文档视界 最新最全的文档下载
当前位置:文档视界 › 物理前沿讲座——超导体

物理前沿讲座——超导体

物理前沿讲座——超导体
物理前沿讲座——超导体

摘要:自1911年以来,陆续发现某些元素、合金、化合物或其他材料,当温度低于某临界温度T c以下时,电阻小到微不足道,这种现象称为超导电性。具有超导电下哦那个的材料成为超导体。1933年发现超导体具有抗磁性,这种现象称为麦斯纳(Meissner)效应。20世纪70年代发现的超导体主要是元素超导体(包括金属和半导体)和合金超导体,临界温度一般为几K,最高不超过30K,这些称为常规超导体。20世纪80年代以来陆续发现某些铜氧化物超导体,临界温度可达数十K甚至超过100K,这些称为高温超导体。由于高温超导体具有奇特特性和广阔的应用前景,因此,对高温超导现象的理论与实验研究有着重要意义,是当今凝聚态物理一个重要的前沿课题。

关键词:超导体迈斯纳效应BCS理论高温超导体

超导体的基本特征

1超导体的临界温度

我们把电阻突然消失的温度称为超导体的临界温度T C。到目前为止,人们发现周期表中相当一部分元素在各种条件下出现超导电性。

2超导体的临界磁场

用一个磁场加到超导体上之后,当磁场达到某一定值时,超导体就回复了电阻,回到了正常态。假如把磁场平行的加到一根细长的超导棒上,在一定的磁场强度下,棒的电阻突然恢复,使这个电阻突然恢复的磁场值称为临界磁场。

当外磁场强度增加到某一临界值H C时,超导体的导电性受到破坏,材料由超导态转为正常态,临界磁场H c与温度T有关,H c(T)的经验公式为

H C=H C(0)[1-(T/T C)2][1] (T≦T C)

3临界电流

实验发现,当对超导线通以电流时,无阻的超流态要受到电流大小的限制,

当电流达到某一临界值I C之后,超导体将恢复到正常态,对大多数超导金属元素正常态的恢复是突变的,我们称这个电流为临界电流。

二、迈斯纳效应

1933年德国物理学家Meissner和Ochsenfeld对锡单晶球超导体做磁场分布测量时在弱磁场中把金属冷却进入超导态时的磁感应线似乎一下子被排斥出,保持体内磁感应强度等于零。

当材料处在超导状态时,随着进入超导体内部的增加磁场速度衰减,磁场主要存在于超导体表面一定厚度的薄层内。对于宏观超导体,若把这个薄层看成趋近于零,则可近似认为超导体内部磁感应强度B=0超导体有完全抗磁性,我们称之为理想迈斯纳态,不能理想化的状态称之为一般迈斯纳态。

三、Josephson效应

作为超导载体的Cooper对能以一定几率贯穿能垒,称此为隧道效应。例如,在两层超导物质间夹有厚度为纳米量级的绝缘层,若通过连线导入电流,该电流则以电阻为零的状态流动。

BCS理论的创立

1955年,巴丁应德国出版的《物理学手册》的邀请,写了一篇关于超导理论的述评.这使巴丁对当时的超导研究有了更全面的了解.这时,巴丁已经明确了超导现象的产生涉及3个关键因素:一是电子~声子相互作用;二是能隙的存在:三是速度空间的凝聚.

要真正建立微观理论。关键是要对超导态有一个清晰的物理图像.1956年春天,库珀不负众望,迈出了关键的一步,提出了超导理论所需要的额图像.库珀利用量子场论方法,直接从动力学的角度考虑相互吸引的直接作用,得到了费米面近旁两个动量和自旋都大小相等而方向相反的电子能结合成对。这种电子对被称为“库珀对”。库珀对的提出成为Bcs理论成功的关键.

库珀对提出后巴丁指出,单用库珀方法构造一个超导理论还是不可能,必须找到超导体的基态波函数,这个重任落到了施里弗的肩上。他凭借自己的直觉和灵感,大胆地猜出一个考虑了库珀对的超导基态波函数的可能形式。经过数学处理,他得到了能隙方程,吸引势的简单模型以及绝对零度时的凝聚能。巴丁认真地核实了施里弗提出的超导基态波函数,很快就确认了它的正确性。

1957年3月,巴丁、库珀和施里弗三人有关超导理论的头两篇专题论文在费城召开的美国物理学会年会上公开发表.库珀代表三人首次公开地报告了这一理论的有关成果.人们习惯上取三位作者各自姓氏的第一个字母,称这一理论为BCS理论

高温超导体

1973年发现锗化铌(Nb3Ge),将 Tc 提高至 23.2 K,此后随然陆续发现多新的超导体,但是在 Tc 的提升方面却无法再突破,使 Nb3Ge 停留在最高 Tc 之位长达13 年之久。直到 1986 年,瑞士 IBM 苏黎士研究所的 Bednorz 和Muller 发现一类具有 K2NiF4型结构的超导体材料,名义上的成分(nominal composition)为镧钡铜氧(La4.25Ba0.75Cu5O15-x),其 Tc 高达 35 K。再度引起全世界对新型高溫超导体领域研究的高度兴趣。紧接着在 1987 年由吴茂昆与朱经武两位教授等人发现Tc 高达90 K以上的超导体钇钡铜氧化合物(YBa2Cu3O7-x),首度将 Tc 提高至液态氮温度(77 K)以上。此发现突破 BCS 理论预测的极限,因此科学家对于高温超导体理论之研究及更高Tc 的超导体化合物的发展燃起了新的希望。

在一发现的高温超导材料中,YBCO(YBa2Cu3O7-δ)以其在77K下所就有的优良性能(高的临界转化温度T c=92K,高的临界电流密度J c=72A/cm2和高的临界磁场H C=120T,引起各国科学家越来越的研究兴趣,YBCO高温超导体块材料在工程上有着许多潜在的应用,如可以用作磁性轴承、磁体(利用捕获磁通)、故障电流限制器及飞轮储能系统等。

图 3 为自 1911 年发现超导现象起的超导体发展历史

参考文献

[1]郭硕鸿《电动力学》 2006年6月第3版

专业前沿讲座心得体会

专业前沿讲座心得体会 题目:专业前沿讲座心得体会 姓名:刘晓亚 班级:模具09-2班 学号:0901********

专业前沿讲座心得体会 以前去上学院的选修课总是抱着些应付的心态,然而这次的不同,我很喜欢听我们的这些优秀教授们讲授专业前沿上的东西,他们,金教授,郭教授,赵教授,官教授,高教授,周教授...在每次短短的两小节课中我都被他们研究的这些东西深深吸引着。虽然好多东西以我现在的水平还不能弄懂,但却让我看到我们专业的前景——只要努力学好知识,总有用武之地的。 由于时间限制和我们有限的知识水平,老师们都从大处着眼,为我们大概介绍了他们的研究方向和内容,同时还简单向我们介绍这些研究将来的实际意义,以及和我们模具锻压专业的联系。总体来说,也许理论上逻辑上的很专业的知识,我们没有学到多少,但老师们利用不到两个小时的时间,就基本上将一个新的领域在我们的脑海中勾勒了出来,使我们这些只知在学校死啃书本的同学也有机会现实了一回,真正了解到与百姓的生活有直接联系的科学研究。 各位老师不仅在学术领域给我们打开了新的窗户,使我们眼前一亮,也为我们介绍他们在工作学习中切身的体会及经验,提前向我们预警就业道路及工作生涯可能遇到的问题。 还记得当时有个老师在讲课前放了一段用纯英文介绍的视频,我记得当时老师说那个视频是他在欧美开一个会议时的开场视频,我很有感触,不仅是对专业上的,还有对英语上的,那个视频里的英语我大部分听不懂,原来自己的英语水平这么的有限,中国在走向世界,专业上已有相当的技术,语言上岂能落下? 赵长财老师,系燕山大学机械工程学院教授、博士生导师,现任燕山大学产业集团副董事长、中国机械工程学会高级会员...职务。同时兼任沈阳重型机器集团公司、天津天锻压力机有限公司...多家企业特聘技术顾问。曾获得了秦皇岛市“三育人”先进个人、秦皇岛市“人民满意公仆”...荣誉称号。拥有这么多成就的他给我们讲授课程,坐在下面听课的我感到很自豪,很自豪。在这次课上他简单介绍了金属管材成形新工艺及理论,管、板类零件内高压成形新工艺及其理论研究,液压机现代设计理论研究中一些前沿上的东西,由于世界能源的紧张和环保问题的日趋严重,汽车工业面临着严峻的挑战:一方面是提高燃气的热效率,减少废气排放;另一方面是减轻汽车自身重量,提高行驶速度,降低能耗。这两方面要求促使人们不得不改进传统工艺,创造出适应新经济时代要求的新工艺。在汽车工业中管材液压成形作为一个非常重要的成形技术已得到了广泛应用,主要用于生产汽车动力系统、排气系统、汽车底盘以及一些结构件。汽车用排气管件大多为形状比较复杂、轴线有很大变化的零件。传统成形工艺除铸造成形外,主要采用冲压两个半壳而后组焊成形,或采用管坯进行数控弯曲、扩管、缩管加工而后组焊成形。这样制造的零件模具费用高、生产周期长、成本高,不适应当前汽车行业在减轻自重、降低成本、提高市场竞争力等方面的要求。而采用内高压技术制造排气管件可以较精确地控制零件的尺寸精度,便于在后续工序中与其他零件进行装配,且能够进一步减轻系统重量,减少焊缝数量,内表面光滑,排气阻力小,使成形后的产品质量和寿命得到进一步提高。听不太懂,但乐于听他为我们讲解那些专业在实际中的应用,喜于他与他的团队那些成就(他领导了燕山大学GM科研团队)。 郭宝峰老师2007年起任燕山大学科技处处长;2010年1月起担任燕山大学科学技术研究院院长。在讲授过程中提到了团队的力量,他始终认为,不论是完成的科研成果还是在研的科研项目,不论是获得的奖励还是发表的论文,都是团队奋斗的结晶,而他个人只不过在其中做了应做的那一部分本职工作而已。他还鼓励我们工科学生要有意识地提高自己的人文素养。“人是应当全面发展的”,他说。很喜欢他的课,不仅因为他在材料加工工程和精密成形技术领域有这么多成就,还因为他的那些人生的态度。

高温超导体基本特性的测量-物理试验

高温超导体基本特性的测量 1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。 一、实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。 二、实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器 三、实验原理 1.零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。所以总电阻可以近似表达为 R=Ri(T)+Rr (1) 当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。临界温度Tc是由物质自身的性质所确定参量。如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态

数学学科前沿讲座报告

数学学科前沿讲座 通过一个学期的学习和学校数位专家教授的耐心讲解,产生了一些自己对数学学科的体会。下面就简要谈谈,通过听取前沿讲座我对数学学科的理解与变化。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚 的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学。 一、应用数学应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。主要研究方向: (1) 非线性偏微分方程非线性偏微分方程是现代数学的一个重要分支,无论在理论中 还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起 源于希腊语Τοπολογ的音译。Topology 原意为地貌,于 19 世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓

超导体复习题

超导物理复习题 1)简述超导体的基本性质。 2)为什么在T

行业前沿讲座一

行业前沿讲座一 《Molecular Signatures and Signaling Pathways of Human Limbal Stem Cells》——李教授主题讲座感想 来自我校再生医学教育部重点实验室的李教授在第二理工楼9楼会议室为我们带来了《Molecular Signatures and Signaling Pathways of Human Limbal Stem Cells(人类角膜缘干细胞的分子标记物和信号通路)》主题讲座,我与其他同学一同聆听了李教授为我们带来的知识洗礼。 角膜缘干细胞是角膜上皮再生的源泉,属成体干细胞,有其独特的生物学特性。角膜缘干细胞标志物的确立,对于建立规范的角膜缘干细胞分离纯化和培养方法、进一步研究其生物学特性起着决定性的作用。迄今为止发现的可能作为角膜缘干细胞标记物,如代谢酶、生长因子受体、细胞骨架蛋白以及其他成分包括 p63、整合素、ABCG2等对研究角膜上皮及眼表十分重要。但由于特异性不强,任何一种分子均不足以单独作为角膜缘干细胞的标记物,因此暂时还没有明确的鉴别角膜缘干细胞的标记。目前角膜缘干细胞已成为眼科界研究的热点之一,尽快找出并确认其分子标记物,将有利于对角膜缘干细胞进行定位,并促进角膜上皮重建机制的研究。 在生物体内的糖酵解代谢中,烯醇化酶催化2-磷酸甘油变成烯醇式磷酸丙酮酸。当角膜上皮损伤时角膜缘干细胞增殖分化,糖酵解作用加强,细胞增殖周期加快,角膜缘干细胞内的烯醇化酶的活性增强,表达增多。 EGFR是一种跨膜糖蛋白,包括膜外结合区及膜内酪氨酸激酶区,此受体介导EGF家族对细胞的生物学反应,引起膜内C-末端酪氨酸残基的自身磷酸化,这将产生一系列胞内信号转导分子的高亲和力结合位点,将细胞分裂信号传给细胞核,通过信号的级联放大系统调控细胞分裂,外部信号可以通过EGFR诱导角膜缘干细胞分裂增殖,而EGFR在角膜缘干细胞分裂增殖时表达增强。 TGF是一类具有多种生物学功能的多肽生长因子,在角膜上皮细胞、基质细胞及内皮细胞均可检测到其mRNA的表达,在所有组织中均是一个关键的纤维化调节因子,能调节细胞增殖、细胞外基质合成。TGFR是参与TGF信息传递的分子,有多种亚型,TGF的作用与细胞表面所表达的受体类型有关。当角膜上皮损伤时,角膜缘干细胞可在TGF调节下转化为角膜上皮细胞。 TrkA是膜表面的受体信号传导系统的一种,可与膜外EGF、TGF等配体结合,激活细胞内酪氨酸激酶的活性,这种受体与细胞的增殖、分化、分裂有关。TrkA 在动物胚胎时期分布广泛且含量较多,出生后分布区域明显减少,含量降低,至成年一直维持较低水平。TrkA可能调控角膜缘干细胞的增殖、分化、分裂。 ABCG2为ATP结合体转运蛋白中的一种成分,是一种膜转运蛋白,主要定位在细胞膜上,在正常组织、肝脏、干细胞中表达较高,在体内ABCG2可排出有害物质,转运有用物质,维持内环境的稳定。 整合素是介导细胞与细胞及细胞与细胞外基质间粘附的一种蛋白质分子,在维持正常组织结构、炎症与免疫应答以及伤口修复等过程中具有重要作用。整合素不仅维持正常角膜组织的结构,而且参与角膜损伤修复反应,当角膜缘干细胞

物理前沿讲座——超导体

摘要:自1911年以来,陆续发现某些元素、合金、化合物或其他材料,当温度低于某临界温度T c以下时,电阻小到微不足道,这种现象称为超导电性。具有超导电下哦那个的材料成为超导体。1933年发现超导体具有抗磁性,这种现象称为麦斯纳(Meissner)效应。20世纪70年代发现的超导体主要是元素超导体(包括金属和半导体)和合金超导体,临界温度一般为几K,最高不超过30K,这些称为常规超导体。20世纪80年代以来陆续发现某些铜氧化物超导体,临界温度可达数十K甚至超过100K,这些称为高温超导体。由于高温超导体具有奇特特性和广阔的应用前景,因此,对高温超导现象的理论与实验研究有着重要意义,是当今凝聚态物理一个重要的前沿课题。 关键词:超导体迈斯纳效应BCS理论高温超导体 超导体的基本特征 1超导体的临界温度 我们把电阻突然消失的温度称为超导体的临界温度T C。到目前为止,人们发现周期表中相当一部分元素在各种条件下出现超导电性。 2超导体的临界磁场 用一个磁场加到超导体上之后,当磁场达到某一定值时,超导体就回复了电阻,回到了正常态。假如把磁场平行的加到一根细长的超导棒上,在一定的磁场强度下,棒的电阻突然恢复,使这个电阻突然恢复的磁场值称为临界磁场。 当外磁场强度增加到某一临界值H C时,超导体的导电性受到破坏,材料由超导态转为正常态,临界磁场H c与温度T有关,H c(T)的经验公式为 H C=H C(0)[1-(T/T C)2][1] (T≦T C) 3临界电流 实验发现,当对超导线通以电流时,无阻的超流态要受到电流大小的限制,

当电流达到某一临界值I C之后,超导体将恢复到正常态,对大多数超导金属元素正常态的恢复是突变的,我们称这个电流为临界电流。 二、迈斯纳效应 1933年德国物理学家Meissner和Ochsenfeld对锡单晶球超导体做磁场分布测量时在弱磁场中把金属冷却进入超导态时的磁感应线似乎一下子被排斥出,保持体内磁感应强度等于零。 当材料处在超导状态时,随着进入超导体内部的增加磁场速度衰减,磁场主要存在于超导体表面一定厚度的薄层内。对于宏观超导体,若把这个薄层看成趋近于零,则可近似认为超导体内部磁感应强度B=0超导体有完全抗磁性,我们称之为理想迈斯纳态,不能理想化的状态称之为一般迈斯纳态。 三、Josephson效应 作为超导载体的Cooper对能以一定几率贯穿能垒,称此为隧道效应。例如,在两层超导物质间夹有厚度为纳米量级的绝缘层,若通过连线导入电流,该电流则以电阻为零的状态流动。 BCS理论的创立 1955年,巴丁应德国出版的《物理学手册》的邀请,写了一篇关于超导理论的述评.这使巴丁对当时的超导研究有了更全面的了解.这时,巴丁已经明确了超导现象的产生涉及3个关键因素:一是电子~声子相互作用;二是能隙的存在:三是速度空间的凝聚. 要真正建立微观理论。关键是要对超导态有一个清晰的物理图像.1956年春天,库珀不负众望,迈出了关键的一步,提出了超导理论所需要的额图像.库珀利用量子场论方法,直接从动力学的角度考虑相互吸引的直接作用,得到了费米面近旁两个动量和自旋都大小相等而方向相反的电子能结合成对。这种电子对被称为“库珀对”。库珀对的提出成为Bcs理论成功的关键.

超导物理

超导物理 超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究,认识不断发展起来的,特别是20世纪50年代以来取得了一系列重大突破,引发了今天的"高温"超导电性机理及超导材料研究的热潮. "绝对零度先生"昂内斯发现了神奇的超导现象 .昂内斯于1853年9月21日生于荷兰的格罗宁根,29岁即1882年就被任命为荷兰莱顿大学物理学教授和实验室主任.晋升后不久,昂内斯受到他的同胞范德瓦尔斯研究的影响,决定在莱顿大学建一个当时在世界上规模最大的低温实验室, 并把全部研究项目都转到低温研究方面.由于有了较好的实验条件,昂内斯于1906年使用真空泵连续真空法,使低温气体获得最大限度的膨胀,这样,他获得了20.4k(零下252. 76℃)的低温,液化了氢气.由于有了大量液态氢,就为进一步液化氦气打下了坚实的基础. 1808年7月10日,液化氦气的关键性实验从凌晨5点半就开始了,经过漫长的13小时之后,实验室的工作人员才在人类科学史上第一次看到了液态的氦.当时,昂内斯激动得不得了,他激动地说:"当我看到了液氦时,那真有点像神话中的幻觉,一切都似乎是奇迹的显现."在实验过程中昂内斯获得了4.2k(零下268.9 6℃) 的低温. 过了两年,昂内斯进一步做了使氦固化的试验,但是没有成功.虽说氦没有固化成功,昂内斯意外地从中却获得了1.04k(零下272.12℃)的低温.这是人类向绝对零度大大逼近了一步.人们为了尊敬昂内斯的贡献,给他送了一个风趣的绰号叫"绝对零度先生".从此,昂内斯更加专心致志于探索物体在低温时表现出的特殊性质. 昂内斯和他的学生开始用汞作为测量对象,因为他认为金属材料纯净与否会大大影响测量.而汞可以用蒸馏法提炼得非常纯净.1911年4月的一天,昂内斯让他的学生霍尔斯特进行实验观察,在观察中发现当温度到4.2k以下时,电阻突然消失了,这使霍尔斯特大为惊讶.但是,昂内斯并不感到过分吃惊,因为这一实验结果与他的猜想相吻合.4月28日,昂内斯公布了他们的这一重要发现.同年11月25日,他又明确指出,"测量表明,从氢的熔点(14.02k)到氦的沸点(4.56k)之间,曲线显示出汞的电阻随温度下降而减小的速度与通常情形一样,是逐渐减小的;但到4.21k与4.19k之间,电阻减小的速度急剧加快;到4.19k时,电阻完全都消失了".就这样,低温超导现象被人类第一次发现. 为了进一步证明电阻真的减到零,昂内斯和他的学生把磁铁穿过水银环路,由于电磁感应产生的电流保持了好几天,这就充分证实了电阻完全消失后的超导现象:即只要超导体内有电流,由于没有电阻,所以原则上电流就会永远流动下去,不会停止.1913年,昂内斯首次在论文中使用了"超导电性"这个词. 美国物理学家巴丁,库珀,施里弗说明了超导现象的微观本质和机制,创立了BCS超导微观理论 超导现象虽说于1911年就发现了,但是直到20世纪40年代末,还只能建立起一个唯象的理论,仅仅只限于解释超导的宏观现象.一直到1957年,关于超导现象的微观本质和它的机制,才由美国物理学家巴丁,库珀和施里弗三人共同解决----他们合作创建了超导微观理论.他们三人创建的这套理论,取每人姓氏的第一个字母进行组合,即被称为"BCS"理论.这一理论提出后,迅即被大量理论研究和实验实践证明它是十分成功的----因为,这一理论能对超导电性作出正确的解释,并极大的促进了电性和超导磁体的研究和应用.所以如此,他们三人于1972年共同获得了诺贝尔物理学奖.

学科前沿讲座课程报告撰写要求

中国矿业大学建筑工程学院土木工程专业学科前沿讲座课程报告 第 1 页 05-1班 姓 摘 要:☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ ☆☆☆☆☆☆(内容小四号宋体,西文Times New Roman 字体,行距最小值18磅)☆☆☆ ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆。 关键词:☆☆☆☆;☆☆☆;☆☆;☆☆☆ ☆☆☆☆☆(内容小四号宋体,西文Times New Roman 字体,行距最小值18磅)。 1 ☆☆☆☆(内容小四号宋体,西文Times New Roman 字体,行距最小值18磅)。☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 2 2.1 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(内容小四号宋体,西文Times New Roman 字体,行距最小值18磅)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆。 f f f C ?στtan ?+= (1) 式中 τf ——冻土的剪切强度,MPa ; C f ——冻土的粘聚力,MPa ; φf ——冻土的内摩擦角,°。 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(内容小四号宋体,西文Times New Roman 字体,行距最小值18磅)☆☆☆☆页眉和页码,五号宋体。

前沿讲座

这次的前沿专题课程一共上了四次课,分别由不同的老师给我们讲解了不同的研究方向的一些前沿的知识,使我了解了很多自己课题方向之外的内容。 首先讲课的是郭希娟老师,她的方向是计算机器人与计算机科学。这是个集计算机,数学,机械,物理力学等多学科交叉的方向,而且实用性很强。她给我们讲解了用最小分离距离来解决碰撞检测问题的原理,演示了研究课题的一些成果,包括:直升机飞行器的原理仿真、乒乓球运动员直线打球的原理演示、物体的碰撞检测演示等。她根据自己多年的研究经验,总结出书《机构性能指标理论与仿真》。郭老师告诉我们:任何的学术研究一定要和实际应用联系起来。 第二次上课的是焦移山老师,他以日线股票为例给我们讲了时间序列预测的方法与应用。他讲的是一篇提出预测时间序列的最新方法的论文。时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。时间序列的预测一般用的是相似度预测原理,而相似度预测的方法有:欧式距离、最长公共子序列、DTW(Dynamic time warpping)。焦老师研究的是金融时间序列的预测,而金融时间序列的特点:1.适合用分段线性表示方式。这种方式容易去掉数据中的噪声,还原数据本质,而且易于计算。2.必须是zig-zag 形式。这篇论文所提出的算法使原来预测的准确率有65%提高到70%。这个结果已经很令人满意了。 第三次上课的是唐勇老师。他的研究方向是虚拟现实,他以虚拟现实的必然与冲击为题开始了这次的课程。唐老师讲到:我们生活在现实、抽象、数字这三个世界之中。虚拟现实及仿真技术影响深远,虚拟增强现实实践梦想体现在飞越时空、穿越极限、再现历史、颠覆传统、访问心灵、康复床上、虚实同进等。数字(虚拟)世界牵引科学技术的发展:仿真数据驱动的大规模场景的绘制与漫游,不规则物体建模的创新性探索。唐老师强调技术人生,强调把学术与人生联系一起。 最后一次上课的是张付志老师,他讲的是个性化协同推荐系统中的安全与信任问题。我觉得张老师的方向与自己的方向有一定的联系,所以下面重点总结一下张老师的内容。 1.推荐系统简介: 推荐系统是指能够为用户提供关于对用户来说有用的项目的建议的一类软

软件工程专业学科前沿讲座报告

软件工程专业学科前沿讲座报告 院 (系):计算机科学与工程 专业:软件工程 班级:17060212 学生:张嘉琪 学号:17060212119

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。 人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。这是智能化研究者梦寐以求的东西。 前景:目前随着人工智能AI的迅猛发展,今后几年触摸一体机一定会和人工智能

超导体的电磁学性质及热力学解释

超导体的电磁学性质及热力学解释 超导电是在低温下具有广泛性的现象,现在已知道,有二十多种元素,大量的化合物,都在一定的临界温度下,转入所谓超导电状态。超导体与温度、磁场、电流密度的大小密切相关,这些条件的上限分别称为临界温度(critical temperature, Tc)、临界磁场(critical magnetic field, Hc)和临界电流密度(critical electric current density, Jc)。超导电性有两个最基本的特性:完全导电性和完全抗磁性。常压下,元素中超导临界温度最高的是Nb(9.26K),最低的是Rh(0.0002K)。近年来人们始终在努力寻求临界温度更高的所谓高 Tc 超导材料,到目前为止,已经发现了三代高温超导材料,第一代为镧系高温超导材料,第二代为钇系高温超导材料,第三代为铋系、铊系及汞系高温超导材料。 1.超导体的电磁学性质 1.1 零电阻 1911年荷兰物理学家昂内斯(H.R.Onnes)在研究水银在低温下的电阻时,发现当温度降低至4.2K以下后,水银的电阻突然消失,呈现零电阻状态。昂内斯便把这种低温下物质具有零电阻的性能称为超导电性。 电阻是用灵敏电位计测量通过一定电流样品上的电压降而确定的,样品本身被浸在液氦中。当时发现 Hg 的电阻在 4.2K 左右陡然下降。实验证明,测量电流愈小,电阻变化愈尖锐,用足够小的测量电流能使电阻的下降集中发生在 0.01K 的狭窄范围内。在这个转变温度以下,电阻完全消失。 汞在液氦温度左右的电阻变化如下图所示。 上述检测方法由于仪器的灵敏度问题而受到质疑。Onnes利用“持久电流”实验解决了这个问题。在外磁场作用下,使环状的样品发生上述转变,然后撤去磁场,这时在环内产生感生电流。他发现当温度降到临界温度以下,用磁针在低温容器之外检验感生电流,结果在很长时间内,完全不能发现任何变化。而温度提高到临界温度以上时,电流立即消失。 总结大量的实验,可以认为已经完全确立,许多物质在一定的转变温度下,电阻完全消失,物质转变到所谓超导电状态。

数学学科前沿讲座

数学学科前沿讲座 通过16个学时的学习,我对数学有大概的了解,也有一些自己的体会。下面就简要谈谈。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。 数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学…… 一、应用数学 应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。 主要研究方向:(1) 非线性偏微分方程 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。简单地说,拓扑就是研究有形的物体在连续变换下,怎

超导物理与诺贝尔奖

超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究、认识不断发展起来的,特别是50年代以来取得了一系列重大突破,引发了今天的高温超导电性机理及超导材料研究的热潮。 昂内斯(中间白衣者)在他所创立的低 温实验室内 昂内斯(1853~1926) 荷兰低温物理 学家 1908年成功地液化了氦气,1911年 发现了某些金属在液氦温度下电阻 突然消失,即“超导电性”现象,于 1913年获奖。

巴丁(1908~1991) 美国物理学家 库珀(1930~) 美国物 理学家 施里弗(1931~) 美国物理学家 1957年巴丁、库珀和施里弗合作创建了超导微观理论,于1972年获奖。这一理论能对超导电性作出正确的解释,并极大地促进了超导电性和超导磁体的研究与应用。 用于电子对撞机的超导线圈,重达65吨。

。 约瑟夫森(1940~) 英国物理学家1962年预言存在超导电子对隧道电流,第二年这一预言被实验证实,并被命名为约瑟夫森效应,1973年获奖 贾埃弗(1929~) 挪威裔美国物理学家1957年完成了量子隧道效应实验,并于1963年完成了超导体隧道效应实验。于1973年获奖。 约瑟夫森和贾埃弗的发现,对于研制高性能的半导体和超导体元器件具有很高的应用价值,并导致超导电子学的建立。

K.A.缪勒(1927~) 瑞士物理学家 1983年缪勒和柏德诺兹合作进行超导研究,三年后发现了钡镧铜氧体系高温超导化合物。于1987年获奖。这一研究成果导致了多种液氮温区高温超导体材料的出现,并宣告了超导技术开发应用时代即将到来。 超导研究已长达近一个世纪,20年前超导应用在科学界还被认为是一种侈谈。而今天,它已在科研、医疗、交通、通信、军事、电力和能源等领域得到了应用。但这只是序幕,超导研究与应用在21世纪将为我们展现更加绚丽辉煌的前景。 柏德诺兹(1950~) 德国物理学家 应用超导体的磁悬浮列车实验装置

交通前沿讲座心得体会 专业前沿讲座心得体会 精品

交通前沿讲座心得体会专业前沿讲座心得体会由于时间限制和我们有限的知识水平,老师们都从大处着眼,为我们大概介绍了他们的研究方向和内容,同时还简单向我们介绍这些研究将来的实际意义,以及和我们模具锻压专业的联系.总体来说,也许理论上逻辑上的很专业的知识,我们没有学到多少,但老师们利用不到两个小时的时间,就基本上将一个新的领域在我们的脑海中勾勒了出来,使我们这些只知在学校死啃书本的同学也有机会现实了一回,真正了解到与百姓的生活有直接联系的科学研究. 各位老师不仅在学术领域给我们打开了新的窗户,使我们眼前一亮,也为我们介绍他们在工作学习中切身的体会及经验,提前向我们预警就业道路及工作生涯可能遇到的问题.还记得当时有个老师在讲课前放了一段用纯英文介绍的视频,我记得当时老师说那个视频是他在欧美开一个会议时的开场视频,我很有感触,不仅是对专业上的,还有对英语上的,那个视频里的英语我大部分听不懂,原来自己的英语水平这么的有限,中国在走向世界,专业上已有相当的技术,语言上岂能落下?赵长财老师,系燕山大学机械工程学院教授、博士生导师,现任燕山大学产业集团副董事长、中国机械工程学会高级会员...职务. 同时兼任沈阳重型机器集团公司、天津天锻压力机有限公司...多家企业特聘技术顾问.曾获得了秦皇岛市三育人先进个人、秦皇岛市人民满意公仆...荣誉称号. 拥有这么多成就的他给我们讲授课程,坐在下面听课的我感到很自豪,很自豪.在这次课上他简单介绍了金属管材成形新工艺及理论,管、板类零件内高压成形新工艺及其理论研究,液压机现代设计理论研究中一些前沿上的东西,由于世界能源的紧张和环保问题的日趋严重,汽车工业面临着严峻的挑战:一方面是提高燃气的热效率,减少废气排放;另一方面是减轻汽车自身重量,提高行驶速度,降低能耗. 这两方面要求促使人们不得不改进传统工艺,创造出适应新经济时代要求的新工艺.在汽车工业中管材液压成形作为一个非常重要的成形技术已得到了广泛应用,主要用于生产汽车动力系统、排气系统、汽车底盘以及一些结构件. 汽车用排气管件大多为形状比较复杂、轴线有很大变化的零件.传统成形工艺除铸造成形外,主要采用冲压两个半壳而后组焊成形,或采用管坯进行数控弯

物理学前沿讲座——激光技术

物理学前沿讲座——激光技术 物理学前沿讲座—— 激光技术 激光技术 一、引言 随着社会的发展,各类新型技术也如雨后春笋般破土而出。虽然世界第一台激光器早在1960年由赴美国的梅曼研发成功,而我国的第一台红宝石激光器也在1961年于长春问世。但在短短40多年的时间里,激光技术的应用发展得到了迅猛的发展。激光技术已与多个学科相结合形成多个应用技术领域。本文将从激光的由来,激光的特特,以及激光的应用几方面来介绍而、激光。二、正文 1、激光的由来 激光最初的中文名叫“镭射”,“莱塞”,是它的英文名字LASER的音译,是取自英文Light Amplification by Stimulation Emission of Radiation的各名词的头一个字母组成的缩写词,意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。而在1964年按照我国著名科学家钱学森的建议将“光受激发射”改名为“激光”。 2、激光的特性 激光具有定向发光、亮度亮度极高、颜色极强、相位高度一致的特性。激光光波在空间叠加时,重叠区的光强分布会出现稳定的强弱相间的现象,因而我们可知激光是相干波,而普通光源发出的光,其频率、振动方向、相位不一致,而导致了普通光源是非相干波。 3、激光的应用

基于激光独特的性质,目前激光已被应用到生活、科研的方方面面。激光焊接、激光打孔、激光淬火,激光热处理、激光打标(许多矿泉水上的生产日期等)、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗、激光测距、激光医疗、激光雷达、激光武器、激光打印机等各个方面。下面就让我们来具体看一下最近几十年来在激光武器、激光医疗、激光雷达技术、光纤激光器等方面的取得的巨大的成果。 3、1激光武器 激光武器是利用激光辐射能量达到摧毁战斗目标或使其丧失战斗力等的作战武器,是一种利用沿一定方向发射的激光束攻击目标的定向能武器。其具有快速、灵活、精确和抗电磁干扰性等优异性能。在光电对抗、防空和战略防御中可发挥独特作用。它分为战斗激光武器和战略激光武器两种。激光武器将会成为一种常规的威慑力量。由于激光武器的速度是光速,因此在使用时不需要提前量。“鹦鹉螺”激光武器可谓是激光武器中的典型代表。在2000年10月25日以色列国防部就透露“鹦鹉螺”激光武器于6月6日,8月28日,9月22日进行三次激光武器系统系列试验中,分别成功击落了一枚、两枚、两枚“喀秋莎”火箭,进而成为世界上第一个成功击落火箭的战术高能激光系统。 图1 鹦鹉螺 3、2激光医疗

超导体物理教案

超导体物理教案 知识目标 了解超导体以及超导体在现代科学技术中的应用. 能力目标 通过超导体知识的学习,扩展知识面. 情感目标 知道超导体在现代以及未来科技中的重要性,学习科学家的坚韧精神. 教学建议 教材分析 教材从介绍昂尼斯发现水银超导现象的物理学史知识入手,讲述超导体的一般概念,基础知识. 进一步讲解超导的优点、缺点和目前科学家面临的问题. 教法建议 本节的教学要注重科技的联系,避免孤立的学习,要注意联系实际. 可以提出问题学生自主学习,学生根据提出的问题,可以利用教材和教师提供的一些资料进行学习. 也可以教师提出课题,学生查阅资料,从收集资料、信息的过程中学习,提高收集信息和处理信息的能力. --方案 【教学过程设计】 方法1、学生阅读教材,教师提供一些关于超导体的材料,教师提出一些问题,学生阅读时思考,例如:什么是超导体现象?采用超导体有什么经济效益? 方法2、对于基础较好的班级,可以采用实验探究和信息学习的方法.实例如下 实验探究:可以组织学生小组,图书馆、互联网查阅有关超导体方面的资料,小组讨论,总结超导体的优点、缺点以及讨论超导体的未来发展方向. 【板书设计】

1.超导体 概念 超导现象 2.超导体的优缺点 3.我国的超导体的研究 探究活动 【课题】超导现象的历史 【组织形式】个人或学习小组 【活动流程】 制订子课题;制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;评估;交流与合作. 【参考方案】 1、尝试总结超导体的发展现况. 2、讨论超导体的未来发展趋势. 【资料来源】 1、图书馆、互联网查找资料. 2、交流,发现共性和差异. 感谢您的阅读。 祝语:还是那株山茶花,芬芳而美丽,那红色是天空的彩霞,是情人脸上的娇羞,是山谷中的胜景,是心里永远的秘密。

学科前沿讲座学习心得

学科前沿讲座学习心得 在开头必须注明:班级、学号、专业等个人信息。 总结开头需对照凭证自查写明参加各类前沿讲座的次数,如:参加学术讲座8次,包括:名师讲坛2 次,学术沙龙2次;学期教育讲座8 次,包括院士校园行1 次、安全教育 1 次,心理教育 1 次,职业生涯规划沙龙 1 次。 大学里开设的课程总是异彩纷呈,可以无限地满足我们学生求知欲和好奇心,似乎无论我们对哪一方面感兴趣,总可以在琳琅满目的课程条目中找到自己的归宿。然而,本学期我院开设的学科前沿讲座,却在众多的课程中独领风骚,展现出了其独特的魅力,其专业性、尖端性,在学术领域给我们打开了新的窗户,使我们眼前一亮。 学科前沿是指某一学科中最能代表该学科发展趋势制约该学科当前发展的关键性科学问题、难题及相应的学说。在短短一年的时间里,我们有幸参加学习了各种学术讲座和教育讲座。这无疑全是精华中的萃取,而对于我们学生而言,则更是一场知识盛宴,带给我们完全优于课本,来自时代尖端的知识风暴。下面我将就自己这一学年的所学,谈谈自己我简单的想法。 在这十六次精彩纷呈的讲座中,给我留下最深刻的印象就是校医院开设的急救知识安全培训讲座。 主讲老师理论联系实践,深入浅出地向同学们讲解了灾难的分类、急救的基本程序、创伤救护的基本技术以及心肺复苏的实施方法。讲座现场,老师与学生们形成良好互动,由学生扮演受伤者,现场演示了不同伤情下创伤救护的止血包扎方式,并利用模拟人手把手地教同学们如何进行心肺复苏操作 , 对胸外按压的部位、频率、深度和气道开放消除异物的方法以及人工呼吸的要点进行了详细讲解。同学们听得非常投入,反响热烈并积极参与,几名同学代表在老师的指导下先后进行了现场练习。 此次讲座内容丰富精彩,达到了预期效果。通过学习和演练,同学们对急救知识有了更加全面的了解,同时也掌握了一些基本急救技能,增强了同学们的自我保护意识。极大的提升了自己的急救能力。 既然上学了,免不了面对就业问题,在 3月 27号,潘显钟老师给我们带来了一场就业指导讲座。潘显钟老师主要从学校理念的各项数据入手,包括研究生毕业初期的待遇情况,近几年毕业生的留京比例,以及继续深造与直接就业的差异等等,深入浅出的为我们剖析当前的就业形势。 一个人如果想实现他的目标,需要付出很多的努力,他在开始之前需要有很多的

相关文档