文档视界 最新最全的文档下载
当前位置:文档视界 › 常用高效液相色谱柱SOP

常用高效液相色谱柱SOP

常用高效液相色谱柱SOP
常用高效液相色谱柱SOP

常用高效液相色谱柱S O P Prepared on 24 November 2020

常用高效液相色谱柱SOP

1 目的:

色谱柱的使用和保养:液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。

建立高效液相色谱柱日常维护与保养规程,保证能正常使用。

2 适用范围:

本规程适用高效液相色谱柱的维护与保养。

3 责任人:

液相色谱柱使用者。

4 液相色谱柱的安装:

液相色谱柱的结构:

4.1.1 液相色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝(封头)与柱填料等组成。

柱管:多用不锈钢制成,若果使用时柱压不高于70 kg/cm2时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。用于柱填料的装填。空柱各组件均为不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。

压帽:即色谱柱两端套合于柱管端外壁的塑性圆柱帽,中部有小孔,多为聚四氟乙烯制成,用于固定筛板。

密封环:位于接头螺旋环内壁的弹性环,多为聚四氟乙烯制成,用于色谱柱两端压帽与柱外壁的密封。

4.1.2柱填料:

液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。

正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3-10 μm的范围内。另一类正相填料是硅胶表面键合-CN,-NH2等官能团即所谓的键合相硅胶。

反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。

常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3-10 μm之间。

色谱柱的安装:

4.2.1拆开柱包装盒,确认色谱柱的类型、尺寸、出厂日期以及柱内贮存的溶剂。

4.2.2拧下柱两端接头的密封堵头放回包装盒供备用。

4.2.3 按柱管上标示的流动相流向,将色谱柱的入口端通过连接管与进样阀出口相连接(如条件允许,建议在柱前使用保护柱);柱的出口与检测器连接。连接管是外径为1.57 mm、内径为-0.3 mm的不锈钢管。连接管的两端均有空心螺钉及密封用压环。在接管时一定要设法降低柱外死体积。连接管通过空心螺钉、压环后尽量用力插到底,然后顺时针拧紧空心螺钉,直到拧不动为止。

5 液相色谱柱的使用:

色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。

样品的前处理:

5.1.1最好使用流动相溶解样品。

5.1.2使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。

5.1.3使用μm的过滤膜过滤除去微粒杂质。

流动相的配制:

液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点:

5.2.1流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。

5.2.2流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。

5.2.3流动相的黏度要尽量小,以便在使用较长的分析柱时能得到好的分离效果;同时降低柱压降,延长液体泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。

5.2.4流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最好使用对紫外吸收较低的溶剂配制。

5.2.5流动相沸点不要太低,否则容易产生气泡,导致实验无法进行。

5.2.6在流动相配制好后,一定要进行脱气。除去溶解在流动相中的微量气体既有利于检测,还可以防止流动相中的微量氧与样品发生作用。

流速的选择:

因柱效是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效。对于一根特定的色谱柱,要追求最佳柱效,最好使用最佳流速。对内径为4.6 mm的色谱柱,流速一般选择1 ml/min,对于内径为4.0 mm柱,流速

ml/min为佳。当选用最佳流速时,分析时间可能延长。可采用改变流动相的洗涤强度的方法以缩短分析时间(如使用反相柱时,可适当增加甲醇或乙腈的含量)。

流动相使用注意事项:

5.4.1由于甲醇廉价,对于反相柱推荐使用甲醇体系(必须使用乙腈的场合除外)。

5.4.2 对于正相柱推荐使用沸程为30-60 ℃的石油醚或提纯后的己烷作流动相,没有提纯的己烷不得使用。用水最好使用超纯水(电阻率大于18兆欧),去离子水及双蒸水中含有酚类杂质,有可能影响分析结果。

5.4.3含水流动相最好在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜。最好加入叠氮化钠,防止细菌生长。

5.4.4 流动相要求使用μm滤膜过滤,除去微粒杂质。

5.4.5使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能。

6 液相色谱柱的保存:

反向色谱柱实验后的保养:使用缓冲液或含盐的流动相,实验完后应用10%的甲醇/水冲洗30分钟,洗掉色谱柱中的盐,再用甲醇冲洗30分钟。注意:不能用纯水冲洗柱子,应该在水中加入10%的甲醇,防止将填料冲塌陷。

长期保存色谱柱:如色谱柱要长时间保存,必须存于合适的溶剂下,对于反相柱可以储存于纯甲醇或乙腈中,正相柱可以储存于严格脱水后的纯正己烷中,离子交换柱可以储存于水(含防腐剂叠氮化钠或硫柳汞)中,并将堵头堵上,储存温度最好是室温。

7 液相色谱柱的再生:

因为色谱柱是消耗品,随着使用时间或进样次数的增加,会出现色谱峰高降低,峰宽加大或出现肩峰的现象,一般来说是柱效的下降。

反向柱的再生:依次采用20-30倍的色谱柱体积的甲醇:水=10:90 (V/V),乙腈,异丙醇作为流动相冲洗色谱柱,完成后再以相反顺序冲洗色谱柱。

正相柱的再生:依次以20-30倍的色谱柱体积正己烷、异丙醇(异丙醇粘度大,可降低流速,避免压力过高)、二氯甲烷、甲醇作为流动相冲洗色谱柱,然后再以相反的顺序冲洗色谱柱。要注意以上溶剂必须严格脱水。

离子交换柱的再生:长时间在缓冲溶液中使用和进样,将导致色谱柱离子交换能力下降。用稀酸缓冲溶液冲洗可以使阳离子柱再生,反之,用稀碱缓冲溶液冲洗可以使阴离子柱再生。

特别说明:再生过程必须随时关注柱压变化,柱压过高易导致硅胶变形与开裂及键合相极性端连接顺序紊乱,同时要保证再生时间足够。再生时最好选择不具备在线脱气的独立泵送系统色谱仪器进行,以防正相溶剂损坏脱气机密封膜或分子筛及比例阀等仪器精密部件。

8 液相色谱柱常见问题分析与解决方案

使用一段时间后柱压过高:

解决方案:首先查看是否HPLC系统原因,排除系统原因后,原因基本是由于实验过程中杂质在柱中的累积。尽量完善操作条件,做完样品后要及时冲洗干净,如缓冲盐的流动相一定要用高比例的水溶液(如90%)冲洗完全后再用有机相保存。

筛板堵塞与柱头塌陷:

解决方法:如确定是色谱柱头的过滤筛板被污染,可以将色谱柱反方向用甲醇冲洗至正常压力,或者卸下色谱柱头,小心取下筛板,用5%左右的硝酸溶液超声处理20分钟左右,再用纯水超声20分钟左右,重新装入色谱柱。

色谱柱头的填料被样品污染:

解决方法:如确定色谱柱头的填料被污染,将柱头螺丝卸下,挖出柱内前段被污染的填料,用相同的柱填料重新填入,仔细修复后,重新安装上柱头螺丝。

色谱柱内缓冲液中的盐遇到高浓度的甲醇或其他有机溶剂,形成结晶析出:

解决方法:如确定是盐结晶,用10%的甲醇/水冲洗色谱柱使柱内盐全部溶解,再换高浓度甲醇。

注意事项:

1.无论何时,必须保证色谱柱柱床不干涸,尤其是进样检测和柱冲洗过程中

不能让流动相长时间(30 min以上)走空,否则易使色谱柱干涸且带入大量几乎无法排出的气泡,甚至导致柱床局部塌陷或中部开裂。

2.使用与保存时,严禁用力甩,绝对杜绝不小心猛烈撞击或高处掉落,否

则,易导致柱床机械性损坏,则再无再生可能。

3.当柱子和色谱仪联结时,阀件或管路一定要清洗干净;

4.避免使用高粘度的溶剂作为流动相;

5.进样样品要全溶解;

6.大多数反相色谱柱的pH稳定范围是2-,尽量不超过该色谱柱的pH范围

7.每天分析工作结束后,要清洗进样阀中残留的样品;

8.每天分析测定结束后,都要用适当的溶剂来清洗柱;

9.若分析柱长期不使用,应用适当有机溶剂保存并封闭;

Waters高效液相色谱柱简单介绍与选择

Waters高效液相色谱柱简单介绍与选择 2016-04-25 Bruce Lee 生产高效液相色谱柱的厂家有很多,如Waters,Agilent,Phenomenex,Shimadzu,Thermo等,每家供应商又生产多个系列,导致市场上的液相色谱柱的可选择性极强。 目前实验室以及公司,企业使用最多的是Waters以及Agilent所生产的RP液相色谱柱。Waters主要有Symmetry,Sunfire,XTerra,XBridge,XSelect,CORTECS以及Atlantis系列等,其详细分类以及键合相如下。 Figure 1 Waters Symmetry column family Figure 2 Waters Sunfire column family Symmetry与Sunfire系列色谱柱使用高纯度硅胶(B型)作为固定相基质,摒除金属离子杂质对固定相Si-O键的促进水解作用,此外由于金属离子含量特别低,在对其表面键合选择性烃基或内嵌极性官能团烃基时,可通过配体添加量控制硅胶表面键合相的多少,因此其最大特点在于批次之间的重现性。两个系列均采用封端技术,Sunfire C8与C18表面载碳量分别为12%和16%;SymmetryC8与C18载碳量均为12%,因此两个系列的C8色谱柱对于分析物的保留能力上没有本质的区别,而Sunfire C18色谱柱则相比Symmetry C18色谱柱,对于非极性比较大的分析物具有更强一些的保留能力,当然对于有机相的最低比例也相对比较高一些。Symmetry C8 Prep与C18 Prep色谱柱的填料粒径为7 um,其设计用途为制备;Symmetry300 C18(孔径300埃,载碳量8.5%)与Symmetry300 C4(孔径300埃,载碳量2.8%)则是为生物大分子多肽以及蛋白质的分离,分析而设计。Symmetry Shield RP 18内嵌极性官能团色谱柱,由于在靠近硅胶表面的极性官能团的存在,增加了硅胶表面的水分子浓度,改善了与水之间的浸润状况;因此可以允许使用极高水相作为分离,分析条件,而不会

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱。正相柱大多以硅胶为柱,或是在硅胶表面键合 -CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸

高效液相色谱(HPLC)法测定邻苯二甲酸酯

实验七高效液相色谱(HPLC)法测定邻苯二甲酸酯 一.实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二.实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t (R2)-t (R1) ] /1.7*(W 1 +W 2 ) 式中 t (R2)为相邻两峰中后一峰的保留时间; t (R1) 为相邻两峰中前一峰的保留 时间; W 1及W 2 为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。

三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四.实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:30%,甲醇:70% 检测器:DAD检测器; 检测波长:220nm; 进样体积:100μl定量环,实际注射每次可控制在200μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液50ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

高效液相色谱柱

高效液相色谱柱 怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团(NH2,APS)和氰基团(CN,CPS)的键合相填料。由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料 聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC,氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用,新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行中。 怎样选择填料粒度 目前,商品化的色谱料粒度从1um到超过30um均有销售,而目前分析分离主要用3um、5um

高效液相色谱

高效液相色谱 High Performance Liquid Chromatography (HPLC) 7.1 概述 高效液相色谱法—高压液相色谱法 HPLC 高效液相仪: 流动相:液体 固定相:柱子采用十分细小的颗粒填充,高效分离柱,高压泵输送流动相,柱后连高灵敏度检测器,对流出物连续检测。 高交效液相色谱分析过程 高压泵将贮液器中流动相溶剂经过进样器送入色谱柱,注入欲分离的样品时,流经进样器贮液器的流动相将样品同时带入色谱柱进行分离,依先后顺序进入检测器,记录仪将检测器送出的信号记录下来,由此得到液相色谱图。 7.1.1 高效液相色谱发展历史 1903年茨维特发明液相色谱 1931年Kuhn, Lederer, 液固色谱分离结晶胡萝卜素为α和β异构体, 同年制得叶黄素结晶, 1938年从维生素B中分离出B6。1938年获诺贝尔化学奖 1958年Stein和Moore研制出氨基酸分析仪,成为研究蛋白质和酶的重要工具。 1972年获得诺贝尔化学奖。 1968年出现商品化的高效液相色谱仪 7.1.2 高效液相色谱的特点 经典液相色谱高效液相色谱 色谱柱:柱长10~200cm,内径10~50mm 色谱柱:柱长10~25cm,内径2~10mm 常压或减压高压,40~50MPa 填料颗粒大,75~600μm(200~30目)填料颗粒小,2~50μm(2500~300目) 柱效低,20~50/m 柱效高,40000~60000块/m 分析速度慢,1~20h 分析速度快,0.05~1.0h 色谱柱只用一次色谱柱可重复多次使用 不能在线检测能在线检测

设备不同 GC:载气与组分无亲合力,体系和类型少,高温,柱外效应可忽略 缺点,只分析可气化的试样 HPLC:流动相对组分有亲和力,体系多,类型多,低温,可回收样品,柱外效应较大,缺通用型检测器,成本高 2. 高效液相色谱的应用范围 7.1.3 液相色谱的分类 7.2 影响色谱峰扩展及色谱分离的因素 影响色谱峰扩展及色谱分离的因素 传质阻力系数C=流动相传质阻力系数+固定相传质阻力系数 7.3.1 高压输液系统: 1. 构成:储液罐/高压输液泵/过滤器/压力脉动阻力器 2. 储液罐:盛入溶剂,连过滤器,防止颗粒进泵 3. 高压输液泵: 密封性,输出流量恒定,压力平稳,可调范围宽,便于迅速更换溶剂及耐腐蚀。 压力:150~350×105 Pa。 作用:将流动相在高压下,连续不断地送入色谱系统。 高压目的:输送流动相及组分。保持渗透性和快速分析。 装置:双活塞往复泵:稳定输出流量。

高效液相色谱流动相选择

高效液相色谱流动相选择 流动相 流动相的性质要求:一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 流动相选择 1:由强到弱:一般先用90%的乙腈(或甲醇)/水(或缓冲溶液)进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂(乙腈或甲醇)的比例。2:三倍规则:每减少10%的有机溶剂(甲醇或乙腈)的量,保留因子约增加3倍,此为三倍规则。这是一个聪明而又省力的办法。调整的过程中,注意观察各个峰的分离情况。 3:粗调转微调:当分离达到一定程度,应将有机溶剂10%的改变量调整为5%,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变。 选择流动相时应考虑以下几个方面: ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。④粘度要低(应<2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。⑥样品易于回收。应选用挥发性溶剂。 流动相的pH值 采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。对于弱酸,流动相的pH值越小,组分的k值越大,当pH值远远小于弱酸的pKa值时,弱酸主要以分子形式存在;对弱碱,情况相反。分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液;分析弱碱样品

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程 高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。世界上约有80%的有机化合物可以用HPLC来分析测定。 高效液相色谱分析原理 (一)高效液相色谱分析的流程 由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程 同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C 在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等

高效液相色谱仪中反相HPLC柱子的清洁和再生

高效液相色谱仪中反相HPLC柱子的清洁和再生 还有一个问题是清洗过程中是否可以把HPLC柱子反过来。因为大多数强保留的污染物都会累积在柱头,把柱子反过来可以缩短污染物被冲出柱子的移动距离。考虑到装填柱子的稳定性,现在大多数HPLC柱子都是比普通操作压力大很多的高压装填的,因此他们的柱床应该不会受到反方向流速的影响。但是,如果头上的烧结比尾部的烧结孔径大的话。例如尾部烧结的孔径是2μm,他通常能够留住平均5μm孔径里的填料。有时侯厂家会让头部孔径较大以避免样品或流动相颗粒堵塞。如果这种孔径大于装填颗粒尺寸分布曲线的最小粒径时,有些填料能穿过这些缝隙而流出色谱柱,这样会导致空白出现。如果柱子有箭头标志建议的流动方向,我建议通过操作手册和说明书,厂家主页或者技术支持部门等确认是否可以把柱子反过来冲。无论你是否把柱子反方向,最好不要让溶剂通过检测器避免污染物和穿透缝隙的颗粒进入检测池,否则有可能引起污染。 清洗柱子频率主要看有多少强保留物质被打入色谱柱。因为反相柱有时候在分辨率消失或者鬼峰出现前能承受很大的污染,使用者经常会等到出现了异常情况才开始注意。然而,污染物过多的累积会导致清洗柱子的难度加大。所以,如果你知道经常用杂质较多的样品上样时,我建议你们有规律地清洗柱子,你越是频繁清洗柱子,就清洗起来就越不费劲。 清洗硅胶键合反相柱的蛋白质残余 如果是生物物质如血浆或血清等积累在反相色谱柱上,操作者必须采用不同的清洗程序。大部分情况下,纯有机溶剂如乙晴或甲醇不溶解多肽和蛋白质因此不能有效地清洗柱子。然而,有机溶剂和缓冲液、酸、离子对试剂等的混合物则能有效地溶解。一开始,先开始尝试用百分比含量高的高强度溶剂(溶剂B)冲洗一体积。Freiser和他的合作者发现重复变化三氟乙酸水溶液和三氟乙酸-丙醇之间梯度的高低可以再生被污染的反相柱子。Bhadwaj和Day认为在250mm×46mm的柱子中注入100μL 的三氟乙醇就能起到效果。如果上述几个方法都不成功,Cunico和他的同事推荐了几种强溶剂和增溶剂来除去蛋白质(见表三)。在使用这些溶剂之前,可以先咨询柱子的厂商确保这些溶剂能与柱子的填料相容。硅胶基质的柱子通常来说都是相容的,但有机聚合物基质的柱子可能会在某些溶剂组合中膨胀或收缩,这样会影响其色谱行为。 当用前述的溶剂系列时,确保表三所提到的溶剂能与系列中的溶剂互混。对每个溶剂系统至少要冲洗20体积。由于有些溶剂系统黏性很大,冲洗的流速应该相应调整以确保不会超过泵压。用完胍或尿

高效液相色谱的色谱柱的类型和流动相的选择方法_徐红

高效液相色谱的色谱柱的类型和流动相的选择方法The Choicing W ays of Chromatographic Colum n and Mobil Phase about HPLC 徐 红 侯 健 (新疆昌吉州产品质量检验所,新疆昌吉831100) 摘 要:高效液相色谱仪的核心是色谱柱。另外,流动相对改善分离效果也有重要的辅助效应。色谱柱的关键内容是制备出高效的填料。现代高效液相色谱填料多使用键合固定相。色谱柱的填充技术直接影响柱效的发挥。在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。 关键词:高效液相色谱;色谱柱;填料;流动相;溶剂 色谱柱的关键内容是制备出高效的填料。这些填料装成的色谱柱既要有好的选择性,又要有高的柱效。要提高柱效是现代高效液相色谱的又一重要问题。所以填料和装柱技术是关键问题。 现代高效液相色谱填料多使用键合固定相,其固定相膜很薄,因而大大提高了柱效。高效液相色谱填料的基质有以下几种:(1)全多孔硅胶。现代高效液相色谱填料绝大多数用键合的方法把活性基团接枝到基质上,全多孔硅胶是使用最为普遍的基质。全多孔硅胶的孔径有三种类型:①微孔全多孔硅胶,孔径<2nm;(2)中孔全多孔硅胶,孔径<50nm,>2nm;(3)大孔全多孔硅胶,孔径>50nm。高效液相色谱填料使用中孔和大孔全多孔硅胶,在分离低分子量的混合物时,选择(6~15)nm孔径的全多孔硅胶,其比表面相当于(500~200)m2/g。在分离合成聚合物或生物大分子时,要使用(15~100)nm的全多孔硅胶。如果使用<2nm的全多孔硅胶,色谱峰就会拖尾。(2)其他金属氧化物基质。由于硅胶有一些缺点:在碱性介质中(pH>8)不稳定;在孔隙中大分子扩散困难,降低柱效;硅胶表面上的剩余硅羟基有离子交换作用。为此近年来用氧化铝、氧化锆、氧化钍和氧化钛作为高效液相色谱填料的基质有很大的H PLC应用前景。高效液相色谱固定相有以下几种:(1)硅胶表面键合或涂渍各种聚合物。(2)其他氧化物表面上涂渍聚合物。(3)无孔单分散填料。(4)有机高聚填料。(5)灌注色谱填料。(6)手性固定相填料。 色谱柱的填充技术直接影响柱效的发挥。如果色谱柱填充不好,如填料颗粒之间不均匀、不密实,就会使涡流扩散项增加,导致柱效下降。高效液相色谱柱的性能主要决定于固定相填料,但是色谱柱的填充好坏也有很大的影响。填充色谱柱的方法有干法和湿法两种,一般大颗粒的(如外径>20nm)可以用干法填充;一般小粒径的填料宜用湿法填充。湿法填充也称作匀浆法,即用密度和填料相近的液体或混合液作分散介质,用超声波处理此浆液,然后用高压泵快速压入色谱柱管中,这样就可以制备出高效的色谱柱。 在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。在选择流动相溶剂时,首先要考虑的是溶剂的物理性质,其次要考虑溶剂对所要分离样品的容量因子,最后是所使用的溶剂要有分离能力。用作高效液相色谱流动相溶剂,首先要满足以下几点要求:(1)容易得到;(2)适合于所用的检测器;(3)纯净、有一定的惰性;(4)无毒、使用安全;(5)对所分离的样品有一定的溶解性能。 下面介绍选择流动相的要点: (1)首先要考虑溶剂对检测器的适应性。 高效液相色谱在多数情况下要使用紫外检测器,所以必须考虑所用溶剂在紫外波段的吸收。如使用示差折光检测器,要考虑溶剂的折光率。 (2)溶剂的活性 有许多溶剂可能与样品发生反应,或在某些固定相的存在下产生聚合,他们就不能作为流动相使用。 (3)溶剂的沸点和粘度 溶剂的沸点和粘度密切相关,低沸点的溶剂通常其粘度也低。通常选用沸点高于柱温(20~50)℃、粘度不大于5×10-4Pa.S的流动相。 (4)高效液相色谱流动相溶剂的极性 在分配色谱和吸附色谱中,溶剂的极性是用混合溶剂的比例来调节的,一个极性强的溶剂和一个极性弱的溶剂经过适当的混合可以得到一定极性的混合溶剂。 (5)溶剂的选择性和溶剂的分类 选择流动相的极性能使被分离样品的分配容量在1~5之间,这时如果有两个或几个色谱峰重叠,可以通过调节溶剂的选择性来解决。 选择合适的色谱柱和流动相是高效液相色谱的关键。 参考文献 [1]富玉,陈能武.高温液相色谱的原理及研究进展.中国测试技术, 2006(3)36. 作者简介:徐红,女,副高级工程师,所长。工作单位:新疆昌吉州产品质量检验所。通讯地址:831100新疆昌吉市健康西路17号。 侯健,新疆昌吉州产品质量检验所(昌吉831100)。 收稿时间:2009-10-16   10 《计量与测试技术》2010年第37卷第2期

高效液相色谱法习题

第12章高效液相色谱法习题 (一)选择题 单选题 1. 在高效液相色谱中影响柱效的主要因素是( ) A 涡流扩散 B 分子扩散 C 传质阻力 D 输液压力 2. 在高效液相色谱中,提高柱效能的有效途径是( ) A 提高流动相流速 B 采用小颗粒固定相 C 提高柱温 D 采用更灵敏的检测器 3. 高效液相色谱法的分离效果比经典液相色谱法高,主要原因是( ) A 流动相种类多 B 操作仪器化 C 采用高效固定相 D 采用高灵敏检测器 4. 在高效液相色谱中,通用型检测器是( ) A 紫外检测器 B 荧光检测器 C 示差折光检测器 D 电导检测器 5. HPLC与GC的比较,可忽略纵向扩散项,这主要是因为( ) A 柱前压力高 B 流速比GC的快 C 流动相黏度较小 D 柱温低 6.液相色谱定量分析时,要求混合物中每一个组分都出峰的是( ) A 外标标准曲线法 B 内标法 C 面积归一化法 D 外标法 7.下述四种方法中最适宜分离异构体的是是( ) A 吸附色谱 B 反离子对色谱 C 亲和色谱 D 空间排阻色谱 8.在液相色谱中,梯度洗脱适用于分离( ) A 异构体 B 沸点相近,官能团相同的化合物 C 沸点相差大的试样 D 极性变化范围宽的试样 9.在HPLC中,范氏方程中对柱效影响可以忽略不计的因素是( ) A 涡流扩散 B 纵向扩散 C 固定相传质阻力 D 流动相传质阻力 10.当用硅胶为基质的填料作固定相时,流动相的pH范围应为( ) A 在中性区域 B 5一8 C 1一14 D 2一8

11.高效液相色谱法中,常用的流动相有水、乙腈、甲醇、正己烷,其极性大小顺序为( ) A 乙腈>水>甲醇>正己烷 B 乙腈>甲醇 >水>正己烷 C 水> 乙腈>甲醇>正己烷 D 水>甲醇> 乙腈>正己烷 12.高效液相色谱法中,使用高压泵主要是由于( ) A 可加快流速,缩短分析时间 B 高压可使分离效率显著提高 C 采用了细粒度固定相所致 D 采用了填充毛细管柱 13.液相色谱的H-u曲线()。 A 与气相色谱的一样,存在着H min B H随流动相的流速增加而下降 C H随流动相的流速增加而上升 D H受u影响很小 14. 与气相色谱相比,在液相色谱中()。 A 分子扩散项很小,可忽略不计,速率方程式由两项构成 B 涡流扩散项很小,可忽略不计,速率方程式由两项构成 C 传质阻力项很小,可忽略不计,速率方程式由两项构成 D 速率方程式同样由三项构成,两者相同 15.液相色谱中不影响色谱峰扩展的因素是()。 A 涡流扩散项 B 分子扩散项 C 传质扩散项 D 柱压效应 16.在液相色谱中,常用作固定相又可用作键合相基体的物质是()。 A 分子筛 B 硅胶 C 氧化铝 D 活性炭 17.样品中各组分的出柱顺序与流动相的性质无关的色谱是()。 A 离子交换色谱 B 环糊精色谱 C 亲和色谱 D 凝胶色谱18.高效液相色谱法中,对于极性成分,当增大流动相的极性,可使其保留值()。 A 不变 B 增大 C 减小 D 不一定 19.在反相色谱法中,若以甲醇-水为流动相,增加甲醇的比例时,组分的容量因子k与保留时间t R的变化为()。 A k与t R增大 B k与t R减小 C k与t R不变 D k增大,t R减小 多选题 20.下列检测器中,不属于高效液相色谱中的检测器是() A 紫外检测器 B 氢火焰离子化检测器 C 荧光检测器 D 氮磷检测器 E 示差折光检测器 21.化学键合固定相具备下列何种特点() A 固定液不易流失 B 选择性好 C 不适用于梯度洗脱 D 柱效高 E 易和组分形成氢键吸附

常用高效液相色谱柱SOP

常用高效液相色谱柱SOP 1 目的: 色谱柱的使用和保养:液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。 建立高效液相色谱柱日常维护与保养规程,保证能正常使用。 2 适用范围: 本规程适用高效液相色谱柱的维护与保养。 3 责任人: 液相色谱柱使用者。 4 液相色谱柱的安装: 4.1 液相色谱柱的结构: 4.1.1 液相色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝(封头)与柱填料等组成。 柱管:多用不锈钢制成,若果使用时柱压不高于70 kg/cm2时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。用于柱填料的装填。空柱各组件均为不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。 压帽:即色谱柱两端套合于柱管端外壁的塑性圆柱帽,中部有小孔,多为聚四氟乙烯制成,用于固定筛板。 密封环:位于接头螺旋环内壁的弹性环,多为聚四氟乙烯制成,用于色谱柱两端压帽与柱外壁的密封。 4.1.2柱填料: 液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。 正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3-10 μm的范围内。另一类正相填料是硅胶表面键合-CN,-NH2等官能团即所谓的键合相硅胶。

反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。 常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3-10 μm之间。 4.2色谱柱的安装: 4.2.1拆开柱包装盒,确认色谱柱的类型、尺寸、出厂日期以及柱内贮存的溶剂。 4.2.2拧下柱两端接头的密封堵头放回包装盒供备用。 4.2.3 按柱管上标示的流动相流向,将色谱柱的入口端通过连接管与进样阀出口相连接(如条件允许,建议在柱前使用保护柱);柱的出口与检测器连接。连接管是外径为1.57 mm、内径为0.1-0.3 mm的不锈钢管。连接管的两端均有空心螺钉及密封用压环。在接管时一定要设法降低柱外死体积。连接管通过空心螺钉、压环后尽量用力插到底,然后顺时针拧紧空心螺钉,直到拧不动为止。 5 液相色谱柱的使用: 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。 5.1样品的前处理: 5.1.1最好使用流动相溶解样品。 5.1.2使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 5.1.3使用0.45 μm的过滤膜过滤除去微粒杂质。 5.2 流动相的配制: 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点: 5.2.1流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

戴安高效液相色谱仪

戴安高效液相色谱仪 产 品 配 置 来源:南京途威仪器设备有限公司 免费热线:4008-585-600 优谱佳UHPLC+高效液相色谱系统 ? UHPLC+设计理念贯穿纳升液相、常规液相和快速液相整个范围 ? 基础型和标准分析型系统的最大压力创立了高效液相的新标准—620bar ? 双三元液相系统—为常规分析设计,增加产率并拓展色谱分析技术应用范围? 变色龙色谱软件—智能化、专业化、人性化 ? Viper和nanoViper接头系统—可手动安装拆卸,适应超快速液相范围并保证零死体积。 RSLCnano系统 ? 提供20 nL/min到50 μL/min的纳升/毛细管/微升流速范围

? 柱最高耐压可达800bar ? 连续直流输送 ? 上样泵可提供从10 μL/min到2.5 mL/min的流速 RSLC系统 ? 二元或四元系统都可用于超快速液相和常规液相的应用 ? 更广的压力—流速范围兼容超快速、超高分离度的分析应用 ? 系统最高耐压1000bar ? 可提供高效双三元RSLC系统 标准分析型系统 ? 为常规液相应用提供最佳性能和可靠性 ? 620bar耐压和100Hz的数据采集频率均兼容超快速液相应用 ? 可根据不同应用灵活配置 ? 最高流速可达10mL/min,满足全方位应用需求 基础型系统 ? 满足常规应用需求且更加耐用 ? 分析结果一致可靠 ? 提供620bar耐压和高达100Hz数据采集频率,全面兼容UHPLC应用 ? 自动进样器与柱温箱整合,可提供样品和色谱柱温控功能 检测器选项 ? 提供多种光学检测器选择-紫外/可见,荧光和示差折光检测器 ? 创新型Corona通用电喷雾式检测器 ? 高灵敏度库仑电化学检测器 ? 支持AB、布鲁克和赛默飞质谱检测器 软件与备件 ? 变色龙软件—直观的仪器控制,先进的数据处理 ? D-Library数据库提供应用搜索支持 ? Viper与nanoViper手旋接头系统,真正零死体积,简化安装拆卸过程 ? 色谱柱加工制造—包括整体柱技术和先进的多基质键合技术 UltiMate? 3000 RSLCnano 系统 目前,RSLCnano系统研发的重点是提高样品通量。UltiMate? 3000 RSLCnano 系统采用稳定、连续的直流输送方式,可实现样品的不间断分析。UltiMate? 3000 RSLCnano系统流速-压力范围广,即使在纳升级别针对最复杂的酶解肽段样品时,仍可保证最高的分离度和最快的分析要求。是唯一可以同时满足分离速度、分离能力和灵敏度高要求的系统。涵盖纳升、毛细管和微流水平的分离能力以及强大的双梯度泵为使用者提供了良好的灵活性。UltiMate? 3000RSLCnano支持更高水平工作流程,如自动化离线二维分离(该技术采用了双泵、双切换阀以及自动进样器的微量组分收集功能)。

高效液相色谱柱的选择、使用与维护

高效液相色谱柱的选择、使用与维护 辛金菲 天津大沽化工股份有限公司,天津塘沽区300457 摘要:随着社会的进步,色谱分析理论和技术也得到了较大的发展,高效液相色谱现已广泛应用于分析的各个领域,聚集了检测与分离双重性能。其中的色谱柱是样品组分分离的场所,更是高效液相色谱的核心部件,并且属于仪器的耗材,费用比较高。正确的使用方式,才能使其保持良好的性能,而错误的操作方式,可能会导致报废。所以,正确的使用和维护才能保证检测的准确性,而且还能延长使用寿命,降低检测的成本。色谱柱的选择、使用与维护方面的研究在现实中具有非常重要的意义,同时也是色谱工作者和仪器厂商所关注的热点。 关键词:高效液相色谱柱;选择;使用;维护 1前言 高效液相色谱属于色谱法中的一个分支,其流动相为液体,运用的是高压输液系统,将单一或是混合的溶剂和缓冲液流动相泵入装后有固定相的色谱柱,待各成分被分离,再进入检测器,以此实现对试件的分析。由于要分析的样品种类比较多,并且样品的基质都比较复杂,色谱柱很容易被污染,这也是导致分离能力下降和柱压升高的原因之一。通常来说,样品中都会含有一定的不利于分析的物质,其中保留值相对比较弱的物质,一般情况下能快速地从色谱柱中洗脱出

来,才不会对分析产生干扰,对于基质复杂的样品来说,一根色谱柱可能只能使用百余次,并且每一种色谱柱只能适用有限的样品,一次错误进样有时候甚至能导致色谱柱失效。 2高效液相色谱柱的选择 一般情况下,选择保护柱的首先考虑因素是样品的清洁程度,对于大部分相关研究者来说,最合适的保护柱的选择是2cm或3cm,自然所装填的色谱填料随着保护柱的增长而增多,同时它也更能减少污染物进入分析色谱柱。样品的保留时间也会随着保护柱的增长而增长。 保护柱的内径应与分析色谱柱的内径相同或相当,现如今薄膜装填过的保护柱,使用起来也比较简单方便,而且可以干装,但是比较的不经济,一次性使用相对费用较高。另外,薄膜装填法的保护柱所装填的色谱填料是有限的,提供的保护作用有限,但是因为装填了较少的色谱料,保护柱也比较短,所以对分析样品的保留时间的影响小。另外一种保护柱结构的实质是缩短色谱分析柱,设计方式上有整体式、手紧式或直连式;从保护柱的结构可分为是否可以更换保护柱柱芯,以此降低保护柱的成本。 3高效液相色谱柱的正确使用 3.1加装保护柱 加装保护柱的作用比较大,特别是在分析中成药、中药等生物样品和复杂混合物之时,更是保护分析柱的重要措施,保护柱填料与分析柱应该保持一致,保护柱属消耗品,在经过大量的样品分析(50~100次)之后,当峰形变坏或柱压显著升高或基线漂移之时,应考虑

常用高效液相色谱柱SOP

常用高效液相色谱柱S O P Prepared on 24 November 2020

常用高效液相色谱柱SOP 1 目的: 色谱柱的使用和保养:液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。 建立高效液相色谱柱日常维护与保养规程,保证能正常使用。 2 适用范围: 本规程适用高效液相色谱柱的维护与保养。 3 责任人: 液相色谱柱使用者。 4 液相色谱柱的安装: 液相色谱柱的结构: 4.1.1 液相色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝(封头)与柱填料等组成。 柱管:多用不锈钢制成,若果使用时柱压不高于70 kg/cm2时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。用于柱填料的装填。空柱各组件均为不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。 压帽:即色谱柱两端套合于柱管端外壁的塑性圆柱帽,中部有小孔,多为聚四氟乙烯制成,用于固定筛板。

密封环:位于接头螺旋环内壁的弹性环,多为聚四氟乙烯制成,用于色谱柱两端压帽与柱外壁的密封。 4.1.2柱填料: 液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。 正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3-10 μm的范围内。另一类正相填料是硅胶表面键合-CN,-NH2等官能团即所谓的键合相硅胶。 反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。 常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3-10 μm之间。 色谱柱的安装: 4.2.1拆开柱包装盒,确认色谱柱的类型、尺寸、出厂日期以及柱内贮存的溶剂。 4.2.2拧下柱两端接头的密封堵头放回包装盒供备用。 4.2.3 按柱管上标示的流动相流向,将色谱柱的入口端通过连接管与进样阀出口相连接(如条件允许,建议在柱前使用保护柱);柱的出口与检测器连接。连接管是外径为1.57 mm、内径为-0.3 mm的不锈钢管。连接管的两端均有空心螺钉及密封用压环。在接管时一定要设法降低柱外死体积。连接管通过空心螺钉、压环后尽量用力插到底,然后顺时针拧紧空心螺钉,直到拧不动为止。

相关文档
相关文档 最新文档