文档视界 最新最全的文档下载
当前位置:文档视界 › 超细粉体的应用及制备

超细粉体的应用及制备

超细粉体的应用及制备
超细粉体的应用及制备

应用与开发

超细粉体的应用及制备

刘宏英,李春俊,白华萍,李凤生

(南京理工大学超细粉体与表面科学技术研究所,江苏南京210094)

摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。

关键词:超细粉碎;制备;分级

中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03

超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。

1 超细粉体应用的研究进展

超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。

1.1 在材料领域的应用

超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用

将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。

1.3 在生物医药领域的应用

医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。

南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大

第29卷第1期2001年2月

江苏化工

Jiangsu Chem ical Industry

V ol.29N o.1

 Feb.2001

收稿日期:2000-10-18

作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

量出口创汇,价格显著提升,产生了良好的经济效益和社会效益。

1.4 在中医药保健食品中的应用

超细粉体技术扩展到中草药及保健食品中,扩大了人类的食品源,使得有营养,但因无法直接被人体吸收的植物变成了高档的营养性保健食品。经超细化的中药材大大提高了有效成分的溶出速度和利用率,且服用方便,避免了繁杂的煎煮。再如茶叶、灵芝、孢子、花粉、螺旋藻、蔬菜、水果、珍珠、蚕丝、人参、贝壳、蛇、蚂蚁、甲鱼、动物和鱼类的鲜骨及脏器的超细化,都为人类提供了大量的新型纯天然高吸收率的保健食品。目前南京理工大学超细粉体与表面科学技术研究所已成功的研制出粉碎上述物料的技术,并可使灵芝孢子、花粉在常温下100%破壁。近几年来已在全国建成了多条生产线,利用该技术已取得了很好的社会效益和经济效益。

1.5 在日用化工领域的应用

在美容、护肤、化妆品方面超细粉体的作用十分重要。如护肤防晒膏中,加入超细蚕丝粉具有良好的防紫外线作用。由于它是一种含有大量蛋白质的天然有机物,进入皮肤毛孔后,易被内分泌物溶化吸收,不仅不堵塞皮肤毛孔而且还会起到一定的营养皮肤的作用。这种新型产品研究成功的关键是如何采用超细粉体技术及设备将极难超细化的蚕丝纤维粉碎到5μm以下,使毛孔内分泌物快速溶化。南京理工大学超细粉体与表面科学技术研究所成功地研究出了d50<5μm的超细蚕丝粉、超细珍珠粉,用其制成的珍珠粉饼和珍珠丝素粉饼受到了用户的欢迎,养颜美容护肤效果十分好。

1.6 在废弃物再生与综合利用方面的应用

废地毯、废电缆、废汽车轮胎等如何再生利用是环保的需要,也是经济建设的需要。将这些废物回收处理再利用已成为各界关注的课题。将废物粉碎处理,制成各类材料,针对环境与资源的综合利用课题,越来越被国内外研究机构重视,有关这类的研究报道逐年增加。如炉渣的粉碎,作为填料加入建筑材料中,不仅减轻重量而且经济耐用。

2 超细粉碎技术进展

自80年代以来,国内对超细粉体的认识有了较大的提高,许多单位都投入大量的人力物力在进行研究、开发和利用。有些方面的研究工作与国外相比已处于较先进的水平。例如:纳米材料的研究在国际上排名第五,居美、日、英、德之后,与法国、俄罗斯相当。易燃易爆材料的超细粉体制备与应用及刚柔混合材料的超细化等与国际先进水平相当。但总体水平与先进国家相比尚有一定的差距。这主要表现在硬件和软件方面。例如超细粉体技术的基础理论工作开展甚少,缺少全面系统的理论研究。超细粉体的制备及分级的设备品种与档次尤其是自动控制,机电一体化方面与国外差距较大,再者用于制造超细研磨设备的材料及制造工艺与国外尚有一定的差距。超细粉体的表面改性工作,我国已开展了一定的研究,而复合超细粒子的制备技术则刚刚起步,与先进国家相比则差距较大。因此对国内研究人员来说,面临的任务是艰巨的,要迎头赶上先进国家必须要下大的决心,花大力气研究出适合我国国情的粉碎新设备,以满足市场日益增长的需求。

2.1 气流式粉碎机

气流式粉碎机是在高速气流作用下,物料通过本身颗粒之间的撞击,气流对物料的冲击、剪切、摩擦等作用以及物料与其它部件的冲击、摩擦、剪切作用而使物料粉碎。随着科学技术的不断发展,人们对这类粉碎机进行了不断的改进,先后出现了扁平式、循环式、对撞式、流化床式、靶式、超音速气流磨等,广泛应用于化工、材料、冶金、非矿、农药、电子、食品、医药、军工等领域。气流粉碎机在超微粉碎领域的应用虽然仍存在粉碎极限的局限性,以及能量利用率低的缺点,但它仍还在许多领域被用于制造超细粉体。南京理工大学超细粉体与表面科学研究所研制的G QF系列圆盘式气流粉碎机采取了防止静电和火花产生的措施,内腔是采用导电率高的超硬、高耐磨材料作衬里,克服了目前普通圆盘式气流粉碎机的许多缺点。因此,特别适用于易燃易爆材料、热敏性材料的超细化。另外对该机的磨腔进行了优化设计,所以其产品较普通圆盘式气流粉碎机生产出的产品更细。

2.2 高速旋转撞击式粉碎机

高速旋转撞击式粉碎机由于结构及作用力方式不同又分为销棒粉碎机、摆锤式粉碎机、轴流式粉碎机等。这种类型的粉碎机主要是利用高速旋转的部件产生强大的强冲击力、剪切力、摩擦力而使物料被粉碎。如配以合适的分级装置并进行循环粉碎,则可以获得理想的超细粉体。这种类型的粉碎机由于结构简单、占地面积小、操作方便、生产能力大、生产成本低、能耗低、易拆卸保养、价格较低廉而深受用

13

第29卷第1期 刘宏英等:超细粉体的应用及制备

户欢迎。目前已广泛应用于化工、药品、材料、冶金、食品等行业。此类粉碎机超细程度好,可使物料粉碎到10μm以下。这种类型的粉碎机不仅用途广,而且安全可靠。并可一机多用,具有粉碎、分散、混合、输送等多种功能。因此国内外对这类粉碎机的研究较充分,而且粉碎形式多样化。根据其粉碎方式可分为干式粉碎机型及湿式粉碎机型。例如南京理工大学超细粉体与表面科学技术研究所研制的LS型液固式流能粉碎机,适用于易燃易爆材料,如火药、炸药、涂料等。如研制的G SF型高速粉碎机,适用于中药材及食品的粉碎。对于纤维及韧性材料,则需要采用相对旋转粉碎方式进行粉碎。

2.3 搅拌研磨机

搅拌研磨机是依靠磨腔中机械搅拌棒、齿或片带动研磨介质运动,利用研磨介质间的挤压力和剪切力使物料粉碎。同常规球磨机相比,搅拌式研磨机采用高速度和高介质充填率及小介质球尺寸,小介质球提高了超细物料的研磨效率,适用于不同产品粒度和物料性质的各种搅拌式研磨机。特别是立式搅拌研磨机,以其结构简单、操作容易、维护方便等优点成为目前工业上应用最广泛的细磨设备之一。

南京理工大学超细粉体与表面科学技术研究所设计出了一种LG型直立式搅拌研磨粉碎机,该机可使MnO2粉碎到d97<1μm、重质碳酸钙及高岭土d98<2μm、猛炸药d98<1μm而且安全可靠。

3 超细粉体分级技术进展

在现代各工业领域的使用中,往往要求超细粉体产品处于一定的粒度范围。粉碎过程中往往只有一部分产品达到了要求,而另一部分还需要继续粉碎。如果不及时排出细粉,往往引起能源浪费,且有过粉碎现象。当颗粒细化到一定程度后,出现粉碎与团聚的现象,甚至因颗粒团聚变大而使粉碎工艺恶化。解决这一问题的关键是设置超分级设备,与超细粉碎机配合使用,将合格的细产品及时分离出来,粗粒返回再粉碎,以提高粉碎效率降低能耗。

随着所需粉体细度的提高和产量的增加,分级技术的难度也越来越高,粉体分级问题已成为制药机械制备粉体技术发展的关键[5]。在不同的分级原理下,可得不同的分级粒径。

干式机械分级通常都是以干燥空气作为介质。到目前为止,能在工业领域实际应用的干式机械分级装置,都是基于离心力场的分级原理而设计的。最典型的方法是在各种分级设备内引入特定的机械运动装置,以增大颗粒在分级机内所受到的离心力,达到提高分离因素、增加分级速度、提高分级精度等目的。这类分级装置通常采用圆盘、叶轮或涡轮等作为分级机的运动部件,以产生强大的离心分级力场。

研究表明对于微米材料来说采用重力分级能实现理想的分级效果,而对于亚微米及纳米材料来说是不能实现理想的分级效果。其原因是由于粒径都很小,而粒径与粒径之间的差所引起的重力或离心力的差也很小,因而无法实现大小不同的粒径粒子的分级。目前研究较多且有一定价值的分级原理有微孔隙分级、膜分级、磁场力分级、热力场分级等等。在工业应用中,市场对分级的需求越来越多,选择分级设备时必须充分注意以下几点:

(1)分级效率与分级精度

分级效率是评判一种分级方法优劣的重要指标,在工业化应用中,这一指标十分重要。对于某一分级方法即使分级出的产品分布范围很窄,但分级效率很低,在工业化生产中仍无实际应用价值。理想分级是把颗粒在分级点彻底的分开,即小于分级粒径的颗粒不混入粗粒产品中,大于分级粒径的颗粒不混杂在细粒产品中,这时分级效率100%,衡量分级效果优劣的分级效率,要能够定量确定分级清晰程度,并能全面完整的评价起初分级效果。

(2)分级机的能量消耗与处理量

分级机、除尘器和引风机几部分的能耗总和与处理量的比值为比能量消耗,可全面反映分级过程的经济性。这一点选择分级设备时应特别注意。

4 结语

超细粉体技术是一门跨学科跨行业的新兴技术,今后的发展仍将主要集中在超细粉体的制备、性能及应用三个方面。超细粉体技术主要在于研究新的制备原理、新的制备方法及新的设备,目的在于:

(1)能制备出粉体粒度更细、分布更窄更均匀、分散性更好、表面特性更优越的超细粉体,以及复合多功能超细粉体。

(2)设备的生产能力大、产量高、能耗低、耐磨性好,对产品无污染,使用寿命长。

(3)工艺简单,生产连续,自动化程度高,产品质量高,生产安全可靠。(下转第38页)

表4 用EPDM改性PP风扇专用料的性能项目国产专用料国外专用料MI/(g/min) 2.13>2

拉伸强度/MPa24.7>20

扯断伸长率/%48>30

弯曲强度/MPa36>35

弯曲模量/MPa30.2>30

硬 度/HR74>65

缺口冲击强度/(J/ m)97.8>130

热变型温度/℃108-

采用EPDM及滑石粉(含水硅酸镁,分子式为3MgO?4SiO2?H2O)及其它助剂改性聚丙烯能够满足上述要求,用其生产的仪表板表面质量优良,易于成型加工。北京化工研究院生产的仪表板专用科APD -121已大量地应用于夏利轿车仪表板的生产,现已装车30万辆。这种专用料流动性好,冲击强度较高,制品的收缩率低。

3 结束语

据有关最新统计,我国已是世界上第10大汽车生产国。1998年为163万辆,2000年要突破200万辆。随着我国汽车工业迅速发展,PE DM橡胶在汽车方面的应用将有广阔的前景。

(上接第32页)

(4)继续重点研究超细粉体在国民经济各领域的应用,解决应用中所伴随的各种问题。

参考文献:

[1] 刘宏英.易燃易爆材料超细粉碎技术及设备研究新进

展[J].爆破器材,1999,28(2):27-311[2] 李凤生.气流粉碎过程中的静电问题[J].化工进展,

1995,(2):15-181

[3] 邓国栋.易燃易爆的超细粉体生产的安全研究[J].兵

工安全技术,1995,74(6):28-291

[4] 张汝冰.纳米技术在生物及医学领域的应用[J].现代

化工,1999,19(7):49~511

Application and Preparation of U ltrafine Powder T echnology

LI U H ong2ying,LI Chun2jun,BAI Hua2ping,LI Feng2sheng

(Sur face Powder Technology and Sur face Science Institute,NUST,Nanjing210094,China)

Abstract:The application of ultrafine powder technology in various fields is introduced in this paper,and the technology and equipment for preparation and classifying the ultrafine powder were als o briefly reviewed.The trend of powder technology research and development was proposed.

K ey w ords:ultrafine grinding;preparation;classifying

(上接第35页)

参考文献:

[1] Eckart W,Schmidt.Hydrazine and its derivatives[M].New

Y ork:John Wiley&S ons,1984.

[2] 顾培基1偶氮二甲酰胺的生产现状、合成及用途[J]1

上海化工,1998,23(6):401[3] 杨华1AC发泡剂产需与价格走势[J]1塑料助剂,1997,

(2):261

[4] 狄伯秋1ADC发泡剂的改性及研究概况[J]1塑料助

剂,1997,(5):51

[5] 曹盛,边守军1ADC发泡剂的改性和复配[J]1化学推

进剂与高分子材料,1999,(3):91

Present Status of Foaming Agent ADC Production and

Development of Improved Products

Y OU X ian2de

(Liming Research Institute o f Chemical Industry,Luoyang471001,China)

Abstract:Present status and the prospect of foaming agent azodicarbonmide(ADC)on applied market were briefly described in this paper,progress of ADC production in China and the development of ADC im proved product were als o introduced.

K ey w ords:azodicarbonmid;applied market;ADC im proved products;hydrozine hydrate;production

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

超细磨粉机是超细粉体生产的主要设备

超细磨粉机是超细粉体生产的主要设备 超细粉体技术是20世纪70年代中期发展起来的新兴学科,超细粉体几乎应用于国民经济的所有行业。它是改造和促进油漆涂料、信息纪录介质、精细陶瓷、电子技术、新材料和生物技术等新兴产业发展的基础,是现代高新技术的起点。在造纸行业中,造纸施胶普遍要添加10%&mdash;20%的超细粉;在高档铜板纸中,高岭土(或碳酸钙)超细粉的添加量高达40%。又如塑料制品,改性超细粉的添加量,根据产品要求的不同可高达30%&mdash;50%。在一些PVC产品的添加量已高达70%。超细粉在塑料、橡胶、电子、电缆、油漆、涂料、磨料、药品、化妆品、陶瓷、建材、食品加工和家用电器方面用量极大,如美国的面粉生产就规定了一定的滑石粉添加量。6000目以上的超细粉添加到塑料制品里(如电视机壳),不仅可以改善制品外观尺寸、光洁度、颜色、手感等物理指标,还可改善制品的强度、弹性、悠韧性和抗老化能力。超细粉体需要优质的磨粉机做生产设备,三环中速超细磨粉机,主要适用于对中、低硬度,莫氏硬度&le;6级的非易燃易爆的脆性物料的超细粉加工;与一般磨粉机相比,三环中速超细磨粉机的优势还在于:1.高效、节能、环保、清洁,集四大优势于一体在成品细度及电动机功率相同的情况下,比气流磨、搅拌磨、球磨机的产量高一倍以上;采用脉冲除尘器捕捉粉尘,采用消声器降低噪声,具有环保、清洁的特点。2.易损件使用寿命可达2-5年磨辊、磨环采用特殊材料锻制而成,从而使利用程度大大提高。在物料及成品细度相同的情况下,比冲击式破碎机与涡轮粉碎机的磨损件使用寿命长2-5倍,一般可达一年以上,加工碳酸钙、方解石时,使用寿命可达2-5年。3.产品细度高,安全可靠性高三环中速超细磨粉机产品细度一次性可达到D97&le;5&mu;m;因磨腔内无滚动轴承、无螺钉,所以不存在轴承及其密封件易损的问题,不存在螺钉易松动而毁坏机器的问题。工欲善其事,必先利其器。良好的超细粉体出自优质的超细磨粉机,素有&ldquo;微粉专家&rdquo;之称的上海机器有限公司生产的三环中速超细磨粉机,是用于超细粉体生产的首选设备。 不可否认当前我国超细磨粉机行业发展取得了不小的成绩,从长远来看我国超细磨粉机发展还要经历长期的过程,才能达到国际领先水平。就目前来说,我国内超细磨粉机生产行业还面临着核心技术、环保节能、人民币升值和成本上涨等种种难题。1、核心技术难题。核心技术决定了超细磨粉机

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

超细粉体概念与特性

超细粉体的概念 世界化工网_https://www.docsj.com/doc/2c11199415.html, 任何固态物质都占有相应的空间,并且具有一定的形状和大小,即具有一定的体积.通常我们所说的粉末或细颗粒,一般是指大小为1mm一下的固态物质.当固态颗粒的粒径在0.1~10μm之间时,可称为微细颗粒,或称为亚超细颗粒/而当粒径达到0.1μm以下时,则称为超细颗粒.因此,超细粉体材料即指粒径在1~100nm范围内介于院子,分子与宏观物体之间的粉体材料. 超细颗粒按其大小可以分为三个档次: 大超细颗粒:粒径在0.1~0.01μm之间; 中超细颗粒:粒径在0.01~0.002μm之间; 小超细颗粒:粒径在0.002μm以下; 超细粉体的特性 超细粉体是介于大块物质和院子或分子之间的中间物质,是处于原子簇和宏观物体交接的区域.从微观和宏观的观点看.它即不是典型的微观系统,也不是典型的宏观系统,是介于二者之间的介观系统.它具有一些列新异的物理化学特征.这里涉及到体相材料中所忽略的活根本不具有的基本物理化学问题.由于超细粉体保持了原有物质的化学性质,而在热力学上又是不稳定的,所以对它

们的研究与开发,是了解微观世界如何过渡到宏观世界的关键.随着研究手段,特别是电子显微镜的迅速发展,使得可以清楚的看到超细颗粒的大小和形状,对超细粉体的研究更加深入了. 超细颗粒具有熔点低,化学活跃性高,磁性强,热传导性,对电磁波一场吸收等特性,使它具有广阔的应用前景。 超细颗粒的直径越小,其熔点的降低越显著。例如,块状银的熔点是900℃,而银的超细颗粒的熔点可降至100℃以下,能溶于热水;块状金的熔点为1064℃,而粒径为0.002μm的超细金粉其熔点仅为327℃.超细粉体的熔点低使得在较低的温度下可以对金属,合金或化合物的粉末进行烧结,制造各种机械部件.这样不仅能节省能耗,降低制造工艺的难度,更重要的是可以得到性能优异的部件.如高熔点材料WC,SiC,BN,Si3N4 等作为结构材料,其制造工艺需要高温烧结,当使用超细颗粒时,就可以再很低的温度下进行,并且不需要添加剂就可以获得高密度烧结体.这对高性能无机结构材料的广泛应用提供了更具现实意义的制造工艺. 超细颗粒具有很高的化学活性.这是由于它的直径越小,其总表面积就越大,表面能相应增加,使其化学活性增大.据此特性可作为高校催化剂,用于火箭固体燃料的助燃添加剂.研究表明,以

粉体加工技术

第一讲绪论 粉体工程(粉体加工技术):是一门在掌握超细粉碎理论基础上,以超细粉碎设备结构及工作原理、超细粉碎工艺流程为主要学习内容的课程。 一非金属矿产及加工利用简介 1非金属矿产发展 非金属矿产:是指金属矿产和燃料矿产以外,自然产出的一切可以提取非金属元素或具有某种功能可供人们利用的、技术经济上有开发价值的矿产资源。 (因此类矿产大多不是以化学元素,而是以有用矿物为利用对象,所以亦称为工业矿物与岩石。)在人类发展过程中,非金属矿产起了决定性作用。 古代:石器(工具)陶器青铜器(金属)非金属矿产受挫 近代:技术的进步和材料结构的多元化,促使了非金属矿产地位不断上升。 从科学技术角度看:已进入信息时代 从矿产资源利用看:进入一个以非金属资源为中心的综合开发时代。 (50年代开始,世界非金属矿产产值已经超过金属矿产产值,发达国家非矿产值超过金属矿产2~3倍。) 我国非金属矿产发展情况 我国是世界上最早利用非金属矿产的国家之一。但是近代由于封建制度的闭关自守及帝国主义国家列强的侵略掠夺,我国的非金属矿产发展落后于西方发达国家。 我国已发现有经济价值的非金属矿产有100多种,是世界上品种齐全、储量丰富的少数国家之一。 储量居世界前列的非金属矿产有:石膏、石墨、滑石、膨润土、石棉、萤石、重晶石等 储量在世界上有重要地们的非金属矿产有:高岭土、硅藻土、沸石、珍珠岩、石灰石等。非常具有发展潜力的非金属矿产有:硅灰石、长石、凸凹棒石、海泡石等。 80年代开始我国非金属矿产日益受到关注(非金属在世界市场走俏)近十几年来我国非金属矿产出口增长,已成为出口创汇的一个重要方面。 但我国非金属矿产加工技术――比较落后 出口的非金属矿产产品种类――原矿和初级产品 (许多工业部门和人们日常生活所需的非金属矿深加工产品还需进口,有的甚至是我们出口的原矿或初级产品加工而成。) 2非金属矿产开发利用新趋势 从目前国内外非金属矿产开发利用的特点,可反映出如下几个趋势: (1)已开发的老品种,其利用范围和开发深度不断扩大。 体现形式――大部分矿种已不限于一两个工业部门的少数用途,老矿种的新特 性新功能不断被发现并得到利用(如高岭土)。 (2)新开发的新矿种不断出现,且许多新矿种在应用方面表现出独特性能。 (3)由直接利用非金属矿原料或粗加工产品(选矿精矿及粉料产品)向深加工及制成品方向扩展。

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

超细粉体洗涤

超细粉体洗涤 超细粉体(纳米粉体)洗涤纯化 1、超细粉体(纳米粉体)洗涤纯化 ?纳米氧化钛、氧化锌、氧化铝等氧化物的洗涤 ?纳米钛酸钡、碳酸钡等无机盐的洗涤 ?纳米抗菌材料的洗涤 ?纳米金刚石、银粉等的洗涤 ?纳米高岭土、蒙矿石等矿石的洗涤 ?纳米药粉的洗涤 ?纳米钛硅分子筛的洗涤 ?纳米催化剂的洗涤、浓缩 1.1 超细粉体陶瓷膜处理技术 在化工等领域,经常面临粉体颗粒悬浮液的固液分离过程。随着科技的进步,粒子的尺度逐渐趋于超细化,超细粒子的固液分离,特

别是固液非均相高效分离极为困难。由于微粒的布朗运动,传统的重 力沉降几乎无法使用。 以滤布为过滤介质的各类过滤技术,一方面由于过滤介质的制约,对超细颗粒过滤的截留性能差,产品流失严重,另一方面它是靠滤饼层颗粒的架桥作用来实现颗粒的截留,如果颗粒越小,形成的滤饼层就越致密,随着滤饼层的不断增厚,过滤阻力大,过滤速度越来越小,滤饼的洗涤也十分困难,洗涤效果差,操作劳动强度大。离心分离难以实现大型化,一般的工业离心机只能分离粒径在微米级的颗粒,而且离心洗涤操作复杂,劳动强度大,效率低。水力旋留器也是依靠离心力的作用,使固体颗粒进行分离,但是主要用于液相湿法分级,而且其分离的临界粒径一般在 10 微米以上。 近年来发展的无机陶瓷膜在液体分离领域应用日益广泛,它独特的错流过滤方式优异的物理、化学性能和机械强度,为超细粉体的生 产提供了新型的分离与洗涤技术。 无机陶瓷膜具有耐腐蚀,机械强度高,孔径分布窄等突出优点,并且清洗方便,膜通量高,使用寿命长。处理粉体洗涤和浓缩时具有操作稳定,通量较高,出水水质好,占地面积小。 1.2 陶瓷膜回收硫酸法生产钛白粉中废酸和废水中的钛白颗粒实 例: 钛白粉是重要的化工产品,可广泛地用于涂料、塑料、造纸、化纤、橡胶、搪瓷等行业。硫酸法钛白粉生产工艺中最大的问题在于

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

超细粉体在材料领域的应用

超细粉体在材料领域的应用 超细粉体在国民经济及社会生活各个领域中都具有举足轻重的作用,下面对超细粉体在材料领域的应用进行简单介绍。 超细颗粒表面能高,表面原子数多,这些表面原子近邻配位不全,活性大,因此超细颗粒熔化时所需的内能较小,这使其熔点急剧下降,一般为块状材料熔点的30%一50%,这种性质可使其烧结温度显著降低,又由于超细粉体具有流动性大、渗透力强、烧结收缩磁性大等烧结特性,可以作为烧结过程的活性剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度,例如普通钨粉需在3000℃高温时烧结,而当加入0.1%-0.5%的超细镍粉后,烧结成型温度可降低到1200-1311℃。 超细粉体可以显著改善陶瓷材料的显微组织,优化其性能。通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。超细颗粒压成块材后,由于颗粒之间界面的高能量,在较低温度下烧结就能达到致密化的目的,且性能优异,因此特别适用于电子陶瓷的制备,所制备的陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨等性能,而且还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这将成为超细材料开拓应用的一个崭新领域。 超细粉体可制成特种功能材料,例如,将超细三氧化二铝和超细二氧化错烧结制成的材料,具有高硬度、超耐磨等特性,广泛用于特种模具行业及轴瓦和耐磨件的内衬。装甲材料通常是采用各种合金来提高其抗冲击性能和韧性,以防御炮弹的攻击,将超细 金属材料采用新工艺烧结后,可制成新型高强度超硬材料,用于装甲防护。用超细材料制成的耐高温、散热、导电、防腐涂层可广泛用于宇航飞行器、机场、军用码头、军用油库、弹药库、舰船等特种场合的防护。 超细粉体具有高比表面积、高活性、特殊物理性质,致使它对外界环境(如温度、光、湿气等)十分敏感,外界环境的改变会迅速引起其表面或表面离子价态和电子运输的变化,即引起其阻值的显著变化,超细粉体的这种特有性能使之成为在传感器方面最有应用前途的材料,可研制出响应速度快、灵敏度高、选择性好的各种不同用途的传感器。仅需微量的超细颗粒就可分发挥很大的作用。利用铁、钴、镍等金属超细离子制备高密度磁带,记录密度可达107- 108位/in(in=25.4mm),降低噪音,提高信噪比。利用超细颗粒对光强烈的吸收能力,可做防紫外线、防雷达的隐身材料,电磁波、光波吸收材料等。 在特种材料领域,超细粉体也有十分重要的应用。如赤磷是强可燃物,但超细赤磷可以制成发火点低、灵敏度高的高性能燃烧剂和烟火剂。当赤磷超细化到l0um以下后可以和其他有关的有机物合成高性能阻燃材料。硫磺超细化后可以作为农药载体,提高农药在水中的悬浮性,制造高性能的农药;用在制糖工业作处理剂时,可以制得性能更好的白糖。炸药超细化后可使燃料或爆炸性能更敏感更好,当以炸药作为燃气发生器的气源时,颗粒越小,发火和起爆就越容易,这样可以确保汽车行驶过程发生事故时气囊能及时充气,确保驾乘人员安全。强氧化剂高氯酸氨是固体火箭推进剂的一种重要成分,当其颗粒直径在100--200 u m时,固体推进剂的燃烧速度达10-20 mm/s;而当其颗粒超细化到粒径小于2um 时,在相同条件下固体推进剂的燃速可达80-100 mm/s 。 超细粉体的特殊的光学性质和光学化学性质,在口常生活和高科技领域也具有广泛的应用前景。己有的研究表明,利用半导体超细粉体可以制备出光电转化效率更高的,即使在阴雨天也能正常工作的新型太阳能电池,这种新型的太

(完整word版)粉体技术在药物制剂中如何提高制剂质量

粉体技术在药物制剂中如何提高制剂质量 多数固体制剂在制备过程中需要进行粒子加工以改善粉体性质,从而满足产 品质量和粉体操作的需求。粉体技术能为固体制剂的处方设计、生产过程以及质量控制等诸方面提供重要的理论依据和试验方法。因此,对粉体技术的了解对于制药工程技术人员具有重要的实际意义。本文从多角度阐述了粉体技术对固体 药物制剂的影响,并介绍了近年来两种粉体新技术的发展,内容翔实,有助于读者对粉体技术的进一步了解和在实际生产过程中好地应用。 ——编者按 粉体技术在药物制剂中的应用起步较晚,使制剂过程中的粉体操作带有一定的盲目性和经验化,随着现代科学的发展和GMP规范化的广泛实施,粉体的理论和处理方法不断地被引入固体物料的各种单元操作中,使固体药物制剂的研究、开发和生产从盲目性和经验模式走上量化控制的科学化、现代化轨道,引起了药学工作者的广泛兴趣和重视。 ■粉体性质与制剂质量关系密切 固体制剂的质量控制方面,重量差异、混合均匀度、片剂的强度等多与粉体操作有关,而崩解、溶出度和生物利用度则与药物处方中各种物料的粉体性质有关。 ★孔隙率增大促进崩解 固体制剂的最终命运是崩解、释药和被人体吸收,其中崩解是药物溶出及发挥疗效的首要条件,而崩解的前提则是药物制剂必须能被水溶液所润湿。因此水渗入片剂内部的速度与程度对崩解起到决定性作用,而又与片剂的孔隙径、孔 隙数目以及毛细管壁的润湿性等有关。片剂的孔隙率不但与物料性质有关,即易产生塑性变形的物质压片后孔隙率小难以崩解,弹性变形的物料压缩后孔隙率较大,易于崩解;还与压缩过程有关,在一定的压力范围内,压力越大,压缩时间越长,片剂的孔隙率越小,越难以崩解。物料的润湿性很差,将很难使水通过毛细管渗入到片剂内部,则片剂难以崩解。 常用于润滑剂的硬脂酸镁具有较强的疏水性,用量不当会严重影响片剂的崩解度,必要时可加入表面活性剂以改善片剂的润湿性,促进水的渗入而加快崩解速度和溶出度。如用阿拉伯胶作黏合剂,喷雾干燥,可提高水杨酸的溶出度;磺胺药物加泊洛沙姆可显著增加溶出度;脂溶性药物同乳糖混合,也可提高药物的溶出度。 ★降低粒径提高溶出度 药物的溶出度除与药物的溶解度有关外,还与物料的比表面积有关,一定温度下固体的溶解度和溶解速度与其比表面积成正比。而比表面积主要与药物粉末的粗细、粒子形态以及表面状态有关,对片剂和胶囊剂来说与崩解后的粒子状态有关。因此药物粒度大小可以直接影响药物溶解度、溶解速度,进而影响到临床疗效。例如,微粉化醋酸炔诺酮比未微粉化的溶出速率要快很多,在临床上微粉化的醋酸炔诺酮包衣片比未微粉化的包衣片活性几乎大5倍。 对难溶性药物或溶出速率很慢的药物来说,药物的溶出过程往往成为吸收的限速过程。药物的粒径降低时其比表面积增大,药物与介质的有效接触面积增加,

超细粉体存在的技术问题

超细粉体加工中的几个技术问题 摘要:介绍了超细粉体的应用、制备设备、发展趋势,以及超细粉体在加工发面的几个技术问题。 关键词:超细粉体;制备; 应用;分散 1.超细粉体概述 1.1定义 对于超细粉体的粒度界限,目前尚无完全一致的说法。各国、各行业由于超细粉体的用途、制备方法和技术水平的差别,对超细粉体的粒度有不同的划分,例如日本将超细粉体的粒度定为0.1μm以下。最近国外有些学者将100μm~1μm的粒级划分为超细粉体,并根据所用设备不同,分为一级至三级超细粉体。对于矿物加工来说,我国学者通常将粒径小于10μm的粉体物料称为“超细粉体”。 1.2超细粉体的特性 目前,对超细粉体的特性还没有完全了解,已经比较清楚的特性可归纳为以下几点:(1)比表面积大。由于超细粉体的粒度较小,所以其比表面积相应增大,表面能也增加。比表 面积大,使其具有较好的分散性和吸附性能。 (2)活性好。随着粒度的变小,粒子的表面原子数成倍增加,使其具有较强的表面活性和催化 性,可起补强作用,具有良好的化学反应性。 (3)熔点低。许多研究表明,物质的粒径越小,其熔点就越低。 (4)磁性强。超细粉体的体积比强磁性物质的磁畴还小,这种粒子即使不磁化也是一个永久磁 体,具有较大的矫顽力,是制造高密度记录磁带的优良原料。 (5) 光吸收性和热导性好。超细粉体特别是超细金属粉体,当粒度小于100nm以后,大部分 呈黑色,且粒度越细色越黑,这是光完全被金属粉体吸收的缘故。 1.3超细粉体的制备方法 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 2超细粉体的应用 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开发展现了广阔的应用前景。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多技术领域。 2.1化工、轻工行业 超细粉体可用作填料填充PP和PVC等塑料,降低原料成本,改善制品性能。将石墨加工成GRT节能减磨添加剂,可改善机械润滑性,节约汽车燃油,减少大修次数;超细高岭土作纸张填料,能提高纸的白度,提高产品档次;另外还可将许多超细粉体制成高效催化剂,应用于石油工业的催化裂化。目前还结合低温、冷冻及脆化技术,将橡胶、塑料和合成树脂等有机高分子材料加工成有机物超细粉体。 2.1微电子工业 超细粉体在微电子行业中应用的典型代表有电子浆料(TiO2、BaTiO3、Cu)、磁记录材料(γ--Fe2O3)及电子陶瓷粉料(BaTiO3)。另外还有传感器(SnO2)和光、电波吸收材料及

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

中国超细粉体材料应用市场综述

3 论文选萃 中国超细粉体材料应用市场综述 付信涛 (北京中粉网信息技术咨询有限公司 100096) 引言: 近年来,随着粉体技术的不断发展,超细粉体材料在相关传统行业中的应用日益广泛,市场前景十分广阔。超细粉体材料由于颗粒尺寸的微细化,使它的许多物理、化学性能产生了特殊变化,人们将这些性能应用在化工、轻工、冶金、电子、高技术陶瓷、复合材料、核技术、生物医学以及国防尖端技术等领域,大大推进了这些领域的发展,可以说超细粉体材料正在渗入整个工业部门和高技术领域。因此,超细粉被誉为现代高新技术的原点。 目前,中国超细粉体的应用主要是微米、亚微米超细粉以及少量纳米粉体,其市场面向化工、轻工、医药、农药、食品、磨料、微电子、高技术陶瓷、复合材料等领域。 1、在化工、轻工行业的应用市场 在许多廉价的天然矿物和化工原料制成超细粉后,不仅扩大了应用范围,而且产生了高额附加值。如普通高岭土超细加工成涂布纸颜料(粒度小于2微米的占90%),价格增加1~2倍。用超细云母粉增强的塑料是制造汽车车身和部件的理想材料,用在油漆、颜料、化妆品中则产生珍珠光泽。超细滑石粉填料在油漆、造纸、塑料、橡胶等行业具有相当的重要性:它使涂层光滑,产生优异的色调,在乳胶漆中可以取代部分昂贵的钛白粉,欧洲油漆制造商特别倾向于使用滑石粉;在造纸业中,超细滑石粉可作为高光涂层;在聚丙烯塑料中加入25%~30%的超细滑石可使强度显著提高。在造纸、橡胶、塑料、油漆生产中,将天然矿物方解石等重质碳酸钙超细粉碎后可代替人工合成产品。 石墨产品应用于众多的工业领域,由于石墨用途的日益扩大,对石墨的深度加工已成为必然趋势。如高碳石墨加工成GRT节能磨添加剂,可以改善机械润滑性能,节约汽车燃油,减少大修次数。 锂基膨润土可用作各种精密铸造业的醇基涂料悬浮剂、抗夹砂粘结剂及多种陶瓷彩釉涂料中作基料的悬浮剂、触变剂、抗沉淀剂;用于乳胶漆等作悬乳体和膏体的触变剂、乳胶稳定剂、较强极性油溶剂中的增稠剂;还可用作织物上浆料。 锆英石是建筑卫生陶瓷乳浊釉中普遍采用的乳浊剂,理论和实验均证明,将锆英石粉碎成一定粒径分布的锆英石微粉制备乳浊釉,可获得最佳的乳浊效果,这样就可以使用更廉价的原料烧制高档建筑卫生瓷。 气相法生成的白炭黑超细粉,粒径在10~100nm时能赋与橡胶最高的抗张强度、抗撕裂性和耐磨性,它已成功地应用于国内硅橡胶生产中,作为橡胶补强剂。在塑料工业中,白炭黑用于聚酯层压树脂和凝胶涂层的胶凝剂、聚氯乙烯溶胶、粘接剂及密封料等,这主要是发挥白炭黑的增稠作用并防止颜料沉降低,调节粘度,防止流淌。但是,国内白炭黑超细粉的应用范围狭窄,品种单一。如在橡胶工业中仅用于制造胶辊、纺织业用的橡胶零件、橡胶杂件及乳胶制品等,在轮胎、胶鞋底中的用量还不大,在其它行业的应用更少或几乎是空白。而国外白炭黑的70%左右用于橡胶工业,其中鞋底占81%,轮胎占12%,工业橡胶制品占7%。因此,如果将白炭黑用于我国的轮胎制造和制鞋业中,需求量将大幅度增长。 此外,用白炭黑作纸张上胶剂可提高白度、不透明度,改进印刷性、耐磨性和手感性、光泽度。据日本造纸业透露,日本全年需求量可达4~5万吨,今后规模还将继续扩大,预计将成为仅次于橡胶工业用量的规模,在整个领域的应用我国还很薄弱。气相白炭黑在其它方面如印刷油墨消光剂、医药、农药、化肥、防腐油漆中都得到应用,这些领域我国大多处于研究阶段。 目前,我国超细微粉体技术的轻工、化工的许多领域还处于研究开发阶段。同国外相比,应用范围窄,产 【论文选萃】

超细粉体测试技术

超细粉体的表面特征及测试技术 钟家湘(北京理工大学) 一.超细粉体的表面科学与技术 由于固体材料与外界的相互作用是通过表面来实现的,因而材料表面的特征,无论从基础理论或技术应用的角度看,都是至关重要的.随着超细微粒与纳米材料的发展,表面的作用愈显突出,粉体材料表面科学与技术的进步极大地影响和推动着现代粉体工业的发展。 处于固体自由表面上的原子,其键合状态与体内不同,由于键的不饱和性,和近邻原子数的减少,表面的能量显著提高,这就是表面能或表面张力的来源。为了降低自由能,固体倾向于缩小表面积,因此许多粉体都呈球形,一些处于结构不稳定状态的纳米颗粒也是球形或近球形的形态;对于晶体而言,由于各向异性,不同晶面上的原子密度、配位数、键合角不同,颗粒经常成为多面体的形状,显露在外的晶面一般是表面能低的原子密排面,由于某些原因偏离密排面时,在表面上会出现台阶或扭折;对于非晶或无定形的固体颗粒一般呈多孔的复杂形状。值得注意的是,表面的结构缺陷大大的影响着表面的特性,例如,表面的催化活性大为提高,此外,表面吸附、表面偏析、表面腐蚀、表面电导、介电击穿、解理断裂等物理、化学、力学行为都将受到重要影响。近些年来,扫描隧道显微镜和原子力显微镜的成功应用,不但证实了一系列关于表面的物理模型,还直接观察到固体表面的一系列新的构象。低能电子显微术、高分辨电子显微术的不断完善,通过研究还发现了固体表面结构与内部结构的重要差别,一是表面弛豫,二是表面重构,前者有助于了解更多的表面现象,后者可以发现更多与表面相关的超结构。对于固体表面的微观结构的观察与研究已经深入到原子的尺度,可以期待未来还会有更多新的惊人的发现。 诚然,科学家对固体表面结构的深入探索十分引人注目,但最吸引人们的还是表面能够被利用的性能,换句话说,研究与挖掘表面状态与性能之间的关系,并加以工程应用。对于超微粉和纳米微粉来说,表面尤其重要,他涉及一系列的学科领域。例如,表面吸附科学,吸附是一种重要的界面现象,即界面(包括表面)上一种组分或多种组分的浓度与体相中不同的现象,对于粉体材料而言,他们总是被包围在其他的气体、液体或固体之中,吸附现象即是表面原子与周围物质的一种最重要的交互作用形式,吸附现象的本质、吸附规律、具有特殊吸附能力的材料、以及吸附现象与吸附材料的工业应用

相关文档