文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈纳米技术及其应用

浅谈纳米技术及其应用

浅谈纳米技术及其应用
浅谈纳米技术及其应用

浅谈纳米技术及其应用

1 概述

1.1 引言

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。

1.2 纳米技术的发展

最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。

20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。

纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO

多晶体。

2

1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排(如下图 1.1),纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明范曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。

图1.1 利用纳米技术将氙原子排成IBM

经过几十年对纳米技术的研究探索,纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

2 纳米加工技术

2.1 引言

无论是集成电路技术,还是微系统技术或纳米技术,其共同的特征是功能结构的尺寸在微米或纳米范围,因此可以统称为微纳米技术。微纳米技术依赖于微纳米尺度的功能结构与器件。实现功能结构微纳米化的基础是先进的微纳米加工技术。在过去50年中,正是微纳米加工技术的发展促进了集成电路的发展,导致集成电路的集成度以每18个月翻一番的速度提高。现代微纳米加工技术已经能够将上亿只晶体管做在方寸大小的芯片上。

除了集成电路芯片中的晶体管越做越小,微纳米加工技术还可以将普通机械齿轮传动系统微缩到肉眼无法观察的尺寸(如下图2.1所示)。微纳米加工技术可以制作单电子晶体管,可以实现单个分子与原子操纵。微纳米加工技术可以建筑人类进入微观世界的桥梁,是人类了解和利用微观世界的工具。因此了解微纳米加工技术对于理解微纳米技术,以及由微纳米技术支撑的现代高科技产业是非常重要的。

图2.1 美国SANDIA国家实验室利用多层硅平面工艺(SUMMiT)制作的微机械齿轮

2.2 微纳米加工技术的应用

尽管微纳米加工方法多种多样,但目的只有一个,这就是制作具有实际用途的微纳米结构与器件。同一种微纳米器件或结构可以用多种不同微纳米加工技术实现。任何一种微纳米结构的加工都需要不止一种微纳米加工技术。脱离开实际应用谈微纳米加工技术是毫无意义的。

微纳米加工技术与微纳米器件的开发是相互依存又相互促进的。新型微纳米器件推动微纳米加工技术的进步,而微纳米加工技术的进步反过来又会启发新型微纳米器件的开发。在现代高科技发展中,微纳米技术可以说是无处不在。微型化已经从集成电路芯片发展到其他各个应用领域。微纳米加工技术是微纳米技术的基础。这种依赖关系集中体现在下述应用领域:半导体集成电路、纳米电子学、高密度磁存贮、微系统、生物芯片与纳米科技。这些领域都是当前热门的高科技发展领域。

图2.2 未来系统芯片(system on chip)的构想

到目前为止人们所能看到和亲身感受到的微纳米技术的进步是各种微小型化的电子类产品。集成电路芯片的功能越来越强大。微传感器,微执行器,微光学元件,生物化学分析芯片也越来越广泛地应用与现代工业与现代生活的各个领域。但目前这些微电子与微系统还都是作为单元系统独立存在。今后10年的发展趋势是将所有这些分立的功能集成到单一的芯片上或单一的元器件内,形成所谓芯片上的微系统(system-on-chip,SoC)或封装单元内的微系统(system in

package,SiP)。由于不同电路的芯片加工工艺可能差别很大,要把这些电路加工在同一芯片上其技术难度目前还很大,或者说技术成本还很高。另一个途径是单一功能的芯片单独加工。然后将这些芯片通过互连技术安放在另一个芯片上,封装成单一器件(SiP)。未来的目标不光是集成电路之间的集成,而且包括微电子机械、微传感器、微流体系统、微光学系统与集成电路的集成。上图2.2显示了未来系统集成芯片的构想。实现系统集成的最大的挑战是开发出全面兼容的低成本的微纳米加工技术。这也为未来微纳米加工技术的发展提出了新的课题。

2.3 微纳米加工技术发展趋势

微系统技术,包括微电子机械、微流体、微光学系统,为微纳米加工技术的发展开辟了广阔的天地。虽然微系统通常不要求非常小的结构尺寸,但由于微系统使用的材料的多样性,服务于微系统制造的加工技术也多种多样。微系统加工面临的一个严峻挑战是如何与集成电路加工工艺兼容,以实现与集成电路的完全集成。微系统加工面临的另一个严峻的挑战是如何实现标准化加工。微系统加工技术的多样化与微系统本身的多样化造成了标准化生产的极大难度[5]。集成电路生产技术经过近半个世纪的发展已经形成一套非常标准化规范化的技术体系。一个集成电路设计可以送到全世界任何一个代工(foundry)工厂去加工生产。无论在哪里生产,所得到的芯片会具有相同的性能。微系统还远远没有达到这个程度。一些公司试图将某些加工技术标准化。但标准化后的生产技术在不同程度上限制了微系统的性能。某一标准化的生产技术也不可能满足所有微系统应用的需要。所以,小批量多品种是微系统器件工业生产的特点。因此实现标准化生产工艺是发展壮大微系统技术产业的关键。

近年来纳米技术的开发热潮为微纳米加工技术提出了新的要求。纳米尺度结构的加工技术已经存在。最新一代的电子束曝光技术已经能够制作小于10nm的结构。原子力显微镜探针可以操纵单个原子。从科学研究的角度,这些加工技术已经能够满足纳米器件的制作与研究。但这些技术毕竟不是也很难成为大规模生产的技术。为了今后纳米科研成果的产业化,必须开发高生产率低成本的纳米加工技术。纳米压印技术有可能通过进一步开发满足这一要求。另一方面,分子自组装技术具有极大的潜力成为未来的一种大规模生产技术。

3 纳米测量技术

3.1 引言

科学技术上的重大成就往往是以测量仪器和方法的突破为先导的。正是由于1982年扫描隧道显微镜[6]的发明,人类才第一次实现了可观察、测量、传感物体纳米尺度的位移、形貌或作用力的理想。扫描隧道显微镜和原子力显微镜(如图3.1所示)等扫描探针显微技术推动了纳米科学技术的兴起和发展[7~8]。由此可见纳米测量技术在纳米科学技术研究中的重要基础地位。

图3.1 原子力显微镜

纳米测量技术的内涵涉及纳米尺度的评价、成份、微细结构和物性的纳米尺度的测量,它是在纳米尺度上研究材料和器件的结构与性能、发现新现象、发展新方法、创造新技术的基础。

3.2 纳米测量技术现状

纳米科学与技术的发展,离不开纳米测量与定位控制技术,并出现纳米分析(Nanoanalysis)、纳米量(Nanoprobe)、和纳米探针等表征技术,对纳米测量与定位控制来说有以下几个基本要求,高灵敏度、高空间分辨力、测量的环境不会影响信息、非破坏性、快速、高频响。

纳米测量与定位控制技术的发展采取了两条平行的途径,一是沿用已有的测

量与控制手段,提高其性能,尽量逼近其极限本领,以满足纳米级测量分析的需要,如扫描电子显微镜、透射电子显微镜、正电子发射显微镜、软X射线显微镜、扫描光声显微镜、轮廓仪(台阶仪)和干涉相衬显微镜等;二是发展建立在新概念基础上的测量技术,这类技术是最有发展前途且能成为纳米测量与控制的关键技术。现分述如下:

●扫描隧道显微技术

扫描隧道显微技术是80年代出现的一种新型表面分析工具。1986年它的发明者宾尼和罗雷尔博士因此而获得诺贝尔物理学奖。扫描隧道显微镜(STM)具有空间的高分辨力(横向可达0.1nm,纵向可优于0.01nm)能直接观察到物质表面的原子结构,把人们带到了微观世界。STM的基本原理是基于量子隧道效应。它是用一个极细的针尖(针尖头部为单个原子)去接近样品表面,当针尖和表面靠得很近时(<1nm),针尖头部原子和样品表面的原子的电子云发生重迭,若在针尖和样品之间加上一个高压,电子便会通过针尖和样品构成的势叠而形成隧道电流(纳安级)。通过控制针尖与样品表面的间距恒定并使针尖沿表面进行精确的三维运动,就可以把表面信息(表面形状和表面电子态)记录下来。由于STM 具有原子级的空间分辨力和广泛的适用性,国际上掀起了研制和应用STM的热潮,并推动了纳米科学与技术的发展。

●外差干涉显微技术

光干涉显微技术是传统的研究方法,以前用干涉测量所产生的干涉条纹图来判断制件表面特征,众所周知,这种费时的方法有许多局限性,而且这种局限性是这种方法所固有的,很难避免。实际上易于获得的条纹图样并不能得到光程差图(OPD图)而且显示OPD等高图以代之,一旦得到条纹图,为求得OPD图必须进行复杂繁琐的处理,而外差(OHI)测量技术完全相反,它是直接测量参考波面与被检测波面间的位相差的一种方法,所以自然存在着高的位相分辨力和空间分辨力,而且可以进行动态时间的研究,其分辨力优于0.1nm。其本质是将长度计量转变为时间频率的计量。

●X射线干涉显微技术

X射线干涉显微技术是目前纳米测量中的一项新技术。它采用三块平行放置的硅晶片(Si220),其晶格的间距约为0.2nm。入射的X射线经过第一块晶片后

产生衍射,其光束分为两路,这两束光在第二块晶片上再次衍射,在第三块晶片上汇合,产生干涉,形成明暗交替的干涉条纹,并被光电接收系统所接受。若被测物体和第三块晶片相连,随物体运动,当物体移功一个晶格间距即(0.2nm)时,信号变化一个周期,其灵敏度由晶格常数所决定。而硅晶片(Si220)具有极稳定、均匀的晶格常数如再采用电路的细分处理,其分辨力优于0.01nm。目前,该技术处于实验研究阶段,商品化的仪器不久将会进入市场。

3.3 纳米测量技术的发展方向

纳米测量技术面对的每一个挑战和难点都是纳米测量技术今后应重点突破的研究方向。针对国内纳米测量技术已有基础与现状,展望未来,我国纳米测量技术应在以下几个方面予以重点研究:

(1) 纳米测量和性能表征新方法、新技术的研究。有三个重要的途径:一是创造新的纳米测量技术,建立新的理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。

(2) 纳米测量的溯源问题,即能按照米定义精确度量纳米尺度,建立纳米科技标准。

(3) 大范围超高精度、超高分辨率的纳米测量技术研究。分析当前各种纳米测量方法可知,现有每种纳米测量方法均存在不能同时实现高测量精度和大测量范围这一矛盾。而实际应用中,如集成电路芯片表面形貌的测量、光存储和磁存储大范围信息位特征的纳米测量、生物芯片性能表征技术等,所有这些,无不均要求在进行大范围测量的同时保证纳米或亚纳米级的高测量精度和超高分辨率。

(4) 纳米测量涉及的微操作技术研究。无论是对单个纳米颗粒、单根碳纳米管、单个单电子晶体管,还是对单个DNA 生物大分子、单个细胞等进行纳米测量与性能表征研究时,都涉及对这些单一纳米结构的探测、俘获、夹持和移动等一系列微操作技术。因此,开发对单一纳米结构的微操作的新方法和技术是纳米测量技术应重点解决的研究课题。

4 纳米存储技术

4.1 引言

早期的超高密度数据存储研究是从光学及电子学记录机制等方面进行的。尽管基于场效应晶体管(FET)的硅材料尺寸已降至10nm,但其仍然面临着诸如电流泄漏、能量消耗以及电荷随机出现的波动等。因此,这就促使新的数据存储系统的发展,并从材料、结构、制备方法以及原理等方面进行系统研究。

毫无疑问,凭借超低的访问延迟和持续稳定的传输率,固态硬盘相比机械硬盘有着压倒性的性能优势。但固态硬盘也有着致命性的缺陷,价格异常昂贵——一块34纳米制程、80GB固态硬盘的售价就和一块2TB的机械硬盘相当。

更要命的是,固态硬盘虽然抗震耐热,但却因为自身半导体结构的特性,使得单一存储单元会在擦写数千次之后失效—这和硬盘坏道不同,固态硬盘存储单元一旦失效,就会让整个固态硬盘陷于瘫痪。

4.2 纳米管存储结构

近期加州大学伯克利分校、劳伦斯伯克利国家实验室发表的纳米可逆信息存储技术的论文中显示,他们已经找到了一种可以大幅提高现有存储密度和存储寿命的技术。他们通过纳米机械组装出了极为牢固可靠的纳米存储元件,轻松实现了存储密度和存储寿命的爆发性增长。

图4.1 纳米粒子在纳米管中运动以实现数据存储

将纳米颗粒封装入碳纳米管,然后通过移动纳米颗粒来存储数据,通过检测纳米颗粒位置来读取数据,同时在1平方英寸的面积下堆放1百万兆个碳纳米管,从而构建出每平方英寸存储密度高达1Tbit,存储时间超过10亿年的介质。

根据他们设计的原型,这种纳米存储元件可以在低电压双端电极下实现信息的读取和写入。更重要的是,这种纳米元件可以直接通过现有的硅半导体工艺进行生产,由于生产过程中所使用的纳米机械完全封闭,所以整个过程可以轻松杜绝各种污染。

图4.2 根据施加电压的不同,纳米粒子的运动速度也大不相同在存储单元的内部结构上,纳米存储器实际上就是一个将纳米颗粒封装到多层碳纳米管之中的异质纳米存储结构。要制造它,我们需要让纳米颗粒和纳米管在1000℃高温下穿过氩气和处于高温分解状态的二茂铁之中,然后再通过超声波振动将包含有纳米颗粒的纳米管扩散到聚丙烯基板上。

4.3 纳米管存储的可靠性

事实证明,通过微扰原理读取数据是相当安全的,纳米微粒的位置也和预想中的完全吻合。同时值得一提的是,由于纳米管是完全密封的结构,只借助电磁力改变纳米颗粒的状态,因此这样的存储设备能够在不同的磁场中正常工作。

为了进一步验证纳米管存储的可靠性,实验小组还进行了更为复杂的测试。在常温下让纳米管中的铁纳米粒子移动足够的距离,直到信息出现丢失,这样的

距离大约是200纳米左右,不过是头发直径的二百分之一。同时碳纳米管具有良好的力学性能,抗拉强度达到50GPa~200GPa,至少比常规石墨纤维高一个数量级,是钢的100倍,密度却只有钢的1/6。它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。所以,纳米存储技术的可靠性也绝非传统磁盘光盘能比拟。在常温下纳米管所能保持信息的时间超过3.3×1017秒。对于单个存储单元来说,这样的寿命意味着在10亿年内无需担心数据丢失。这几乎一劳永逸地解决了数据保存问题。

4.4 纳米存储技术面临的挑战

尽管纳米存储技术在存储可靠性和密度方面都有着压倒性的优势,但是由于当今碳纳米管的价格依然昂贵,无法通过大规模生产降低成本。除此以外,纳米存储设备的控制器该如何设计,也成了科学家所面临的巨大挑战。我们预计,在未来5年内仍然是半导体、光磁存储垄断的时代。

作为近乎完美的存储技术,纳米存储一旦消灭了成本、批量生产和控制器的拦路虎,所爆发出的力量将会是前所未有的。

参考文献

[ 1] 张立德. 奇妙的纳米世界[ M]. 北京:化学出版社,2004,3:10 211. [ 2 ] 张立德,牟秀美. 纳米材料和纳米结构[M]. 北京:化学工业出版社,2004,3:35 240.

[ 3] HASSAN M H A. NANOTECHNOLOGY:Small Things and Big Changes in the Developing World[J]. Science,2005,309(5731) :65 266.

[ 4] SUN L F,XIW S S,LIU W,et al. Materials:Creating the narrowest carbon nanotubes[J]. Nature,2000,403:384。

[ 5] Cu i Z . Standardisation form icrosystem technology:the way forward. P roc.8th International Conference on Commercialisation of Micro and Nano Systems(COMS),2003.385

[ 6] G.Binnig,H.Rohr er,etal. Surface studies by scan-ningtunneling microscopy. Phys.Re. Lett,1982,49(1):57~61.

[ 7]白春礼,田芳,罗克。扫描力显微术. 北京:科学出版社,2000.

[ 8 ]白春礼. 纳米科技及其发展前景. 微纳电子技术,2002,39(1): 2~5.

纳米技术的应用与前景展望

纳米技术的应用与前景展望 【摘要】纳米技术是二十一世纪最具潜力的学科分支,有可能成为下一世纪前二十年的主导技术。本文概述了纳米技术在陶瓷、电器、医学等方面的应用,并对纳米技术的发展进行了展望。 【关键词】纳米技术;应用;发展前景 0.引言 纳米技术是上世纪末出现的高技术,有科学家预言,在21世纪纳米材料将是“最有前途的材料”,纳米技术甚至会超过计算机和基因学,成为“决定性技术”.1990年,第一届国际纳米科学技术会议在美国巴尔的摩召开,《纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世.从此一个崭新的科学技术领域—纳米科技开始得到科技界的广泛关注。[1] 1.纳米技术 1.1纳米技术的发展现状 二十世纪90年代以后,纳米技术飞速发展。自首届国际纳米科学技术会议召开以后,世界各国的纳米技术研究风起云涌,各种形式的研究机构像雨后春笋遍布世界各地,纳米技术研究所涉及的科学领域及应用范围在不断扩大,各个领域都取得了可喜的进展,纳米技术研究获得了空前的快速发展。纳米材料是纳米技术的重要组成部分,在纳米材料领域,人们研究出了纳米金属、合金、陶瓷和有机高分子等复合型材料并在实际中应用,取得了明显的效果。[2] 1.2发展纳米技术的重要性 纳米技术的研究开发可能在精密机械工程、材料科学、微电子技术、计算机技术、光学、化工、生物和生命技术以及生态农业等方面产生新的突破。世界各国都给予极大的重视,美国国家关键技术委员会将纳米技术列为政府重点支持的22项关键技术之一,制定了投资2亿美元进行大规模开发纳米技术的10年计划。英国成立了纳米技术战略委员会,国家纳米技术计划已开始实施。科学家们认为,纳米技术的深远意义可与18世纪的工业革命相媲美,它的重要性非常大,表现在技术和科学方面,主要有以下几点: (1)纳米技术是一项交叉领域学科,对它的基础研究和应用研究是能否拥有国际竞争力的先决条件。 (2)由于它的交叉学科性能,决定了它不仅应用于一种技术领域,它为许多学科的发展奠定基础并起到推动的作用。

纳米材料论文

应用技术大学2017—2018学年第二学期 《纳米材料与未来生活》期(末)试卷 课程代码: 学分: 2 课程序号: 班级:学号:: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共页,请先查看试卷有无缺页,然后答题。 本课程以小论文形式进行期末考核,要求如下: 一、请同学们在下列题目中按照指定题目,写成期末论文。 1、纳米材料先进制备技术 2、纳米材料与未来生物医药 3、纳米材料与未来汽车 4、纳米材料与先进催化 5、纳米材料与未来锂电 6、纳米多孔材料与超级电容器 7、纳米催化剂与燃料电池 8、纳米材料与光催化技术 二、论文写作要求: 论文题目应为授课教师指定题目,论文要层次清晰、论点清楚、论据准确;论文写作要理论联系实际,同学们应结合课堂讲授容,广泛收集与论文有关资料,含有一定案例,参考一定文献资料。 三、论文写作格式要求: 论文题目要求为宋体三号字,加粗居中; 正文部分要求为宋体小四号字,标题加粗,行间距为1.5倍行距; 论文字数要控制在2000-2500字; 论文标题书写顺序依次为一、(一)、1.。

四、论文提交注意事项: 1、论文一律以此文件为封面,写明班级、、学号等信息。 2、论文一律采用书面提交方式,在规定时间提交,逾期将不接受补交。 3、如有抄袭雷同现象,将按学校规定严肃处理。

目录 纳米材料的概念 (1) 未来汽车的概念 (1) 未来汽车的外饰 (2) 未来汽车外饰与纳米材料 (2) 未来汽车的饰 (2) 未来汽车饰与纳米材料 (3) 总结 (4)

纳米材料与未来汽车 一、纳米材料的概念 (一)、纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 (二)、纳米材料的补充 人们普遍认为纳米科技源自费曼于1959年的一次演讲,而“小就是与众不同”在现在几乎成了纳米科技界的一句口头禅。纳米科技近年来的发展可以说是非常迅猛,从国际上犹如雨后春笋一般冒出来的数十种纳米科技类杂志就可见一斑,其中英国物理学会率先出版Nanotechnology,美国化学学会继成功出版Nano Letters之后又推出了ACS Nano可以发现纳米科技有着魔力让人们着迷。 我国把纳米翻译为奈米。我国先后成立了国家纳米科技指导协调委员会和纳米技术专门委员会,建立了国家纳米科学中心、国家纳米技术与工程研究院(天津)、纳米技术及应用国家工程研究中心、国家纳米技术国际创新园。 纳米塑料———强度更高汽车制造中应用的塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。经过纳米技术处理的部分材料耐磨性更是黄铜的27倍。除此之外,纳米塑料除了可回收外,还有长期耐紫外线、色泽稳定、质量较轻等优点,在汽车配件中的应用领域相当广泛。在汽车外装件中,主要用于保险杆、散热器、底盘、车身外板、车轮护罩、活动车顶及其它保护胶条、挡风胶条等。在饰件中,主要用于仪表板和饰板、安全气囊材料等。 二、未来汽车的概念 (一)、未来汽车 未来汽车有别于我们家庭所使用的目前所了解的汽车,未来汽车的发展方向

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米技术在生活中的应用

纳米技术在生活中的应用 论文摘要:本文介绍了纳米技术、纳米材料的基本概念、原理、特征和各种纳米材料在涂料领域的应用;阐述了纳米材料在应用中所存在的技术问题,以及纳米技术在涂料领域的发展前景。 论文关键词:纳米技术纳米材料涂料 1纳米简介 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米是一个微小的长度单位,1纳米等于10亿分之一米。根头发丝有7万到8万纳米。纳米技术这个词汇出现在1974年。纳米科学、纳米技术是在0。10 到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。碳纳米管自从1991年被发现以来,就一直被誉为未来的材料。碳纳米管在强度上大约比钢强100倍,其传热性能优于所有已知的其它材料。碳纳米管具有良好的导电性,在常温下导电时,几乎不产生电阻。纳米陶瓷材料在1600摄氏度高温下能像橡皮泥那样柔软,在室温下也能自由弯曲。从1998年世界上第一只纳米晶体管制成,到1999年100纳米芯片问世,使20世纪最后10年世界上出现的“纳米热”进一步升温。 我国在纳米技术领域占有一度之地,处于国际先进行列。已成功制备出包括金属、合金、氧经化物、氢化物、碳化物、离子晶体和半导体等多种纳米材料,合成出多种同轴纳米电缆,掌握了制备纯净碳纳米管技术,能大批量制备长度为2至3毫米的超长纳米管。合成的最细的碳纳米管的直径只有0.33纳米,这不但打破了我国科学家自已不久前创造的直径只为0.5纳米的世界纪录,而且突破了日本科学家1992年所提出的0.4纳米的理论极限值 纳米技术应用前景十分广阔,经济效益十分巨大。纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。一张纳米光盘上能存几百部,

纳米科技论文

纳米科技的发展及应用 摘要:纳米科技是近期发展起来的新兴科学领域,它正在化学、物理学、生物学和电子工程学的交叉领域形成,而且不断有新的发现和突破。本文论述了国内外纳米科技研究现状,阐释了纳米科技发展的过程,同时阐述了纳米科技在工业、医学、通信等方面的实际应用。关键词:纳米科技;纳米材料;纳米通信 1 引言 纳米技术是20世纪80年代末期诞生并迅速崛起的新技术,它的基本涵义是在纳米尺寸范围内认识和改造自然,通过直接操作和安排原子、分子,创造新物质。纳米(nm)是一个长度单位,纳米体系(通常界定为1~100nm的范围)就在其中。这一体系既不完全适合于描述宏观领域的牛顿经典力学规律,又不完全适合于描述微观领域的量子力学规律,它表现出了许多独特的性能,需要用全新的理论、方法和表征手段在纳米尺寸范围内认识和改造自然,这就是纳米科技。 纳米科技主要包括:纳米物理、纳米化学、纳米材料、纳米生物纳米电子等分支学科,它们之间既相互独立,又相互联系。目前,各个分支领域都取得了令人瞩目的成果,纳米科技正处于重大突破的前期。 2 中国纳米科技的研究现状 中国是世界上少数几个最先开展纳米科技研究的国家之一。20世纪80年代中期,中国开始资助纳米材料研究和纳米技术仪器装备研制,目前中国的纳米科技基础研究已在国际上占有一席之地。1982年发明的扫描隧道显微镜(scanning tunneling microscope,STM)

和1986年发明的原子力显微镜(atomic force microscope,AFM)是纳米测量表征上的一个里程碑,标志着纳米科技从概念阶段,进入到实质性研究阶段。 2.1.1 纳米科技研究方面的支持情况 中国对纳米科技研究的支持,始于20世纪80年代中期。1987年,中科院化学所计算机控制的STM研制项目获中科院院长基金的资助。自1990年以后,国家科委“攀登计划”资助了纳米科学研究。1999年,国家科委开始在“973计划”中单独设立“纳米材料和纳米结构”研究项目。“863计划”在1990—2002年间,支持了将近1000个纳米方面的课题。在1991—2000年间,国家自然科学基金委员会共资助纳米科技研究9000多万元。 2.1.2纳米科技的研究状况 中科院物理所的解思深于1996年在国际上首次发明了控制多层碳管直径和取向的模板生长方法,制备出离散分布、高密度和高强度的定向碳管;1998年合成了世界上最长的纳米碳管;2000年,又对管径仅为0.5nm的极小直径纳米碳管的力学、热学光学和导电性质进行了系统研究。此系列工作在1998年、2000年分别被评为国内十大基础研究进展。 清华大学范首善课题组在国际上首次利用碳纳米管限制反应形成直径为3nm—40nm、长度达微米级的发蓝光的氮化镓一维纳米棒,在国际上首次把氮化镓制备成一维纳米晶体。该成果被评为1998年中国十大科技进展新闻。中科院金属所的研究小组,在世界上首次发现纳米金属材料具备室温下的超塑延展性——纳米铜在室温下冷轧可延伸50多倍。中科院金属所成会明研究组利用等离子蒸发技术成功地制备单壁碳纳米管材料并获得优异的储氢性能,质量储氢容量可达4%。 3 世界各国纳米研究状况

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术论文

浅谈纳米技术特性及材料的应用 学院专业班级学号姓名所选课程 机电工程学院材料成型及控制工程一班0903040116 肖品周六一二节 通过这门课的学习我了解到了一些纳米技术是在10到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。 随着国际科学研究的发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。 现如今科学界普遍认为:纳米技术,信息技术与生物技术,是21世纪最有影响力的三大关键技术,不仅对人类社会的进步起到了重要的作用,而且对与促进各国经济、文化的发展起到了关键性的作用。有专家曾经预言,21世纪是纳米的时代,在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术” 近年来,纳米技术已在医药、生物、环境保护和化工等方面得到了应用,并显示出它的独特魅力。 一、医学方面的应用: 目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。 二、在土木工程中的应用 (1)纳米科技在混凝土中的应用。随着经济全球化的进一步发展以及我国经济建设的全面开展,混凝土作为建筑中应用量最大、使用范围最广的建筑材料,其产量和用量都在不断的增加。纳米科技的不断发展,为传统混凝土的改造提供

纳米技术医学运用前景

纳米技术医学运用前景 一、在诊断技术方面的应用 扫描探针显微镜,其探针可以沿样品表面逐点扫描,针尖能随样品的高低起伏作上下运动,用光学方法测量针尖的运动,就可以得到分子的图像。目前已经用于人体多种正常组织和细胞的超微形态学观察,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结 构改变,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具———光学相干层析术(OCT)已研制成功,OCT的分辨率可达纳米级,较CT 和核磁共振的精密度高出上千倍。它不会像X线、CT、磁共振那样杀 死活细胞。通过应用纳米技术,在DNA检测时,可免去传统的PCR扩增 步骤,快速、准确。美国NASAAmesCen-terforNanotechnology与中南 大学卫生部纳米生物技术重点实验室合作,将碳纳米管用于基因芯片, 可以在单位面积上连接更多的更高,样本需要量低于1000个NDA分子(传统DNA检测的样本需要量超过106个DNA分子);需要的样品量更少,可以免去传统的PCR扩增步骤;结果可靠,重复性好;操作简单,易实现 检测自动化。其基本原理是:连接在碳纳米管上的DNA探针通过杂交 捕获特异性的靶DNA或RNA,靶DNA或RNA中的尿嘧啶将电荷转到碳纳米管电极,电荷的转移通过金属离子媒介的氧化作用变成信号并放大。国外在80年代末开始着手研究超顺磁性氧化铁超微颗粒的研究,90年代把这种造影剂应用于临床。 其技术要点是:制备出高顺磁性氧化铁纳米颗粒,在其表面耦连肝癌 组织靶向性物质(如肝肿瘤特异性单克隆抗体、肝肿瘤细胞表面特异性受体的配体)制成特异性的MRI造影剂。我国科学家也成功开发了应用超顺磁氧化铁脂质体纳米粒进行肝癌诊断的技术,可以发现直径3mm以下的肝肿瘤,还能发现更小的肝转移癌病灶。目前不加造影剂的磁共振检查能发现直径1.0cm的肝癌病灶,因此该成果大大提升了肝癌早期诊断的敏感性。国家863资助课题“纳米复合包裹生物微系统制备、超 声造影和控制释药”,研制了纳米包膜微米微泡超声造影剂与包裹药物和气体的微球,造影后对比效果明显增强,有利于疾病的早期诊断和鉴

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米技术及其应用论文

纳米技术及其在机械工业中的应用 摘要:主要介绍了纳米技术的内涵、主要内容及纳米技术在微机械和包装、食品 或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS使用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 (3)纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间相互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 (4)纳米电子学包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。“更快”是指响应速度要快。“更冷”是指单个器件的功耗要小。但

是“更小”并非没有限度。 3.纳米技术在机械工业中的应用 3.1纳米技术在微机械领域中的应用 随着纳米技术应用途径的不断拓宽,微机械的开发在全世界方兴未艾。例如,进入人体的医疗机械和管道自动检测装置所需的微型齿轮、电机、传感器和控制电路等。制造这些具有特定功能的纳米产品,其技术路线可分为两种:一是通过微加工和固态技术,不断将产品微型化;二是以原子、分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的产品。3.1.1采用微加工技术制造纳米机械 (1)微细加工。日本发那科公司开发的能进行车、铣、磨和电火花加工的多功能微型精密加工车床(FANUCROBO nano Ui 型),可实现5轴控制,数控系统最小设定单位是1nm(10-3μm)。该机床设有编码器半闭环控制,还有激光全息式直线移动的全闭环控制。编码器与电机直联,具有每周6 400万个脉冲的分辨率,每个脉冲相当于坐标轴移动0.2 nm,编码器反馈单位为1/3 nm,故跟踪误差在±1/3 nm以内。直线分辨率为1 nm,跟踪误差在±3 nm以内。CNC装置采用FANUC-16i,实现AInano 轮廓控制。并用FANUCSERVOMOTORαi伺服电机装上高分辨率检测装置及αi系列伺服放大器,实现了微细加工。 (2)微型机器人。在工业制造领域,微型机器人可以适应精密微细操作,尤其在电子元器件的制造方面。美国迈特公司的研究

纳 米 技 术 专 题

纳米技术专题——综述 一门前途无量的新兴技术-纳米技术 前言 提到从九十年代初起,纳米技术(Nanotechnology)得到迅速发展,显示出勃勃生机。它是信息技术、生命科学技术和许多其它技术能够进一步发展的共同基础,将对人类未来产生深远的影响,并且孕育着巨大的商机。 提到本文将根据收集到的国内外资料,对纳米技术进行介绍,以飧读者。 一、纳米技术的由来和发展 提到提到纳米技术,首先要了解纳米这一长度单位。一纳米是十亿分之一米,或千分之一微米。直观上讲,人的头发直径一般为20-50微米,单个细菌用显微镜测出直径为5微米,而1纳米大体上相当于4个原子的直径。传统的特性理论和设备操作的模型和材料是基于临界范围普遍大于100纳米的假设,当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%-50%左右,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质,这些性质不能被传统的模式和理论所解释。 提到纳米技术就是研究结构尺寸在0.1至100纳米(有些资料为1至100纳米)范围内材料的性质和应用。它的本质是一种可以在分子水平上,一个原子、一个原子地来创造具有全新分子形态的结构的手段,使人类能在原子和分子水平上操纵物质;它的目标是通过在原子、分子水平上控制结构来发现这些特性,学会有效的生产和运用相应的工具,合成这些纳米结构,最终直接以原子和分子来构造具有特定功能的产品。 提到因而,各个不同学科的科学家潜心研制和分析纳米结构,试图发现单个分子、原子在纳米级范围内不能被传统的模式和理论所解释的现象以及众多分子下这些现象的发展,他们的工作奠定了纳米技术的基础,推动了纳米技术的发展。 提到让我们简单回顾一下它的历史: 提到1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。 提到1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。 提到1982年,研究纳米的重要工具-扫描隧道显微镜被发明。

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

纳米技术论文

锂离子电池纳米材料研究进展 Progress of Lithium-ion Battery in Nano-scale Material 魏雨 (材料科学与工程学院无机非金属材料系090611114) 摘要锂离子电的核心是选择高能储锂电极材料,纳米材料以其独特的物理化学性能应用作为锂离子电池电极材料,具有减小极化,增大充放电电流密度,提高放电容量和循环稳定性等优点,有利于高性能、高容量和高功率电池的发展。 纳米电极材料具有非常广阔的应用前景,但目前已有的研究基本处于实验开发阶段,且主要集中在制备方法上,其微观结构和电化学性能沿需进一步研究探讨。 关键词锂离子电池纳米材料研究方向 Abstract The main task in Lithium-ion battery research is how to find out the material with high storage Lithium. Nano-scale material is used to be the positive electrode of Lithium-ion battery for its special physical and chemical performances. In this paper, the applying actuality of Nano-scale anode and cathode materials of Lithium-ion battery are introduced. The performances and the preparation methods of the materials are also recommended. Key words Lithium-ion battery, nano-scale material, electrochemistry performance 1.电极 锂离子电池纳米电极存在一些潜在的优缺点。 优点:更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;可发生在块体材料中不可能出现的反应;更高的电极/电解液接触面积提高了充/放电速率;短的电子输运路径(允许在低电导或高功率下使用);短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。 缺点:高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;电极合成过程可能会更加复杂。 认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力 度。 2.负极 2.1 活泼/惰性纳米复合(active/inactive composite)概念 该方法包含了两种材料的混合,一种与锂反应,另一种作为惰性的局域缓冲。在这种复合材料中,活泼相纳米级金属团簇被包裹在惰性非晶相基体中,在嵌锂过程中很好地消除了产生的内应力,从而提高了合金化反应的可逆性。将这一概念应用到不同的体系中,结果显示这些电极极大地提高了锂电池的循环性能。 1999年ou Mao等发现机械合金化得到的Sn基复合材料Sn-Fe-C存在Sn2Fe

纳米材料与技术论文

石墨烯在橡胶中的应用 摘要:石墨烯具有较强的力学性能和导电/导热性质,为发展多功能聚合物纳米材料提供了新的方向。本文简单介绍了石墨烯的制备及其功能化,并重点介绍了石墨烯/橡胶纳米复合材料的3种主要制备方法,同时分析了石墨烯/橡胶纳米复合材料的发展前景和存在问题. 关键词:石墨烯纳米复合材料制备 1 引言 橡胶在室温下具有独特的高弹性,其作为一种重要的战略性物资,泛应用于国民经济"高新技术和国防军工等领域。然而,未补强的橡胶存在强度低,模量低,耐磨差,抗疲劳差等缺陷。因此绝大数橡胶都需要补强,同时随着橡胶制品的多元化,在满足最基本的物理机械性能强度的同时,需要具有功能性的纳米填料/橡胶复合材料。石墨烯是一种有着优异性能的二维纳米填料,将石墨烯与聚合物复合是发挥其性能的重要途径,石墨烯/橡胶纳米复合材料对橡胶的力学机械性能、电学性能、导热性能和气体阻隔性能等都有很大提升,因此得到了广泛关注。 2 石墨烯的制备及其衍生物的功能化 2.1 石墨烯的制备 本文重点介绍利用氧化石墨烯(GO)的还原来制备石墨烯,该方法制备的石墨烯不能完全消除含氧官能团,还存在结构缺陷和导电性差等缺点,但是相比于其他方法,其宏量和廉价制备的特点更为突出。 2.2 氧化石墨烯的还原 目前,氧化石墨烯的还原一般分为热还原与化学还原两种方法。热还原是指GO在高温下脱除表面的含氧基团并释放大量气体,从而还原并剥离GO.化学还原法是指利用具有还原性的物质对GO进行脱氧还原。 2.3 石墨烯的功能化 对于氧化石墨烯还原之后的石墨烯,可以用非共价键改性,通过工业用燃料,荧光增白剂,表面活性剂高效稳定石墨烯。 2.4 橡胶/石墨烯复合材料的结构,性能的检测 利用红外光谱仪测定复合物的红外光谱图;用X射线衍射仪(XRD)测定复合物的衍射谱图;用发射扫描电镜(SEM)分析复合物的形貌;用电子万能试验机测试式样力学性能。 3 橡胶/石墨烯橡胶纳米复合物的制备方法 目前制备石墨烯/橡胶复合材料的制备方法主要有三种,即胶乳共混法,溶液共混法,机械混炼法。 3.1 胶乳共混法

相关文档