文档视界 最新最全的文档下载
当前位置:文档视界 › 实验2-纳米氧化铝粉体的制备及粒度分析

实验2-纳米氧化铝粉体的制备及粒度分析

实验2-纳米氧化铝粉体的制备及粒度分析
实验2-纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析

一.实验目的

1.了解纳米材料的基本知识。

2.学习纳米氧化铝的制备。

3. 了解粒度分析的基本概念和原理。

4. 掌握马尔文激光粒度分析仪的使用。

二.实验原理

纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。

许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。

本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。

三.仪器与试剂

试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。

仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。

Mastersizer 2000激光粒度仪。

四.实验步骤

1.查文献

《分散剂聚合度对纳米氧化铝粉体特性的影响》

2.样品的制备

将十二水合硫酸铝铵(M=453.33)配成0.2 mol/L的溶液(需加热溶解),分别取出100 ml加入3 g不同聚合度的聚乙二醇(PEG),恒温磁力搅拌(45±5 ℃)使PEG迅速溶解,保持水浴温度,用分液漏斗将25 ml氨水逐滴加入匀速搅拌的溶液中(10 min),形成白色胶状沉淀,氨水加完后,继续搅拌5 min,然后抽滤(抽滤时要防止滤纸穿破),用蒸馏水和无水乙醇分别洗涤1次,得到胶体样品。胶体经70~80℃烘干,再800~1100 ℃煅烧2h,得到α型氧化铝纳米粉体,研磨后保存。

查阅文献《粒度分析基本原理》。

五.结果与讨论

采用不同聚合度的PEG作分散剂,测氧化铝粉体的粒径分布曲线,曲线的峰宽反映体系中所含颗粒尺寸的均匀程度,峰宽越窄则粒子的粒度越均匀。

1.完成表1内容。

表1 PEG聚合度与粉体颗粒分布的关系

聚合度

d (0.5)值

2. 1.445 μm—10.000 μm含量:%

3. 从图中读取最频值、中间值和平均值。

六.思考题

PEG的作用?其聚合度对纳米氧化铝粒径的影响?

写出煅烧前样品制备的离子反应式,并说明氨水的作用,能否用氢氧化钠溶液代替氨水?

3. 激光粒度仪测试的基本原理是什么?

4. 等效球体的概念?

5. 以每组学号末两位为粒径大小,计算D[1,0]、D[2,0]、D[3,0]、D[3,2]、D[4,3]。

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

不同形貌纳米镍粉的制备

Material Sciences 材料科学, 2014, 4, 218-224 Published Online September 2014 in Hans. https://www.docsj.com/doc/267323427.html,/journal/ms https://www.docsj.com/doc/267323427.html,/10.12677/ms.2014.45031 Preparation of Nanoparticles of Metallic Nickel with Different Morphology Longhui Liu1,2, Shaobo Shen1,2*, Tianjiao Zhao1,2, Yao Cheng1,2, Xiaoyu Chen1,2 1Beijing Key Lab of Green Recycling and Extraction of Metals, Beijing 2School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing Email: d_fishier@https://www.docsj.com/doc/267323427.html,, *shaoboshen@https://www.docsj.com/doc/267323427.html, Received: Jul. 20th, 2014; revised: Aug. 18th, 2014; accepted: Aug. 29th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.docsj.com/doc/267323427.html,/licenses/by/4.0/ Abstract Some anhydrous eutectics composed of nickel chloride and sodium chloride were obtained by chlorinating the mixtures of sodium chloride and row nickel (average particle size 24.6 μm) with different molar ratios at 700°C. The eutectics were smelt and vaporized at 900°C and the vapo-rized eutectics were reduced by H2 into nickel powders of high purity with different shapes and different particle sizes. When the molar ratio of NaCl/Ni was 4.0, some spherical nanoparticles of nickel with average particle size 97.42 nm were synthesized. When the molar ratio of NaCl/Ni was 2.0, some cubic superfine particles of nickel with average particle size 101.92 nm were synthe- sized. Without addition of NaCl, some sintered nickel particles of irregular shape were synthesized. The plausible reasons were given to explain above phenomena. Keywords Nanoparticle of Ni, Spherical, Cubic, Eutectic of NiCl2-xNaCl, Gas Phase Synthesis 不同形貌纳米镍粉的制备 刘龙辉1,2,沈少波1,2*,赵天骄1,2,成瑶1,2,陈小雨1,2 1稀贵金属绿色回收与提取北京市重点实验室,北京 2北京科技大学,冶金与生态工程学院,北京 Email: d_fishier@https://www.docsj.com/doc/267323427.html,, *shaoboshen@https://www.docsj.com/doc/267323427.html, *通讯作者。

纳米粉体制备方法总结文档(最新版)

纳米粉体制备方法总结文档(最新版) Summary document on preparation methods of nano powder (latest edition) 汇报人:JinTai College

纳米粉体制备方法总结文档(最新版) 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 1、化学沉淀法: 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质 的沉淀法、沉淀转化化、直接沉淀法等。 共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完 全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中 的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,

促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。 多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的 沸点,可大于100°C,因此可用高温强制水解反应制备纳米 颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如 使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。 沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化 剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂, 加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。该法工艺流程短,操作简便,但 制备的化合物仅局限于少数金属氧化物和氢氧化物。 2、化学还原法 水溶液还原法

纳米粉体材料行业分析报告行业基本情况

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.docsj.com/doc/267323427.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY,英文缩写为 CSMNT)是全国范围纳米行业的自律性管理组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上,政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有: 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016年6月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

纳米材料粒度分析(可编辑修改word版)

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm)是纳米材料中最重要的一种,可广泛用于纳米复合材料 制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材 料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射 法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000 个以上颗粒的粒径)方法来得到颗粒粒径,比较烦 琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光 光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法 无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方 法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1 为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、 样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802 微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光 谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰 撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某 一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: D =k B T 3πηd (1) 式中k B为玻尔兹曼常数(1.38×10-16erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),d 为颗粒粒径(cm)。当激光束照射到溶液中的悬浮颗粒上时,由于颗粒的随机布朗运动,颗

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

金属镍纳米材料研究进展

万方数据

万方数据

万方数据

万方数据

金属镍纳米材料研究进展 作者:张磊, 葛洪良, 钟敏, ZHANG Lei, GE Hongliang, ZHONG Min 作者单位:浙江省磁性材料实验基地中国计量学院材料学院纳米材料化学制备室,杭州,310018 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2008,22(z1) 参考文献(32条) 1.Zeng H;Li J;Liu J P Exchange-coupled nanocomposite magnets via nanoparticle self-assembly 2002 2.Xiao Y;Patolsky F;Katz E Plugging into enzymes:Nanowiring of redox enzymes by a gold nanoparticle 2003 3.Xia Y;Yang P;Sun Y One-dimensional nanostructures:synthesis,characterization,and applications 2003 4.Gudiksen M S;Lauhon L J;Wang J F Growth of nanowire superlattice structure for mnoscale photonics and electronics 2002 5.Chu S Z;Wada K Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition[外文期刊] 2002(11) 6.谈玲华;李勤华;杨毅纳米镍粉的制备及其催化性能研究[期刊论文]-固体火箭技术 2004(03) 7.葛秀涛;焦健;肖建平常温常压下吡咯及其衍生物的镍催化加氢反应考察[期刊论文]-化学物理学报 2001(02) 8.Glerter H Nanocrystalline materials 1989(04) 9.魏智强;温贤伦;王君工艺参数对阳极弧放电等离子体制备镍纳米粉的影响[期刊论文]-稀有金属材料与工程2004(03) 10.左东华;张志琨;崔作林纳米镍在硝基苯加氢中催化性能的研究 1995(04) 11.屈子梅羰基法生产纳米镍粉[期刊论文]-粉末冶金工业 2003(05) 12.Eckert J;Holzer J C;Krill C E Structural and thermody-namic properties of nanocrystalline fcc metals prepared by mechenical attrition 1992 13.韦钦;刘雄飞;曹建纳米Ni的制备与微观结构的研究 1994(01) 14.Baburaj E G;Hubert K T;Fores F H S Preparation of Ni powder by mechanoehemical process 1997 15.Tepper F Nanosize powders produced by electro-explosion of wire and their potential applications [外文期刊] 2000(04) 16.Chatterjee A Chakravorty n Preparation of nickel nanoparticles by metalorganic route 1992(01) 17.高宝娇;高建峰;周加其超微镍粉的微乳液法制备研究[期刊论文]-无机化学学报 2001(04) 18.Ni Xiaomin;Su Xiaobo;Yang Zhiping The preparation of nickel nanorods in water-in-oil microemulsion[外文期刊] 2003(4) 19.Liu Z P;Li S;Yang Y Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[外文期刊] 2003(22) 20.Niu H L;Chan Q W;Ning M Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields 2004 21.Liu Qi;Liu Hongiiang;Han Min Nanometer-sized nickel hollow spheres[外文期刊] 2005(16) 22.Wang Xuewei Size-dependent orientation growth of large area ordered Ni nanowire arrays 2005 23.Mock J J;Oldenburg S J;Smith D R Composite pias mon resonant nanowires 2002

筛分析法测试粉体粒度及粒度分布汇总

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

实验2-纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析 一.实验目的 1.了解纳米材料的基本知识。 2.学习纳米氧化铝的制备。 3. 了解粒度分析的基本概念和原理。 4. 掌握马尔文激光粒度分析仪的使用。 二.实验原理 纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。 许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。 本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。 三.仪器与试剂 试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。 仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。 Mastersizer 2000激光粒度仪。 四.实验步骤 1.查文献 《分散剂聚合度对纳米氧化铝粉体特性的影响》 2.样品的制备 将十二水合硫酸铝铵(M=453.33)配成0.2 mol/L的溶液(需加热溶解),分别取出100 ml加入3 g不同聚合度的聚乙二醇(PEG),恒温磁力搅拌(45±5 ℃)使PEG迅速溶解,保持水浴温度,用分液漏斗将25 ml氨水逐滴加入匀速搅拌的溶液中(10 min),形成白色胶状沉淀,氨水加完后,继续搅拌5 min,然后抽滤(抽滤时要防止滤纸穿破),用蒸馏水和无水乙醇分别洗涤1次,得到胶体样品。胶体经70~80℃烘干,再800~1100 ℃煅烧2h,得到α型氧化铝纳米粉体,研磨后保存。 查阅文献《粒度分析基本原理》。 五.结果与讨论 采用不同聚合度的PEG作分散剂,测氧化铝粉体的粒径分布曲线,曲线的峰宽反映体系中所含颗粒尺寸的均匀程度,峰宽越窄则粒子的粒度越均匀。 1.完成表1内容。

粉体粒度及其分布测定

粉体粒度及其分布测定 一.实验目的 1.掌握粉体粒度测试的原理及方法; 2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点; 3.学会对粉体粒度测试结果数据处理及分析。 二.实验原理 图1:微纳激光粒度分析仪工作原理框图 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。 激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。 三.仪器设备 济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。 四.实验步骤 4.1测试前的准备工作 1.开启激光粒度分析仪,预热10~15分钟。启动计算机,并运行相对应的软件。 2.清洗循环系统。首先,进入控制系统的人工模式,不选择自动进水点击排水, 把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后, 再点击排水,关闭排水。其次,按下冲洗,洗完后,自动排出。按以上步骤反

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

微纳米粉体制备中形貌与粒度控制的重要意义(一)

微纳米粉体制备中形貌与粒度控制的重要意义(一) 1、前言 功能粉体材料是有色金属重要的应用形式之一,如金、银、铂族、铜、镍粉末用于电子浆料、导电胶的制备;锌粉用于防腐涂料、碱性锌锰电池电极材料;镍、钴氧化物用于镍氢、锂离子、固体氧化物燃料电池电极材料;SnO2用于Ag-SnO2电接触材等,不胜枚举。有色金属功能粉体材料制备,已成为产业链延伸、产品深加工增值的重要方向,是高新技术发展的重要基础。因此研究功能粉体材料有很重要的意义。 材料的性能,主要决定于其组成与结构;而对粉体材料而言,还有其特殊性,颗粒形貌与粒度,亦是决定粉体材料性能的重要因素。 本文将对微纳粉末制备的形貌与粒度控制及国内外的研究进展进行综述。 2、形貌与粒度控制的意义及复杂性 2.1纳米粉末形貌要求举例 对微纳粉末的粒度和形貌的要求因用途而异。三氧化铁α、β、γ三种晶型。其中水煤气转化反应、丁烷脱氢反应催化剂用三氧化铁要求为α晶型,而磁记录介质用超细三氧化铁磁粉要求为γ晶型,粒度小于0.3pm、形状是长径比大于8的针状。另外颜料用α-Fe2O3 最好是棒状、盘状、薄板状。 A12O3有α、γ、θ、η等八种晶型,催化剂及载体用的氧化铝应为η-A12O3或γ-A12O3,而α-A12O3是重要的陶瓷材料。氧化铝的水合物主要有三种三水合物和两种一水合物,阻燃材料用要求是三水合物,并且粒度细,有合理级配、透明性好、粒子形状为片状、细棱状。 用作镍氢电池材料的球形氢氧化亚镍粉末则要求其粒度有一定的分布宽度,以便小粒子可以填充在大粒子的空隙之间,提高电极的能量密度;而作为制备电子工业用的氧化镍粉末的煅烧前驱体,则要求粒度在亚微米且分布尽可能狭窄。 2.2 形貌与粒度控制的复杂性 在超细粉末制备过程中,对粒度和形貌加以控制是相当困难的,这主要是由于制备过程本身的复杂性造成的。液相沉淀是最普遍采用的湿法制粉方法之一,它以其制粉质量优良、方法简便、成本低、容易扩大生产等优点得到广泛的应用。该法的沉淀反应是湿法制粉中非常关键的步骤之一,对最终粉末粒子的粒度和形貌等具有决定性的影响。 沉淀粒子粒度和形貌控制的物理模型也是非常复杂的。产品与过程之间存在着耦合互动关系,在实际应用过程中必须充分利用体系的边界条件、限制条件或者某些特殊条件对其中的某些项进行简化,才能比较方便、合理地计算求解和讨论,而这个求解过程本身就是十分烦琐的。 因此,粉末颗粒的形貌与粒度控制是一个复杂的过程。 2.3 形貌与粒度控制的意义 粉末的粒度及其分布是最基本的形态特征,它基本上决定了粉末的整体和表面特性。除此而外,粉末的结构形貌特征还包括粉末的形状、化学组成、内外表面积、体积和表面缺陷等,它们一起决定粉末的综合性能。因此,最近几年,粉末结构形貌与粒度控制正逐渐成为粉体研究的一个重要内容。 在大多数粉体材料的制备过程中都有粒度和形貌等方面的特殊要求。不同应用领域对功能粉体材料形貌与粒度的多样性要求,为粉体材料制备技术发展提出了新的课题,即在其制备与加工中颗粒形貌与粒度的控制。因此,在微纳粉末制备过程中,根据其应用需要进行

筛分析法测试粉体粒度及粒度分布

筛分析法测试粉体粒度及粒度分布粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显着影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm

至20μm 之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm )长度上筛孔的数目,也有用1cm 长度上的孔数或1cm 2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO )推荐的筛孔为1mm 的筛子作为基筛,以优先系数及 20/3为主序列,其筛孔为()化整值) (40.110320≈,再以R20或R40/3作为辅助序列,其筛孔分别为()()4 340320219.11012.110≈≈≈,或。 筛析法有干法与施法两种,测定粒度分布时,一般用干法筛分,若试样含水较多,颗粒凝聚性较强时,则应当用湿法筛分(精度比干法筛分高),特别是颗粒较细的物料,若允许与水混合时,最好使用湿法。因为湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。另外,湿法可不受物料温度和大气湿度的影响,湿法还可以改善操作条件。所以,湿法与干法均已被列为国家标准方法并列使用,作为测定水泥及生料的细度。 筛析法除了常用的手筛、机械筛分、湿法筛分外,还用空气喷射筛分、省筛法、淘筛法和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒质量分数(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的质量分数与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm 时,筛分时间长,也容易

ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备 (一)实验类型:综合性 (二)实验类别:设计性实验 (三)实验学时数:16 (四)实验目的 (1)掌握沉淀法制备纳米粉体的工作原理。 (2)了解X-射线粉末衍射仪鉴定物相的原理。 (五)实验原理 纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。 合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线粉末衍射仪是分析材料晶体结构的重要工具。晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。这就是X射线衍射物相定性分析的方法的依据。 根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。 0.89cos D λ βθ= (λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角) (六)实验内容 1. 制备 以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。 2. 称量、计算产率 3. X-射线物相测定:计算晶粒尺寸 (七)实验要求 1、设计实验方案: (1)设计不同煅烧温度及时间 (2)设计不同原料比及模板剂 设计实验方案要求:方案必须切合实际,具有可操作性;尽量选择原料易得,反应条件温和,催化剂价廉,后处理方便,收率高及环境友好的方案。

相关文档