ (OH)χ中的(OH)-极易与丁烷基(R)或乙羰基(R′=CH3CO)结合,生成丁醇或乙酸,而使金属有机基团通过桥氧聚合成有机大分子。如本实验可能发生典型的聚合反应的结构反应式为 R′-O-Ba-O-R Ti OH+Ti O Ba O R'+ R'OH (2) 或 Ti OR Ti OH +Ti O Ti+ ROH (3)实验中的水解及聚合反应在缓慢吸收空气中水分的过程中不断地进行着,实际 上是金属有机化合物经过脱酸脱醇反应,金属Ti4+和Ba2+通过桥氧键聚合成了有机大分子团链,随着这种分子团链聚合度的增大,溶液粘度增加,溶胶特征明显,经过一定时间就会变成半固体透明的凝胶。凝胶经过烘干,煅烧得到钛酸钡粉末。三、主要仪器与药品 仪器:烧杯,机械搅拌、烘箱; 药品:醋酸钡,乙酸,钛酸丁酯,无水乙醇。 四、实验步骤 1.称取醋酸钡0.02mol (5g),量取36%的乙酸20ml,倒入烧杯中,搅拌使醋 酸钡完全溶解。 2.称取钛酸丁酯0.02mol (6.8g), 量取无水乙醇10ml,倒入锥形瓶中, 摇匀。 3.将上述两种溶液迅速混合,快速搅拌,溶液澄清后减慢搅拌速度,继续搅拌 2小时,停止搅拌,此时已经形成透明溶胶,使透明溶胶在空气中静置3-4小时,得到透明凝胶。 4.将凝胶取出,置于干燥皿中,在120°C下烘干。得到干凝胶,研磨得到淡 黄色粉末。

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

金属粉末的制备方法及基本原理(2)

金属粉末的制备方法及基本原理 1 引言金属粉末尺寸小 ,比表面积大 ,用其制得的金属零部件具有许多不同于常规材料的性质 , 如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。 2 金属粉末的制备方法 2.1机械法机械法就是借助于机械力将大块金属破碎成所需粒 径粉末的一 种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法 ,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。 2.1.1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强 ,可连续操作 ,生产效率高 ,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难 [3] 。 2.1.2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为 : 压缩气体经过特殊设计的喷嘴后 , 被加速为超音速气流 , 喷射到研磨机的中心研磨区 , 从而带动研磨区内的物料互相碰撞 , 使粉末粉碎变细 ; 气流膨胀后随

物料上升进入分级区 , 由涡轮式分级器分选出达到粒度的物料 , 其余粗粉返回研磨区继续研磨 , 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行 , 并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在 3~ 8 μm)。气流磨粉碎法适于大批量工业化生产 , 工艺成熟。缺点是在金属粉末的生产过程中 , 必须使用连续不断的惰性气体或氮气作为压缩气源 , 耗气量较大; 只适合脆性金属及合金的破碎制粉。 2.2物理法 物理法一般是通过高温、高压将块状金属材料熔化 , 并破碎成细小的液滴, 并在收集器内冷凝而得到金属粉末 , 该过程不发生化学变化。目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。 2.2.1 等离子旋转电极法等离子旋转电极法的原理是将金属或合金制成特定规格的棒料 , 然后装入旋转模腔 ,再将等离子枪移至棒料前 , 在等离子束的作用下 , 棒料端部开始熔化 , 形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒 ,最终冷凝成球形金属粉末 [4] 。该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。优点是所得粉末球形度好 , 氧含量低 ; 缺点是粉末不易制取 , 每批次的材料利用率不高。 2.2.2气体雾化法气体雾化法是生产金属及合金粉末的主要方法之一。气体雾化的基本原理是用高速气流将液态金属流破

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

纳米颗粒的制备方法

纳米颗粒的制备方法 一、纳米粒子的制备方法分类: 1、按照物质的原始状态,可分为固相法、液相法和气相法。 2、按照研究纳米粒子的学科分类,可分为物理方法、化学方法和物理化学方法。 3、按照制备的技术分类,可分为机械粉碎法、气体蒸发法、溶液法、等离子体合成法、激光合成法、溶胶凝胶法等。本文着重针对纳米粒子生成机理与制备过程,粗略地分为物理方法、化学方法。二、纳米颗粒的物理制备方法: (一)蒸发法制备纳米颗粒: 1、定义:直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。 2、气相蒸发法原理:在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。收集。 3、按照原料加热蒸发技术手段的不同,可将蒸发法分为: 1)电阻加热; 2)等离子喷射加热;

3)高频感应加热; 4)电子束加热; 5)激光加热; 6)电弧加热; 7)微波加热。 (二)流动油面上的真空蒸发沉积法(VEROS): 1、将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。 2、优点:可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。 3、缺点:粒子太细,难以从油中分离。 (三)化学气相冷凝法(CVC): 1、原理:将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。 2、特点:粒径小、分布窄、避免团聚。 三、纳米颗粒的化学合成方法: 1、定义:通过适当的化学反应,包括液相、气相和固相反应,从分子、原子出发制备纳米颗粒物质。 2、化学法包括气相法、液相法和固相法。

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理 摘要简要介绍了金属粉末的制备方法。由机械法和物理化学法两大类方向具体介绍。同时简述了各种金属粉末制备方法的基本原理。 关键词金属粉末;制备;分类;原理 1 引言: 金属及其化合物的粉末制备目前已发展了很多方法,对于这些方法的分类也有若干种。根据原料的状态可分为固体法、液体法和气体法;根据反应物的状态可分为湿法和干法;根据生产原理可分为物理化学法和机械法。一般来说在物理化学方法中最重要的方法为还原法、还原-化合法和电解法;在机械法中最主要的方法则是雾化法和机械粉碎法。金属粉末的生产方法的选择取决于原材料、粉末类型、粉末材料的性能要求和粉末的生产效率等。随着粉末冶金产品的应用越来越广泛,对粉末颗粒的尺寸形状和性能的要求越来越高,因此粉末制备技术也在不断地发展和创新,以适应颗粒尺寸和性能的要求。 2 金属粉末的制备方法: 2.1 物理化学法: 2.1.1 还原法: 金属氧化物及盐类的还原法是一种应用最广泛的粉末制备方法。可以采用固体碳还原铁粉和钨粉,用氢或分解氨制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气和煤气可以制取铁粉等,用纳、钙、镁等金属作还原剂可以制取钽、铌、钛、锆、钍、铀等稀有金属粉末。金属氧化物及盐类的还原法基本原理为,所使用的还原剂对氧的亲和力比氧化物和所用盐类中相应金属对氧的亲和力大,因而能够夺取金属氧化物或盐类中的氧而使金属被还原出来。由于不同的金属元素对氧的作用情况不同,因此生成氧化物的稳定性也不大一样。可以用氧化反应过程中的△G的大小来表征氧化物的稳定程度。如反应过程中的△G值越小,则表示其氧化物的稳定性就越高,即其对氧的亲和力越大。 其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。 2.1.2 金属热还原和还原化合法: 金属热还原是,被还原的原料可以是固态的、气态的,也可以是熔盐。后二者相应的又具有气相还原和液相沉淀的特点。金属热还原剂法在工业上比较常用的有:用钙还原TiO2、ThO2、UO2等;用镁还原TiCl4、ZrCl4、TaCl5等;用钠还原TiCl4、ZrCl4、K2ZrF6、K2TaF7等;用氢化钙(CaH2)共还原氧化铬和氧化镍制取镍铬不锈钢粉。 还原化合法是指用碳、碳化硼、硅、氮与难熔金属氧化物的作用而得到碳化物、硼化物。

相关文档