文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料的背景意义

纳米材料的背景意义

纳米材料的背景意义
纳米材料的背景意义

纳米知识介绍

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。

纳米

纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。

纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

纳米技术的发展大致可以划分为3个阶段:

第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。

第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料:

?纳米微粒与纳米微粒复合(0-0复合),

?纳米微粒与常规块体复合(0-3复合),

?纳米复合薄膜(0-2复合)。

第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。

纳米材料

材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图

一、纳米材料的基本特性

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。

1、力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和

增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还

要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位

错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具

材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其

力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材

料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领

域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航

空、航天、航海、石油钻探等恶劣环境下使用。

2、热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合

作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应

用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈

的吸收作用,从而有效地将太阳光能转换为热能。

3、电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒

子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、

超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的

常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好

的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,

成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入

进展,已经成功研制出由碳纳米管组成的逻辑电路。

4、磁学性质

当代计算机硬盘系统的磁记录密度超过 1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为

3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,

可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。

目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到

1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线

性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料

对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低

得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,

磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、

光磁材料中有着广泛的应用。

纳米结构

以纳米尺度的物质单元为基础,按一定规律构筑或营造的新体系。它不仅具有纳米物质单元的性能,还存在由结构组合而产生的新的特性。

Gleiter认为纳米材料是其晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量界面,晶界原子达15%一50%。可以利用TEM、X射线、中子衍射和一些其它方法来表征纳米材料及其结构。对于纳米材料晶界的结构有三种不同的理论:

(1) Gleiter的完全无序说。[3]这种假说认为纳米晶粒间界具有较为开放的结构,原子排列具有随机性,原子间距较大,原子密度低,既无长程有序,又无短程有序。(2)Seagel的有序说。[4]有序说认为晶粒间界处含有短程有序的

结构单元,晶粒间界处原子保持一定的有序度,通过阶梯式移动实现局部能量的最低状态;(3)叶恒强、吴希俊的有序无序说。[5]该理论认为纳米材料晶界结构受晶粒取向和外场作用等一些因素的限制,在有序和无序之间变化。

二、纳米材料的主要应用

借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。

1、特殊性能材料的生产

材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获

得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其

良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、

渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化

剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通

钨粉需在3 000℃高温时烧结,而当掺入0.1%~0.5%的纳米镍粉后,

烧结成形温度可降低到1 200℃~1 311℃。复合材料的烧结由于不

同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比

较困难的。纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,

且相变温度也降低了,从而在低温下就能进行固相反应,得到烧结性

能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高

压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、

相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性

能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、

耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以

及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会

对高技术和新材料的开发产生重要作

2、生物医学中的纳米技术应用

从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。细胞中的细胞器和其它的结构单

元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,

植物中的光合作用等都是“纳米工厂”的典型例子。遗传基因序列的

自组装排列做到了原子级的结构精确,神经系统的信息传递和反馈等

都是纳米科技的完美典范。生物合成和生物过程已成为启发和制造新

的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级

控制和操纵。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,

这就为医学研究提供了新的契机。目前已得到较好应用的实例有:利

用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)

粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行

局部定向治疗等。

正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因

芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳

米生物工程的前沿科技。将直接应用于临床诊断,药物开发和人类遗传

诊断。植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。纳米生物材料也可以分为两类,一类是适合于生物体内的纳米材料,如各式纳米传感器,用于疾病的早期诊断、监测和治疗。各式纳米机械系统可以快速地辨别病区所在,并定向地将药物注入病区而不伤害正常的组织或清除心脑血管中的血栓、脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。另一类是利用生物分子的活性而研制的纳米材料,它们可以不被用于生物体,而被用于其它纳米技术或微制造。

3、纳米生物计算机开发

生物计算机的主要原材料之一是生物工程技术产生的蛋白质分子,并以此作为生物芯片。在这种芯片中,信息以波的形式传播,其运算速度要比当今最新一代计算机快10倍以至几万倍,能量消耗仅相当于普通计算机的几亿分之一,存贮信息的空间仅占百亿分之一。由于蛋白质分子能自我组合,再生新的微型电路,从而使得生物计算机具有生物体的一些特点,如能发挥生物本身的调节机能、自动修复芯片上发生的故障,还能使其模仿人脑的机制等。世界上第一台生物计算机是由美国于1994年11月首次研制成功的。

科学家们预言,实用的生物分子计算机将于今后几年问世,它将对未来世界产生重大影响。制造这类计算机离不开纳米技术。生物纳米计算机和纳米机器人的结合体则是另一类更高层次上的可以进行人机对话的装置,它一旦研制成功,有可能在1秒钟完成数十亿次操作,届时人类的劳动方式将产生彻底的变革。

目前纳米科学技术正处在重大突破的前夜,它已取得一系列成果,使全世界为之震动,并引起关心未来发展的全世界科学家的思索。人们正注视着纳米科学技术领域不断涌现出的奇异现象和新进展,这一领域前景十分诱人。它与其它学科相互渗透和交叉,可以形成许多新的学科或学科群,其有关发展将对经济建设、国防实力、科技发展乃至整个社会文明进步产生巨大影

4、新的国防科技革命

纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武

器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能

力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击

任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成

卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在

隐身技术上的应用尤其引人注目。在雷达隐身技术中,超高频(SHF,GHz)段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身

材料加以研制。由于纳米材料的界面组元所占比例大,纳米颗粒表面

原子比例高,不饱和键和悬挂键增多。大量悬挂键的存在使界面极化,吸收频带展宽。高的比表面积造成多重散射。纳米材料的量子尺寸效

应使得电子的能级分裂,分裂的能级间距正处于微波的能量范围,为

纳米材料创造了新的吸波通道。纳米材料中的原子、电子在微波场的

辐照下,运动加剧,增加电磁能转化为热能的效率,从而提高对电磁

波的吸收性能。美国研制的“超黑粉”纳米吸波材料对雷达波的吸收

率达99%,法国最近研制的CoNi纳米颗粒被覆绝缘层的纳米复合材

料,在2-7GHz范围内,其m¢和m¢¢几乎均大于6。最近国外正致

力于研究可覆盖厘米波、毫米波、红外、可见光等波段的纳米复合材

料,并提出了单个吸收粒子匹配设计机理,这样可以充分发挥单位质

量损耗层的作用。纳米材料在具备良好的吸波功能的同时,普遍兼备

了薄、轻、宽、强等特点。纳米材料中的硼化物、碳化物,铁氧体,

包括纳米纤维及纳米碳管在隐身材料方面的应用都将大有作为

5、其他领域

除此之外,纳米材料还在诸如海水净化、航空航天、环境能源、微电子学等其他领域也有着逐渐广泛的应用,纳米材料在这些领域都

在逐渐发挥着光和热。

三、纳米材料的应用前景展望

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

国际纳米材料发展投入和国内水平的对比

纳米科学与技术在二十世纪九十年代初期在世界发达国家蓬勃发展,西方发达国家对纳米科学与技术的研发投入逐年增加,竞争也进入白热化。以高新技术为导向的美国正是看到了纳米材料的无限潜力,近年将纳米科学技术的研发作为科技政策的重点,于2000年宣布实施“国家纳米计划”,每年的纳米科技研发投入都在增长,截至2007年初共投入五十六亿美元用于纳米科学技术的研发。[14-15]日本通产省实施为期7年的“纳米材料工程”计划,每年投资达50亿日元。日本科技厅设立“纳米材料研究中心”,集中数百名专家进行研究开发。日本文部科学省也实施“纳米技术综合支援计划”,以最大限度发挥各科研机构开发纳米技术的能力。日本每年用于纳米技术研发的投资大约5亿美元。

欧盟近年也将纳米科学技术作为重点研究领域之一,从2002至2006年间为纳米技术研究拨款1 3亿欧元,并于2003年建立纳米技术工业平台,推动纳米技术的应用。法国于2003年动用5000万欧元建立法国最大的电子纳米技术中心

——“联盟-克洛尔2”,并在2005年该中心又投入14亿美元,建成了世界上规模最大的纳米芯片生产基地。

在纳米科技领域,我国在“十五”、“十一五”期间取得了一批重要的研究成果,在部分领域已达到国际先进水平。但从以上我国的纳米材料成果可以看出,与发达国家相比,我国纳米材料和技术的发展水平与发达国家还存在着不小的差距。

首先,发达国家自上世纪90年代以来,一直把纳米科技作为发展的长远战略目标,不断强化基础和应用技术开发,积极推动科技成果产业化,抢占战略制高点,企图垄断知识产权和国际市场。近一年来,纳米科技取得了多方面的重要研究成果和突破,主要表现在下列几个领域:纳米量子器件及其集成关键技术;纳米信息获取技术及器件;纳米光电子材料及器件;纳米级高密度信息储存技术及器件,生物医学纳米器件;纳米金属材料;纳米非金属材料;纳米材料应用技术开发;纳米材料的结构设计与模拟;纳米结构的检测与表征方法;与纳米科技相关仪器的设计与开发。而我国纳米科技的大部分研究工作主要集中在硬件条件要求不太高的基础研究领域,涉及纳米主流技术高、精、尖的研究内容不多,特别是一些具有重要应用前景的技术研究比较薄弱,在纳米材料、纳米结构的设计、制造和控制以及实用化方面与国际先进水平存在着较大的差距。

其次,我国纳米技术研究目前主要集中在部分高等院校和中科院的一些研究所,覆盖领域狭窄,多学科交叉融合程度不够,技术创新主体——企业参与力度低,缺乏统筹规划与协调。在全国100多家从事纳米材料和技术研发单位中,大多数的研发内容都集中在与传统技术的改性和纳米粉体制备技术上,与“在原子和分子水平上操纵物质”、“设计、制造和控制纳米结构”的纳米主流技术差距较大。

第三,纳米材料与技术,是一个典型的新兴高技术领域,需要大批高技术人才和先进、昂贵的实验装备。在过去的近十年中,国家对纳米科技的总投入为8500万元,仅为日本的1/30、德国的1/10、美国的1/7,还略低于印度的投入强度,急需改善硬件环境、添置一批必要的共用性强的先进设备和测试仪器。[16-19]

的变革。

选题背景及课题研究的目的和意义范例

“立足校本研训,培养优秀教师群体”的实验研究 一、课题选题目的、意义及价值(理论价值、实践价值、推广价值) 1988年,《世界教育年鉴》以“教师的专业发展”为主题发表的一系列文章中提出:教师作为提供教育教学服务的专业工作者,专业发展目标是提高教育教学的知识和技能,提高教育教学的水平。近年来,我们珠海路小学顺应教育形势发展的需要,注重立足学校实际,开展以校为本的教师培训与教育教学研讨活动,促进了教师的专业发展。学校涌现出了一批省市级优秀教师,其中齐鲁名校长1人,齐鲁名师、省特级教师1人,省优秀辅导员2人,岛城名师、青岛市特级教师2人,及一批青岛市优秀教师、学科带头人、教学能手、青年教师优秀专业人才。教师队伍整体素质的提高,对学校教师队伍专业发展提出了新的要求,为学校打造名师,壮大优秀教师群体创造了条件。 《“立足校本研训,培养优秀教师群体”的实验研究》这一课题研究的目的在于立足于学校实际,充分挖掘校内资源与优势,同时借助于外部力量,内外结合,开展基于校本实际的形式多样的培训与研究活动,为教师的成长、发展搭建平台,使之在积极参与中促进不同层次教师的专业发展,培养市、地、省乃至全国等不同层次的名优骨干教师,构建学校优秀教师群体,以名师打造名校,探索出基于学校的优秀教师群体培养模式。 本课题的研究可以有效探索教育的基层组织——学校在促进教师专业发展方面,尤其是优秀教师群体培养的有效途径与方式,构建起适合学校推进的教师专业发展的培训与研究基本模式,为其它学校和教育行政部门在促进教师专业发展方面提供可资借鉴的实践经验。同时,本研究的探索,也可以为基于学校的名优教师群体培养的途径与方式的理论研究提供一些鲜活的个例和丰富的实践依据,并通过实验论证:学校是促进优秀教师群体发展的最主要的途径,校本研训是名优骨干教师发展的最主要的方式,并探索以校为本的优秀教师群体培养的可行性策略,进一步完善教师专业发展的教育理论。 2、课题研究的主要内容和拟解决的关键问题(研究的切入点、重点、难点、主要创新点等) 本课题研究的主要内容包括: 1.探索促进优秀教师群体成长的校本研训途径与方式,使教师由被动参与为主动自觉谋划职业发展,由个体努力为群体努力共同创优; 2.构建以校为本的优秀教师群体培养的基本模式,壮大学校名优教师队伍,创建名校; .

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

纳米材料研究方法

纳米材料研究方法 ——《材料研究方法》课程论文学院:机电工程学院 :王前聪 学号:201602044

纳米材料研究方法 摘要:本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 关键词:纳米材料分析方法表征 1前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下几种方法。

2 X射线衍射分析(XRD) X射线粉末衍射法的基本原理是:一束单色X射线碰击到研成细粉的样品上,在理想情况下,样品中晶体按各个可能的取向随机排列。在这样的粉末样品中,各种点阵面也以每个可能的取向存在。因此,对每套点阵面,至少有一些晶体的取向与入射束成Bragg角e,于是对这些晶体和晶面发生衍射。衍射束采用与图象记录仪相连的可移动检测仪Geiger,如计数器(衍射仪)检测,在记录纸上画出一系列峰。峰度位置和强度很容易从谱图上得到,从而使它成为物相分析的极为有用和快速的方法。 3光谱分析方法 3.1激光拉曼光谱分析(LR) 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射(Ray leighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉曼散射叫斯托克斯散射,频率高于激发光的拉曼散射叫反斯托克散射。其中Stokes线(v0一△v)与Anti-stokes线(v0+△v)对称分布在激发线(n0)。由于拉曼位移△、只取决于散射分子的结构而与v0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。拉曼位移△v(散射光

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

民法典的时代意义下

民法典的时代意义(下) 四、民法典的几种选择 对法典从社会、文化角度做过深刻比较研究的Csaba Varga﹐曾经提出非常细致的功能类型[1]﹐就民法典而言﹐本文仅从以下几个观点来分类﹐作为评估大陆民法典草案的基础。 1、体系观点 近代民法典从其整编民事规范的单位数来分﹐从最早的法国、奥地利民法受罗马法中盖尤斯「法学阶梯」的影响采三编制﹐对拉丁美洲多国有深刻影响[2].到了一八八九年的西班牙民法改采四编制﹐影响到后来的阿根廷民法也是如此[3].一九○○年开始施行的德国民法首创五编制﹐直接影响的是希腊、日本、中国(国民政府时期)和葡萄牙﹐也都采五编制。晚出几年的瑞士民法则可说是五编制的变型﹐即把债法独立出来﹐而余下四编架构相当近似﹐只是不设总则﹐而以人法替代﹐且把亲属、继承置于物权之前而已。意大利旧民法(1865)原来主要借鉴拿破仑法典﹐现行民法(1942)则显然受到德国潘德克吞学派的影响﹐但又刻意与德国民法区隔﹐首创不同以往的六编架构。而另一个在社会主义民法具有典范地位的一九六四年苏联民法典则采的是八编制。一九九二年竣工的荷兰民法典﹐其前身(1938)深受法国民法影响﹐以债编为例﹐据说六三三个条文中至少有五六一个条文直接从法国民法抄过来。后来也「德」化日深﹐新民法典共分八编(如果第七编之一不另计的话)﹐仍在讨论中而未订的还有两编。更新的是苏联民法分成三部分共六编﹐第三部分才在二○○二年三月

开始施行[4].各种体例可说琳琅满目﹐极尽民法体系的想象﹐此处限于篇幅﹐不细说其差异。然而隐隐然似乎可以看出由简而繁的趋势﹐反映了民事关系的日益复杂。 梁慧星教授谈到大陆民法典立法的三条思路[5]﹐其中所谓「松散式、邦联式」思路﹐也是从体系观点出发﹐以与注重逻辑性、体系性的法典相对﹐这样的分类非要建立于一种比较广义的法典定义不可﹐因为本文前节讨论的小结﹐仍然以系统性编纂的法典为宜﹐此处就不把英美法系中同样可见的某些法典纳入讨论[6].就狭义的法典来观察﹐一个也许比较有意义的分类﹐是从有无「总则」编切入﹐也就是在分为不同单元之后﹐能不能找出共同的﹐或德国人所称的「括号前」(vor die Klammer)的原则性规范﹐不仅在立法技术上因避免重复而较为经济﹐更重要的﹐是让适用者可以如算算术般从一般演绎到特别(deductio more geometrico)﹐乃至藉此标示出足以统摄整部民法典的精神﹐从而属于比较「紧密」的法典﹐反之﹐则显示其法典对所规范领域的整合﹐有意或无意的﹐仍相当「松散」。就此而言﹐首创总则编的德国民法典确实代表民法体系化发展的一个新里程碑﹐因为它不仅以总则编统领其他四编﹐而且各编都按通则/分则的方式编纂﹐且不论通则还是分则一律依权利义务关系的发生、存续、消灭的三部曲编列﹐可谓体系井然﹐配合普通/特别的规范﹐更创设了各种精确的概念﹐形成上下位分明、如同金字塔般的概念体系。德国民法之后出现的民法典﹐很多都采这种紧密的体例﹐如日本、中国、希腊、韩国、波兰、苏联、葡萄牙等。德国民法之前﹐深受罗马法影响的法国

研究背景及意义

一、研究背景及意义 随着社会的发展,我们已逐步进入信息化时代。作为一种新的社会进化方式,信息化正在以快捷、多变等特点改变着人们的思维、生活和交流方式,同时也改变着传统的教育方式和学生们的学习方式。当代青年学生伴随着信息技术兴起和网络、电脑普及而成长起来,他们喜欢网络,享受信息技术发展带来的种种恩惠。但同时,能否正确认识信息、传播信息和创造信息,成为有道德的信息社会人对他们来说是严峻的考验。所以说信息化时代使学校教育特别是德育工作面临了新挑战,我们只有更多的运用学生所喜欢的信息化渠道,帮助学生树立正确的网络道德观,将德育工作更好地覆盖学生丰富的生活实践,才能更贴近学生的心理世界,更好地发挥润物细无声的效果。 在社会网络化的背景下,推进德育工作的信息化进程不仅符合学生心理特点,时代特点,更是提高德育针对性与实效性的必由之路。学校德育工作应该如何应对社会转型的加速、社会开放程度的提高、现代信息技术的普及等带来的种种变化和挑战,成为当今德育教育工作者必须思考的问题。因此,本课题的研究紧贴当前社会现状,符合学生身心特点,将为加快学校德育工作的信息化进程提供重要的理论依据。 二、国内外研究现状 在知识经济时代,发达国家十分重视教育信息化建设,以美国、日本、英国为代表的西方国家一直在积极推行教育信息化发展战略,相应的对教育信息化的研究也逐年升温。早在20世纪60年代,日本学者提出的一种反映社会发展阶段的新学说中就包含了信息化的概念。到2003年,美国政府及其相关科研机构制定出台多达数十份教育技术政策报告,其中多数报告中包含涉及教育信息化方面的建议。目前美国的教育信息化建设,已经到达了相当高的水平,全国大中小学校的网络普及率高,许多学校利用信息技术减轻学生课业负担,提高学生的学习效率、综合素质、创新能力和信息素养,得到了社会的广泛认可。英国更是通过立法的形式促进教育信息化建设,他的全国学习网络是欧洲最大的教育门户网站。除此之外,韩国、俄罗斯、新加坡、瑞典、法国等几十个国家都对教育信息化有深入的研究,内容包括概念、现状、战略描述、发展趋势、政策、法规、个

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

浅谈纳米材料与生活

浅谈纳米材料与生活 摘要:人类迈着欢快的步伐轻松地进入二十一世纪。二十世纪是计算机技术革命蓬勃发展的时期,计算机技术得到了卓越的发展。现在人类进入了又一世纪,在这个日新月异的新的世纪里,科学家通过运用的发达的计算机技术,为我们奏起了“纳米技术”发展的号角。“纳米技术”主要是围绕开发纳米材料为核心而发展的技术,它有着广阔的发展前景,随着纳米技术的发展纳米材料也不断有着新的开发。“纳米材料”的有效发掘及其利用必定会给人们的生活带来又一翻天覆地变化,给人们的衣、食、住、行、医疗卫生事业带来极大便利。本文主要是通过给大家说明纳米材料的本质这一基点,向大家普及纳米材料的特性,以使更多的人能对纳米材料有整体的认识。除此之外更重要的就是联系生活实际,向大家说明纳米材料是如何影响人们生活的。到目前为止,它的发展的确已经给我们生活带来了很多便利,我相信在纳米技术不断进步、发展的未来,纳米材料一定有更广阔的空间。 关键词:纳米、纳米技术、纳米材料、应用 现如今,科学界普遍认为,纳米技术是21世纪经济增长的一台主要发动机,他将成为超过网络技术和基因技术的“决定性技术”,并将成为最有前途的材料,它所见具有的独特物理和化学性质,可以节省资源、合理利用能源并且能够净化生存环境,它的发展研究会对化工行业带来新的机遇。 纳米材料的特性: 纳米材料是英文“napometer”的译音,是一个物理学上的长度单位。1纳米是1米的十亿分之一,用我们能看见的最小微粒院子来表示的话,相当于45个远在啊排列起来的长度。自然界只有生物具有纳米尺度,遗传基因DNA螺旋结构的半径约1纳米左右,一个典型的病毒大约100纳米长,相当于万分之一的头发丝的粗细。纳米科技就是一门以0.1至100纳米这样的尺度为研究对象的前沿科学。作为尺度单位的纳米,并没有物理内涵,当物质到纳米尺度后,

民法典紧扣时代脉搏

1 下列选项中,关于《中华人民共和国民法典》的基本特点,描述不正确的是()。[ 单选题:5 分] A 它是全面总结我国的民事立法和司法的实践经验,对现行 民事单行法律进行系统的“编订纂修” B 它虽然是新的,但构成民法典的主体内容的规则大多数来 自于先前的民事单行法,因此不需要特别重视 C 它是一个新的规范的整体,条文之间的体系性的联系更加 密切,需要建立一个新的分析框架去理解和适用 D 它的新内容的表述与先前规定有些细微差别,需要人们捕 捉立法上的变化,并且充分掌握这些变化的内涵与意义 试题解析 您的答案:B回答正确 2 ()是中国历史上第一次尝试编纂现代意义上的民法典。 [ 单选题:5 分] A 《大清明律草案》 B 《中华民国民法典》 C 《现行律民事有效部分》 D 《不动产登记条例》 试题解析

您的答案:A回答正确 3 《中华人民共和国民法典》规定,当借贷双方约定的利率超过年利率()时,超过部分的利息约定无效。 [ 单选题:5 分] A 15% B 20% C 24% D 36% 试题解析 您的答案:D回答正确 4 中国民法受()影响很大。 [ 单选题:5 分] A 德国 B 英国 C 美国 D 日本 试题解析 您的答案:A回答正确 5

2020年5月28日,十三届全国人大三次会议表决通过了()。 [ 单选题:5 分] A 《中华人民共和国民法典》 B 《中华人民共和国民法总则》 C 《中华人民共和国民法通则》 D 《中华人民共和国民法分则》 试题解析 您的答案:A回答正确 6 《中华人民共和国民法典》规定,()周岁以上的未成年人为限制民事行为能力人。[ 单选题:5 分] A 五 B 六 C 七 D 八 试题解析 您的答案:D回答正确 7 《中华人民共和国民法典》规定,涉及()等胎儿利益保护的,胎儿视为具有民事权利能力。但是,胎儿娩出时为死体的,其民事权利能力自始不存在。 [ 多选题:5分]

课题研究的背景及意义

参考复制一、课题研究的背景及意义 自改革开放以来,我们国家的总体生活水平不断提高,然而令人痛心的是社会的精神财富并未得到同步加强,功利主义价值观日益影响着人们的思考和行为方式。不少社会成员物质丰富但精神空虚,社会中某些不和谐的因素直接影响着青少年的健康成长。加上青少年儿童身心发展处于快速发展变化之中,对外界新鲜事物的判断力与抵抗力尚未健全,他们的思想很容易被武侠小说、电影、动漫、网络等外在的因素左右,直接导致他们较早地丧失学习兴趣,产生对学校的厌恶与恐惧感,如上课注意力不集中、不持久,学习上进心不足,精神脆弱,易于产生挫折感、失败感,易于产生对学习的恐惧和对老师的疏远感等。由于孩子面临强大的学习压力以及生活时间的单调性,不少孩子厌学、逃学。厌学问题已经成为许多教育工作者关注和担忧的问题。初中的厌学是一个普遍问题,厌学以致辍学的现象大量存在,其原因是多方面的,如家庭贫穷、学习困难等。尤其是2008年1月,全省实施教育改革新政以来,我校教育体系在课程、教学、管理等方面发生了很大变革。学生厌学问题的产生,有愈演愈烈之势,体现在对涉世未深、思想懵懂的初中生的教育上,前景更是让人担忧。 社会要求我们学习,以便跟上时代的发展,而我们的现状却又不容乐观,那么如何保持学习的积极性,缓解学生的厌学现象就还是一个大问题。众所周知,只有真正对学习发生兴趣时,学习才是轻松愉快的,才能最大限度地发挥个人的聪明才智,并且最好地完成学业,

反之,学习就是一种沉重的负担,学习效率就会事倍功半。中学是培养人材不可缺少的基础教育阶段,厌学情绪的滋长和蔓延,对人材的培养构成潜在的威胁,势必造成严重的后果。同时,由于初中生的年龄特点,决定了他们相互之间的影响,模仿要大于对成人的学习,因此如果不能及时解决初中生中存在的这一心理障碍,其厌学情绪继续流传和扩大,向下延伸至小学,这种后果的严重性是不可估量的。 莱阳市是一个经济比较繁荣地区,物质生活比较丰富,社会中有积极有益的文化影响,但对思想未成熟的初中生来说更多的却是消极文化对他们的影响,如果学校的生活无法吸引学生,那么学生就会沉迷于外界的游戏玩乐,受不良风气的侵蚀,最终导致无心向学,厌学甚至辍学的结果产生,直接影响学生的健康成长和发展。因此,研究初中生厌学问题,对厌学现象追本溯源,寻找行之有效的解决方案,无疑具有重要的理论价值和现实意义,具有时代性与社会性双重意义。 二、课题研究的现状 1、国外对厌学问题的研究分析 国外学者在分析学生厌学原因时大多侧重于学生的个性偏差。如日本教育家依田新提出,厌学是因为个体“对自己的无能为力和怠惰产生沮丧,产生对自己的失望和厌恶”。在日本,传统学历主义思想干扰学校的正常教育,学校偏重以书本知识为主,而忽视学生的个性、

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

人力资源管理开题(课题背景研究目的与意义

1.课题背景研究目的与意义 人力资源管理这个概念首先是在1954年由Peter Drucker在《管理实践》一书中引入的。组织的管理由此进入一个新的时代。一系列围绕着组织中员工的开发与管理系统已初见雏形,并在不断发展和完善中。近些年来,现代的人力资源管理理论传入中国,得到了广泛的传播和应用,因此对于这方面的研究也很多,渐成显学。 21 世纪组织将面临锐不可当的经济全球化趋势。飞速发展的技术变革和创新,以及迅速变化的差异化顾客需求等新竞争环境,组织掌握新的技术或是进入新的市场领域获得的竞争优势成为一种短期效应,越来越多的组织通过构筑自身的人力资源竞争力,维持生存并促进持续发展。人力资源作为知识的承载体成为组织依靠的对象,在以人为本的观念的熏陶下,人力资源管理在组织中的作用日益突出。但人的复杂性和组织的特有性决定了人力资源管理不是简单的技术性的拷贝,真正的理解人力资源管理的内涵和实施与组织相匹配的结构形式和管理模式是创造竞争优势的关键。人力资源管理,就是指运用现代化的科学方法,对与一定物力相结合的人力进行合理的培训、组织和调配,使人力、物力经常保持最佳比例,同时对人的思想、心理和行为进行恰当的诱导、控制和协调,充分发挥人的主观能动性,使人尽其才,事得其人,人事相宜,以实现组织目标。 人力资源管理系统是这样的一种管理软件,它能够快速、方便地显示结果,还可以对有关工资的各种信息进行统计,服务于财务部门,及企业主要管理者。实施人力资源管理系统可集中、整合各种信息来源,有利于降低管理成本,提高企业管理效率,从而促进企业的进一步发展和变革。 人力资源管理的主要意义: 1、通过合理的管理,实现人力资源的精干和高效,取得最大的使用价值。并且指出:人的使用价值达到最大,即人的有效技能最大地发挥。 2、通过采取一定措施,充分调动广大员工的积极性和创造性,也就是最大地发挥人的主观能动性。调查发现:按时计酬的员工每天只需发挥自己20%-30%的能力,就足以保住个人的饭碗。但若充分调动其积极性、创造性,其潜力可发挥出80%-90%。 3、培养全面发展的人。人类社会的发展,无论是经济的、政治的、军事的、文化

迟来的“民法典”时代

迟来的“民法典”时代 迟来的“民法典”时代 无论从彰显大国的时代精神、法治文明还是司法实践的角度,民法典都不可或缺。2017年3月15日,第十二屆全国人民代表大会第五次会议通过《中华人民共和国民法总则》。作为民法典的开篇之作,《民法总则》起着总纲领和基石的作用,将确定《民法典》的立法目的、调整范围、基本价值取向和基本法律概念。根据规划,《民法典》各分编包括物权编、合同编、侵权责任编、继承编和亲属编等拟于2018年整体提请审议,《民法典》整体编纂有望于2020年完成。有民法体系而无《民法典》2014年10月,十八届四中全会通过《中共中央关于全面推进依法治国若干重大问题的决定》,明确提出要“编纂民法典”。这是在中央文件中首次明确提出“编纂民法典”。法学家王轶将其称为“一个重要的政治决定”。之所以这么说,是因为此前四次起草尝试都因为各种原因而未能正式启动。今年的全国“两会”上,全国人大常委会法工委副主任张荣顺就“民法总则草案与人大立法工作”答记者问时,就引用了法国政治家的罗贝尔·巴丹戴尔的名言:“任何编纂法典的举措,想要取得成功,必须具备三个条件:即有利的时机、有才华的法学家、有政治意愿。”张荣顺特别强调了政治意愿的重要性。本文由收集整理世界主要成文法国家在上世纪或者更早就完成了民法典的制定,大陆法国家最有代表性的著名民法典《法国民法典》和《德国民法典》分

别诞生于1804年和1900年。民法是调整自然人、法人和其他组织之间的人身关系和财产关系,调整社会生活关系和商品经济关系的基本法。中国迟迟没有自己的民法典无疑是一个缺憾,1986年通过的《民法通则》只能看做缩略版的民法典,已经越来越显示出不合时宜之处。尽管随着《合同法》、《物权法》、《侵权责任法》、《婚姻法》、《收养法》、《继承法》等一系列民事法律相继出台,中国的民法体系已经初步建立,走出了一条“单行法加司法解释”的立法模式,但欠缺民法总则使得整个民法体系缺乏统领性和整合性的基本逻辑。由于《民法通则》、《合同法》、《物权法》等民事基本法律的制订时间和时代背景不同,存在规范缺失、规范重复、概念混乱的现象,再加上庞杂的司法解释,导致民事法律缺乏统一性和明确性。无论从彰显大国的时代精神、法治文明还是司法实践的角度,民法典都不可或缺。著名法学家江平曾经撰文表示,编撰民法典的条件早已具备,但争议导致停滞。从1950年代中期开始,立法机关先后数次组织编纂民法典,前两次均因政治动荡无疾而终,第三次则因条件不成熟而暂缓,第四次编纂时,民法典草案获得了全国人大常委会初次审议,但之后搁浅。即便2014年之后进入草案阶段,法学界仍有许多分歧,比如在立法技术问题上,人格权法是不是要独立成编就一直是一个争议点,以梁慧星为代表的民法学界专家是否定的一派,以王利明代表的一派则持肯定的观点。2015年的一次大学讲座上,中国社科院学部委员梁慧星就表示,要不要在民法典单独设立人格权编,是民法总则制定、编纂中,最重大的一个分歧点。双方的分歧,不在于认为人格

·本课题国内外研究现状述评 选题意义和研究价值

课题设计论证

---活页1--- 完成课题的可行性分析

走进葫芦文化 ---------莪山畲族乡中心小学校本课程的开发与实施一、课题研究的背景

(一)现实背景:葫芦文化与畲乡孩子的生活息息相关 最近邻近乡镇在开庙会,庙会上的物品虽说不上昂贵却也应有尽有。路过庙会,一种叫葫芦丝的乐器吸引了我,买一个回家练练,没想到这小小的乐器也被我们学生们瞄上了,很快葫芦丝就走进了学生的校园生活。每天早晨只要你走进我们的校园,随处都可以看见吹练葫芦丝的同学,三五成群,欢歌笑语,构成了一道亮丽的风景线。许多同学还在想:这样的葫芦丝我们自己也可以制作呀!我们不是有许多自己种植的葫芦吗? 是呀,说起种植葫芦同学们早就有很深的体会了。近两年少先队一直在组织学生自己回家种植葫芦,出了不少的成果。其中学生制作的葫芦器在校园艺术周上得到了展示,县电视台少儿栏目对此还特别进行了系列报道。 (二)历史背景:葫芦文化是灿烂畲族文化中的一朵奇葩 葫芦文化博大精深,历史悠久,在漫长的畲族历史演变过程中早就有了它的一席之地。勤劳聪明的畲族人民曾经用它制作了各种生活用品,例如:水瓢、茶壶、竹筒等,也曾经用它制作了许多极有观赏价值的艺术品,葫芦的历史价值与艺术价值显而易见,需要我们进一步探索尽情领略祖国灿烂的葫芦文化。 (三)时代背景:把葫芦文化发扬光大是时代赋予我们的责任 美不胜收的葫芦世界就是一座民间艺术宝库,21世纪是一个充满文化气息的时代,也是一个充满艺术气息的时代。弘扬民族文化,进行民族艺术教育,让我们的学生感受浓浓的艺术韵味,是时代赋予我们的重大责任。 二、课题研究的意义 1、学生需要这样的校本课程,丰富学习生活,提高综合素质 畲乡地处山村,这里的孩子课余生活比较单调,每次不是钓鱼跳绳就是打球走棋,葫芦文化的开发和挖掘,丰富了学生的课余生活,学生能在活动中寻找童年的快乐、体验动手的乐趣,享受合作的愉悦。 在校本课程的开发中,课程、教师、学生是一个有机的“生态系统”,逐渐地把课程的生态系统直接指向于学生,学生是课程开发的主体。葫芦文化校本课程的开发有利于培养学生的综合素质,尤其是学生的人文素养;有利于培养学生的审美能力,提高学生的艺术欣赏水平;有利于锻炼学生的动手实践能力和社会交往能力等。 2、教师需要这样的校本课程,推动自身专业素养的发展 挖掘葫芦文化课程资源,构建一种开放的、民主的、科学的课程体系,这就让我校一线教师有了更大的课程开放空间,随之而来的,是教师的教育观念、教育方法和教育视野都产生变化。他们将引领学生走出教科书,走出课堂和学校,变为一个实践者,一个研究者;他们将与学生共同开发课程,丰富课程,在共同学习的过程中,加快自身专业成长的脚步。 3、学校需要这样的校本课程,凸现自身的办学特色 校本课程的开发要立足学校特色,要能促进学校文化的形成。中外大量特色学校的成功经验业已证明,特色课程的构建是实现学校办学特色的重要载体,校本课程开发要走的就是一条基于学校特色的道路。葫芦文化是我校自身的一个优势项目,以此为生长点和突破口开发校本课程,有利于形成学校的办学特色与办学目标。 4、社区需要这样的校本课程,为社区不断发展作好准备 小小葫芦为我们当地经济文化的发展起了很大的作用,许多艺术品加工厂应蕴而生,精美的葫芦工艺品给畲乡人民带来了财富,带来了希望。学生通过参观调查,亲身实践,与葫芦有了不解之缘,长大要把家乡人民的这份共同事业发扬光大是不少学生心中的愿望,学生们的爱乡之情油然而生。 三、相关研究领域的现状与趋势分析

对纳米材料的认识

浅谈对纳米材料的认识 “纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。 纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。 纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。 纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。 经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。 目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

项目背景及研究意义

1、项目背景及研究意义 移动机器人是机器人学中的一个重要分支,出现于20世纪60年代。当时斯坦福研究院的Nils Nilsson和Charles Rosen等人,在1966年至1972年中研制出了shakey的自主式移动机器人,目的是将人工智能技术应用在复杂的环境下,完成机器人系统的自主推理、规划和控制。从此移动机器人成为机器人学里的一个重要分支,得到越来越多的关注。 研究此项目的意义主要是,为人们提供搬运一些较重物体的帮助,做到可以跟踪人的行踪轨迹帮人们搬运物品,也可以在工厂或其他场所自动搬运一些物品,以方便人们的生活和工厂生产。项目完成后,除可实现上述功能外也可以改装成为一种自动识别路径和障碍物的代步工具,对于机器服务于人,以及机器人的推广使用具有重要意义。 2、项目研究目标、研究内容和拟解决的关键问题 研究目标在于实现智能搬运机器人跟随使用者,必要时可以实现自主循迹移动。 研究内容主要是以下六大模块: (1)智能控制核心(机器人的大脑)的设计; (2)红外蔽障模块电路的设计; (3)超声波(或电磁波)跟踪电路(机器人的眼睛)的设计; (4)机械搬运模块电路与机械装置(机器人的手臂)的设计; (5)机器人移动模块电路与机械装置(机器人的腿脚)的设计; (6)遥控控制电路模块(备用)的设计。 基于以上六大模块制定相应的工作设计方案。 3、项目研究的实施方案及拟采取的研究方法和技术路线 该设计暂定为采用STM32f103单片机作为智能机器人的检测和控制核心,使用激光校正导航技术检测需要搬运的物体并使用超声波测距技术检测与被服务对象的距离以实现跟随搬运(即跟在被服务对象后面帮其搬运东西)的目的。直流电机驱动电路采用四通道驱动集成芯片L298N,采用PWM脉冲调制驱动直流电机。机械臂采用套取形式的机械手臂,其形式简单,性价比高。并且以拖拽的方式搬运物体,可避免物体脱落的问题,并且在放置物体时,能使被搬运物体较为整齐的排列。供电模块采用双电池供电。 用一个电池给电机驱动系统单独供电,另外一个电池给信息采集及MCU控制系统供电。 将电动机驱动系统电源与信息采集及MCU控制系统电路电源完全隔离,这样做虽然不如单电源方便灵活,但可以将电动机驱动所造成的干扰彻底清除,提高了系统的稳定性和可靠性。系统具有很大的扩展潜力。实现无人控制即可完成一系列动作。 对于自动跟踪系统的设计方案暂定为利用超声波测距原理,因为超声波具有方向性强,能量易于集中,穿透力强;能在各种不同媒质中传播,且可传播足够远的距离;具有透射、反射和折射的特点。所以,方案利用超声波的这些特点,通过在被服务对象身上安装超声波发射模块,来检测机器人与其之间的距离,由于机器人上装有多个超声波接收探头,这样,比较各超声波模块测得数据之间的大小,靠近人的一侧,测得的数据会比其他位置的小,由此就可以是小车与人保持一定的距离而实现跟踪功能。 以下是整体设计框图及部分电路模块框图:

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

相关文档