文档视界 最新最全的文档下载
当前位置:文档视界 › 伺服电机控制系统

伺服电机控制系统

伺服电机控制系统
伺服电机控制系统

伺服电机控制系统

对于数字化伺服电机控制系统,转矩环的性能直接影响着系统的控制效果,电流采样的精度和实时性很大程度上决定了系统的动、静态性能,精确的电流检测是提高系统控制精度、稳定性和快速性的重要环节,也是实现高性能闭环控制系统的关键。在伺服电机控制系统中,电流检测的方案有多种,常见的一种方案是使用霍耳传感器[1],将电流信号经过电磁转换,变换为直流电压信号输出,然后,通过运放和比较器构成的处理电路处理后,输入到处理器;另一种方案是,取采样电阻两端的电压,经线性光藕或者隔离放大器进行信号隔离,调理后接A/D转换器输入进行数字化,获取电流的采样值,而数字化的过程即可以利用处理器中的A/D转换通道实现[3] [4],也可以利用根据原理实现的模拟量直接转换为数字量的隔离调制芯片来实现[2]。本文通过对这三种方案分别进行电路设计和具体实验后所得结果的比较分析,对三种方案各自的特点有了清晰的认识,这有利于基于不同的条件选择合适的方案来提高伺服控制系统的整体性能。

2 伺服电机控制系统简介

本系统采用交直交电压型变频电路,主电路由整流电路、滤波电路及智能功率模块IPM逆变电路构成,控制部分以DSP 芯片TMS320LF2812为核心,CPLD作为辅助处理模块,构成功能齐全的全数字矢量控制系统,系统结构如图1所示,从图1可以看出,本系统是一个有电流、转速和位置负反馈的三闭环系统, DSP负责采样各相电流,计算电机的转速和位置,最后运用矢量控制算法,得到电压矢量PWM控制信号,经过光藕隔离电路后,驱动逆变器功率开关器件;同时DSP 还监控变频调速系统的运行状态,当系统出现短路、过流、过压、过热等故障时,DSP将封锁SVPWM信号,使电机停机,并通过LED显示。CPLD模块负责对光栅尺反馈的位置信息和上位机发送脉冲形式指令信息进行滤波和计数,并将数据以总线方式传送给DSP;同时处理键盘输入和显示输出,以及开关量的输入输出。

伺服电机控制系统中电流采样的作用就是检测交流同步

电动机的三相定子电流并转换成相应的信号输入到DSP中,再由DSP的AD模块转化成数字量进行处理。因为本文研究的是三相平衡系统Ia+Ib+Ic=0,因此只要检测其中的两路电流,就可以得到三相电流。

图1 全闭环立式加工中心的控制框图

3三种电流采样方案的分析与比较

3.1 利用霍耳传感器采样电流

3.3.1 LEM霍耳传感器介绍

采用霍尔电流传感器(LEM模块)-- LA25-NP对电流进行检测。霍尔器件根据磁补偿原理制作而成,它可传感从直流到数百千赫兹的信号。它突出的特点是在整个工作区域内输出特性是线性的,功耗小,重量轻,温度稳定性好,测量频带宽,能测量各种波形的电流,而且电隔离,输出为电压

信号或电流信号,精度普遍较高,因而使用极为方便可靠,是理想的电流传感器;但是成本较高。

3.2.1 电流采样电路设计

电流采样电路如图2所示,由于TMS320F2812片内的ADC 模块要求输入0~3V的单极信号,必须将LEM输出的小电流信号转换为电压信号,再经过放大滤波后输入DSP。因此,设计了如图2所示的电路来进行信号的转换,图2中R1为霍尔传感器件所允许的负载电阻,考虑到霍尔器件的输出电流信号较弱,选用运放构成反相放大器,反相放大器的输入阻抗很高,R2的影响可以忽略,反相端通过可调电阻输入的参考电压为2V,设定电机的最大启动电流为 20A,当I = 20A 时,对应的ADC输入为3V;当I = -20A时,对应的 ADC 输入为0V;I = 0时,ADC的输入为1.5V,将具有正负极性的电流反馈信号转换为单极信号送入DSP。

图2

3.3.2电流采样实验数据

表1中的数据为电流检测电路的实验数据,从表中数据可知相对误差均小于 1%,说明采用LEM霍尔传感器检测电流具有较高的准确度。

表1

3.2 利用采样电阻结合A/D转换隔离调制芯片采样电流

3.2.2 7860以及接口芯片0872介绍[5]

HCPL-7860/0872是Agilent公司的两款用于隔离A/D转换的IC,其典型应用电路如图3所示,其中HCPL-7860为隔离调制器部分,HCPL-0872为数字接口部分,它们一起组合成一套隔离可编程双芯片A/D转换器。HCPL-7860/0872组成的可编程A/D转换器具有12位的线性度,转换时间为800nS,可提供5种转换模式,输入电压范围为-200mV~+200mV,单5V 电源供给,HCPL-7860内部分为转换编码模块和译码模块,转换编码模块包含一个式过采样A/D转换器,它将输入的低带宽模拟电压信号转化为一位高速串行数据流,该高速数据流和采样时钟的编码后通过隔离带传输至译码模块,译码模块接收到数据解码后,将数据转换成分离的高速时钟和数据通道,再由HCPL-0872进行下一步处理。

HCPL-0872将输入的串行数据流转化为15位的字输出,它支持SPI、QSPI及MICROWIRE三种同步串行接口协议,可与微控制器直接连接,HCPL-0872可支持5种不同的转换模式,3种不同的预触发模式,偏移校准,快速超范围侦测,以及可调的门限侦测等功能,这些可编程特性通过串行配置端口配置,另外,HCPL-0872还支持多路复用,因此可输入两路数字信号进行处理。

直流伺服电机控制系统设计

电子信息与电气工程系课程设计报告 设计题目:直流伺服电机控制系统设计 系别:电子信息与电气工程系 年级专业: 学号: 学生姓名: 2006级自动化专业《计算机控制技术》课程设计任务书

摘要 随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。。本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。 对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。 关键词:单片机直流伺服电机 PID MATLAB

目录 1.引言 ...................................................... 错误!未定义书签。2.单片机控制系统硬件组成.................................... 错误!未定义书签。 微控制器................................................ 错误!未定义书签。 DAC0808转换器.......................................... 错误!未定义书签。 运算放大器............................................... 错误!未定义书签。 按键输入和显示模块....................................... 错误!未定义书签。 按键输入............................................ 错误!未定义书签。 显示模块............................................ 错误!未定义书签。 直流伺服电动机.......................................... 错误!未定义书签。 3.单片机控制系统软件设计..................................... 错误!未定义书签。 主程序................................................... 错误!未定义书签。 键盘处理子程序........................................... 错误!未定义书签。 4.控制系统原理图及仿真....................................... 错误!未定义书签。 控制系统方框图........................................... 错误!未定义书签。 控制系统电路原理图....................................... 错误!未定义书签。 Proteus仿真结果........................................ 错误!未定义书签。组件对直流伺服控制系统的仿真................................. 错误!未定义书签。 MATLAB与Simulink简介.................................. 错误!未定义书签。 MATLAB简介......................................... 错误!未定义书签。 Simulink简介....................................... 错误!未定义书签。 直流伺服电机数学模型.................................... 错误!未定义书签。 系统Simulink模型及时域特性仿真......................... 错误!未定义书签。 开环系统Simulink模型及仿真......................... 错误!未定义书签。 单位负反馈系统Simulink模型及仿真................... 错误!未定义书签。 PID校正................................................ 错误!未定义书签。 PID参数的凑试法确定................................ 错误!未定义书签。 比例控制器校正...................................... 错误!未定义书签。 比例积分控制器校正.................................. 错误!未定义书签。 PID控制器校正...................................... 错误!未定义书签。6.小结...................................................... 错误!未定义书签。参考文献..................................................... 错误!未定义书签。附录 ........................................................ 错误!未定义书签。

伺服电机原理及选型.

什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。 伺服电机的分类:直流伺服电机和交流伺服电机。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷的磨损和易产生火花会影响其使用寿命。近年来出现的无刷直流伺服电机避免了电刷摩擦和换向干扰,因此灵敏度高,死区小,噪声低,寿命长,对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空心杯转子型、印刷绕组型、无槽型的时间常数仅为几毫秒到二十毫秒。 小功率规格的直流伺服电机的额定转速在3000r/min以上,甚至大于 10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机(即低速直流伺服电机可在几十转/分的低速下,甚至在长期堵转的条件下工作,故可直接驱动被控件而不需减速 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷,产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数。 交流伺服电机和无刷直流伺服电机在功能上有什么区别? 交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。

《伺服控制系统课程设计》

《伺服控制系统课程设计》 指导书 ?动化与电??程学院 ?零??年??

?、伺服控制系统课程设计的意义、?标和程序 (3) ?、伺服控制系统课程设计内容及要求 (5) 三、考核?式和报告要求 (11)

?、伺服控制系统课程设计的意义、?标和程序 (?)伺服控制系统程设计的意义 伺服控制系统课程设计是?动化专业?才培养计划的重要组成部分,是实现培养?标的重要教学环节,是?才培养质量的重要体现。通过伺服控制系统课程设计,可以培养考??所学基础课及专业课知识和相关技能,解决具体的?程问题的综合能?。本次课程设计要求考?在指导教师的指导下,独?地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及?程实践中常?的设计?法,具有实践性、综合性强的显著特点。因?对培养考?的综合素质、增强?程意识和创新能?具有?常重要的作?。 伺服控制系统课程设计是考?在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考?学习、研究与实践成果的全?总结;是考?综合素质与?程实践能?培养效果的全?检验;也是?向?程教育认证?作的重要评价内容。 (?)课程设计的?标 课程设计基本教学?标是培养考?综合运?所学知识和技能,分析与解决?程实际问题,在实践中实现知识与能?的深化与升华,同时培养考?严肃认真的科学态度和严谨求实的?作作风。使考?通过综合课程设计在具备?程师素质??更快地得到提?。对本次课程设计有以下???的要求: 1.主要任务 本次任务在教师指导下,独?完成给定的设计任务,考?在完成任务后应编写提交课程设计报告。 2.专业知识

交流伺服电机与运动控制卡的接口实验

交流伺服电机与运动控制卡的接口实验 一、实验目的 1.认知富士交流伺服电机及驱动器的硬件接口电路 2.认知MPC2810运动控制卡的硬件接口 3.掌握驱动器与MPC2810运动控制卡的硬件连接 二、实验器材 MPC2810运动控制卡、富士交流伺服电机及驱动器,数控实验台II,若干导线,万用表 三、实验内容及步骤 有关富士交流伺服电机及驱动器的详细信息参见《富士AC 伺服系统FALDIC-W 系列用户手册》,有关MPC2810运动控制卡的详细信息参见《MPC2810运动控制器用户手册》。 一)、MPC2810运动控制器相关简介 MPC2810运动控制器是乐创自动化技术有限公司自主研发生产的基于PC的运动控制器,单张卡可控制4轴的步进电机或数字式伺服电机。通过多卡共用可支持多于4轴的运动控制系统的开发。 MPC2810运动控制器以IBM-PC及其兼容机为主机,基于PCI总线的步进电机或数字式伺服电机的上位控制单元。它与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、控制指令的发送、外部信号的监控等等);运动控制器完成运动控制的所有细节(包括直线和圆弧插补、脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。 MPC2810运动控制器配备了功能强大、内容丰富的Windows动态链接库,可方便地开发出各种运动控制系统。对当前流行的编程开发工具,如Visual Basic6.0,Visual C++6.0提供了开发用Lib库及头文件和模块声名文件,可方便地链接动态链接库,其他32位Windows开发工具如Delphi、C++Builder等也很容易使用MPC2810函数库。另外,支持标准Windows动态链接库调用的组态软件也可以使用MPC2810运动控制器。 MPC2810运动控制器广泛适用于:激光加工设备;数控机床、加工中心、机器人等;X-Y-Z控制台;绘图仪、雕刻机、印刷机械;送料装置、云台;打标机、绕线机;医疗设备;包装机械、纺织机

PLC控制伺服电机的方法

伺服电机的PLC控制方法 以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置

控制模式控制信号接线图"连接导线 3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC 的输出端子)。 5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。 7(com+)与外接24V直流电源的正极相连。 29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编

码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也

伺服驱动系统方案设计

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

伺服电机控制系统

伺服电机控制系统 对于数字化伺服电机控制系统,转矩环的性能直接影响着系统的控制效果,电流采样的精度和实时性很大程度上决定了系统的动、静态性能,精确的电流检测是提高系统控制精度、稳定性和快速性的重要环节,也是实现高性能闭环控制系统的关键。在伺服电机控制系统中,电流检测的方案有多种,常见的一种方案是使用霍耳传感器[1],将电流信号经过电磁转换,变换为直流电压信号输出,然后,通过运放和比较器构成的处理电路处理后,输入到处理器;另一种方案是,取采样电阻两端的电压,经线性光藕或者隔离放大器进行信号隔离,调理后接A/D转换器输入进行数字化,获取电流的采样值,而数字化的过程即可以利用处理器中的A/D转换通道实现[3] [4],也可以利用根据原理实现的模拟量直接转换为数字量的隔离调制芯片来实现[2]。本文通过对这三种方案分别进行电路设计和具体实验后所得结果的比较分析,对三种方案各自的特点有了清晰的认识,这有利于基于不同的条件选择合适的方案来提高伺服控制系统的整体性能。 2 伺服电机控制系统简介

本系统采用交直交电压型变频电路,主电路由整流电路、滤波电路及智能功率模块IPM逆变电路构成,控制部分以DSP 芯片TMS320LF2812为核心,CPLD作为辅助处理模块,构成功能齐全的全数字矢量控制系统,系统结构如图1所示,从图1可以看出,本系统是一个有电流、转速和位置负反馈的三闭环系统, DSP负责采样各相电流,计算电机的转速和位置,最后运用矢量控制算法,得到电压矢量PWM控制信号,经过光藕隔离电路后,驱动逆变器功率开关器件;同时DSP 还监控变频调速系统的运行状态,当系统出现短路、过流、过压、过热等故障时,DSP将封锁SVPWM信号,使电机停机,并通过LED显示。CPLD模块负责对光栅尺反馈的位置信息和上位机发送脉冲形式指令信息进行滤波和计数,并将数据以总线方式传送给DSP;同时处理键盘输入和显示输出,以及开关量的输入输出。 伺服电机控制系统中电流采样的作用就是检测交流同步 电动机的三相定子电流并转换成相应的信号输入到DSP中,再由DSP的AD模块转化成数字量进行处理。因为本文研究的是三相平衡系统Ia+Ib+Ic=0,因此只要检测其中的两路电流,就可以得到三相电流。

伺服电机驱动控制器

目录 一、伺服驱动概述 (1) 二、本产品特性 (2) 三、电路原理图及PCB版图 (4) 四、电路功能模块分析 (4) 五、焊接(附元件清单) (14) 六、编者设计体会 (16)

一.伺服驱动概述 1. 伺服电机的概念 伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。 2.伺服电机分类 普通直流伺服电动机 直流伺服电机 { 低惯量直流伺服电动机 直流力矩电动机 3. 控制系统对伺服电动机的基本要求 宽广的调速范围 机械特性和调节特性均为线性 无“自转”现象 快速响应 控制功率小、重量轻、体积小等。 4. 直流伺服电机的基本特性 (1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M 变化而变化的规律,称直流电机的机械特性 (2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性 (3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性 5. 直流伺服电机的驱动原理 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境

伺服驱动系统设计方案

伺服驱动系统设计 方案

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。可是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,

但前者的转子电阻比后者大得多,因此伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不但使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性 2、运行范围较宽 如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性

基于S7-200伺服电机控制系统设计

西安邮电大学 毕业设计(论文)题目:基于S7-200伺服电机控制系统设计 系别:自动化学院 专业:自动化学院 班级:自动0805 学生姓名: 导师姓名:职称:讲师 起止时间:2012年3月8日至2012年06月17日

毕业设计(论文)诚信声明书 本人声明:本人所提交的毕业论文《基于S7-200伺服电机控制系统设计》是本人在指导教师指导下独立研究、写作的成果,论文中所引用他人的文献、数据、图件、资料均已明确标注;对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明并表示感谢。 本人完全清楚本声明的法律后果,申请学位论文和资料若有不实之处,本人愿承担相应的法律责任。 论文作者签名:时间:年月日 指导教师签名:时间:年月日

毕业设计(论文)任务书 学生姓名指导教师职称讲师 系别自动化学院专业自动化学院 题目基于S7-200伺服电机控制系统设计 任务与要求 要学习基本电气控制的设计方法,学习step7和组态软件的使用。熟练掌握组态王的使用,完成本课题要认真复习电机控制的基本知识,设计电动机总线型调速控制系统,主要根据电机的调速原理结合总线功能进行设计,要求提交: 1.了解电动机总线型调速控制系统设计的基本原理。 2.熟练掌WINCC6.0软件。 3.会使用WINCC6.0软件画组态界面。 4.绘制电气原理图、装配图、接线图。 5.熟练掌握S7-200软件,具有一定的编程能力。 开始日期2012年1月7日完成日期2012年06月20日 系主任(签字) 2012 年 1 月8 日

毕业设计 (论文) 工作计划 学生姓名__ _指导教师_________职称____讲师____ 系别______自动化学院__________专业________自动化________ 题目基于S7-200伺服电机控制系统设计 _______________________________________________________ 工作进程 起止时间工作内容 1月8日~3月12日了解伺服控制的基本原理 3月13日~4月3日熟悉S7-200软件编程环境及WinCC软件4月4日~4月23日画出WinCC监控画面 4月24日~5月23日编写并调试伺服控制控制程序 5月24日~6月6日撰写毕业论文。

交流伺服电机PLC控制系统设计说明书

目录 1、数控系统发展 (2) 2、数控机床PLC控制系统的控制要求及分析 (4) 3、交流伺服电机 (5) 4、伺服驱动器的选择 (8) 5、PLC的选择 (12) 6、系统连接图的确定 (14) 7、开关及保护元件的选择 (15) 8、变压器的选择 (15) 9、梯形图 (16) 10、课程设计总结 (17) 11、参考文献 (17)

1、数控系统发展 数控技术包括数控系统、数控机床及外围技术,是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。 1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。六年后,即在1952年,计算机技术应用到了机床上。在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。 1.数控(NC)阶段 (1952-1970年),早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控(NC)。随着元器件的发展,这个阶段历经了三代,即1952年第一代——电子管;1959年第二代——晶体管;1965年第三代——小规模集成电路。 2.计算机数控 (CNC)阶段(1970——现在)到1970年,通用小型计算机业已出现并成批生产。其运算速度比五、六十年代有了大幅度的提高,这比专门"搭"成的专用计算机成本低、可靠性高。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段。到1971年美国lintel公司在世界上第一次将计算机的两个核心的部件——运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处器,又可称中央处理单元(简称CPU)。到1974年微处理器被应用于数控系统。由于微处理器是通用计算机的核心部件,故仍称为仿计算机数控。到了1990年,PC机的性能已发展到很高的阶段,可满足作为数控系统核心部件的要求,而且PC机生产批量很大,价格便宜,可靠性高。数控系统从此进入了基于PC的阶段。总之,计算机数控阶段也经历了三代。即1970年第四代——小型计算机;1974年第五代——微处理器和1990年第六代——基于PC的阶段。必须指出,数控系统近五十年来经历了两个阶段六代的发展,只是发展到了第五代以后,才从根本上解决了可靠性低,价格极为昂贵,应用很不

交流伺服电机与普通电机区别

交流伺服电机与普通电机区别 交流伺服电机与普通电机有很多区别: 1、根据电机的不同应用领域,电机的种类很多,交流伺服电机属于控制类电机。伺服的基本概念是准确、精确、快速定位。伺服电机的构造与普通电机是有区别的,带编码器反馈闭环控制,能满足快速响应和准确定位。 现在市面上流通的交流伺服电机多为永磁同步交流伺服,这种电机受工艺限制,很难做到很大的功率,十几Kw以上的同步伺服电机价格很贵,在这样的现场应用,多采用交流异步伺服电机,往往采用变频器驱动。 2、电机的材料、结构和加工工艺,交流伺服电机要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机)。就是说当伺服驱动器输出电流、电压、频率变化很快时,伺服电机能产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机。当然不是说变频器输出不了变化那么快的电源信号,而是电机本身就反应不了,所以在变频器的内部算法设定时为了保护电机做了相应的过载设定。 3、交流电机一般分为同步和异步电机: (1)、交流同步电机:就是转子是由永磁材料构成,所以转动后,随着电机的定子旋转磁场的变化,转子也做响应频率的速度变化,而且转子速度=定子速度,所以称“同步”。 (2)、交流异步电机:转子由感应线圈和材料构成。转动后,定子产生旋转磁场,磁场切割定子的感应线圈,转子线圈产生感应电流,进而转子产生感应磁场,感应磁场追随定子旋转磁场的变化,但转子的磁场变化永远小于定子的变化,一旦等于就没有变化的磁场切割转子的感应线圈,转子线圈中也就没有了感应电流,转子磁场消失,转子失速又与定子产生速度差又重新获得感应电流。。。所以在交流异步电机里有个关键的参数是转差率就是转子与定子的速度差的比率。 (3)、对应交流同步和异步电机,变频器就有相应的同步变频器和异步变频器,伺服电机也有交流同步伺服和交流异步伺服。当然变频器里交流异步变频常见,伺服则交流同步伺服常见。 4、交流伺服电机与普通电机还有很多区别,可以参考一下《电机学》方面的书籍;普通电机通常功率很大,尤其是启动电流很大,伺服驱动器的电流容量不能满足要求。可从电机的尺寸就知道原因了。 关于伺服的应用。有很多方面,连一个小小的电磁调压阀,也可以算上一个伺服系统。其他伺服应用如火炮或雷达,用作随动,要求实时性好,动态响应快,超调小,精度在其次。如果是机床,则经常用作恒速,位置高精度,实时性要求不高。 首先得确定你应用在什么场合。如果用在机床上,则控制部分硬件可以设计得相对简单一些,成本也相应低些。如果用于军工,则内部固件设计时控制算法应该更灵活,比如提供位置环滤波、速度环滤波、非线性、最优化或智能化算法。当然不需要在一个硬件部分上实现。可以面向对象做成几种类型的产品。 交流伺服在加工中心、自动车床、电动注塑机、机械手、印刷机、包装机、弹簧机、三坐标测量仪、电火花加工机等等方面的设备有广阔的应用。 关于步进电机和交流伺服电机的性能有较大差别。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统

伺服电机控制系统的三种控制方式

伺服电机控制系统的三种控制方式 力辉伺服控制系统一般分为三种控制方式:速度控制方式,转矩控制方式,位置控制方式。速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。?(1)如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。? (2)如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。? 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。? 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用。? 换一种说法是:? 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为;如果电机轴负载低于时电机正转,外部负载等于时电机不转,大于时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。? 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。? 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。?应用领域如、印刷机械等等。? 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时,速度模式也可以进行定位,但必须将电机的位置信号或直接负

直流伺服电机控制系统设计

摘要 随着自动控制技术与计算机科学技术的快速发展,制造业领域已大量采用计算机技术进行自动控制,这使制造业各个领域的成果,效率和质量得到大幅度提高。各种微机控制系统在基本构造上是类同的,主要由微机控制器,被控对象与接口电路(输入,输出及驱动接口电路)组成。根据被控对象的不同,微机控制系统又分为闭环控制系统(反馈控制输出信号的大小)与开环控制系统,学好“计算机课程设计”是掌握微机控制系统原理与技术的基础;而“直流伺服电机控制系统设计”是巩固,深化,掌握本门课程知识不可缺少的重要环节。 通过本次课程设计加深对《计算机控制技术》的理解和掌握。在设计程序的过程中,广泛的查阅相关资料,如各类中断的作用和调用方式,屏幕显示等等,通过实践来加深对理论知识的理解,同时将自己对这门技术的理解应用在电动机控制的设计当中,理论与实践相互融合、相互促进,提高自己的理论水平和实践能力。 直流电机就是将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换风气和风扇等组成 关键词计算机控制技术;微机控制系统;电动机控制;仿真

With the rapid development of automatic control technology and computer science and technology, the manufacturing sector has been substantial use of computer technology for automatic control, which makes the manufacturing fields of achievement, efficiency and quality greatly improved. According to the different controlled objects, microcomputer control system is divided into a closed loop control system (feedback control the size of the output signal) and open-loop control system, to learn the "computer" course design is the foundation to master the principle and technology of computer control system; and the "design" DC servo motor control system is to consolidate, deepen, important to master the course knowledge essential. Through the curriculum design of “ computer control technology ” to understand and master. During the design process, extensive access to relevant information, such as the role and calls the way various interrupt, screen display and so on, through the practice to deepen the understanding of theoretical knowledge, will also be on this door technology understanding applied in the design of motor control, theory and practice of mutual integration, mutual promotion, improve their theoretical level and practical ability. Key words Computer control technology; Microcomputer control system; Motor control; Simulation

相关文档