文档视界 最新最全的文档下载
当前位置:文档视界 › 积分在不等式证明中的应用

积分在不等式证明中的应用

积分在不等式证明中的应用
积分在不等式证明中的应用

积分在不等式证明中的应用

摘 要:本文是根据积分的有关概念与性质,采用举例的方法归纳并总结了积分在不等式证明中的几种比较常见的技术和手法,同时重点突出了积分在不等式证明中的基本的思想与方法。 关键词:积分 不等式 应用

Application of integral in proving inequality

Abstract:This article is based on concepts and properties about integral, several common techniques and

practices of the integral in the proving inequalities are concluded and summarized using the example of the way, while highlighting the integral in the proving inequalities of basic ideas and methods.

Keywords:integral; inequality; application

不等式证明不但是初等数学的重要课题,同时也是解决其他相关数学问题的基础知识。在初等数学领域中有许多种证明不等式的方法,比如综合法、分析法、放缩法、归纳法、函数法、几何法等,但用这些初等方法证明不等式时证明过程比较繁琐,而常用的高等方法如微分法,则往往忽略了积分在不等式证明中的重要作用,本文着重从积分的一些定理和相关性质的方面来说明不等式证明的几种技术和手法,以便于从整体上更好地掌握证明不等式基本的思想方法。

1. 积分的定义在不等式证明中的应用

从积分的定义出发来证明不等式,是很容易被忽略的一种方法,但是这种比较原始的证明方法有时却是一种很有效的证明方法。

例题1:设)(x ψ是[]a ,0上的连续函数,)(x f 二阶可导,0)(≥''x f ,试证:

))(1()]([100dt t a

f dt t f a a

a ??≥ψψ. 证明:由题意知,0)(≥''x f ,故对于[]a x x x n ,0,,,21∈? ,有

)()()()(2121n

x x x f n x f x f x f n

n +++≥+++ .

若令n i a n

i

x i ,,2,1),( ==ψ.则有

)].(1[])([111a n

i

n f a n i f n n i n i ∑∑==≥ψψ 故由根据题意可知,当+∞→n 时,有

dt t f a n a a n i f a a n i f n a

n i n i ?∑∑→===01

1)]([1}])([{1])([1ψψψ, ?∑∑→??

? ??===a n

i n i dt t a f n a a n i a f a n i n f 011].)(1[])([1)](1[ψψψ 从而

))(1()]([10

0dt t a f dt t f a a

a ??≥ψψ. 值得注意的是,此题还可以采用积分中值定理来证明。 例题2:设[]0)(,)(≥x f

b a x f 上的连续函数,且是在.试证:

dx x f a

b e

b a dx

x f a

b b

a ?-≤?-)(1)(ln 1. 证明:取,10

b x x x a n =<<<= 且.,,2,1,1n i n

a

b x x x i i i =-=

-=?-则 ∑===n i i n n x f n

x f x f x f n

n e

e

x f x f x f 1

21)

(ln 1)

()()(ln 21)()()(

])(ln [1])(ln [11

1i n

i i n i i x x f a b n

a b x f a b e

e

?---∑

=∑

===,

])([1

])([1)(1)()()(1

1121i n

i i n i i n i i n x x f a b n a b x f a b x f n n x f x f x f ?-=--==+++∑∑∑=== .

又由于)(ln )(x f x f 和的连续性,故由积分的定义知:当+∞→n 时,有

?

→∑

-?-=b

a

n

i i i dx x f a b x x f a b e

e

)(ln 1])(ln [1

1

,

?∑-→?-=b a

n i i i dx x f a b x x f a b )(1])([11. 又由于

1s

2s

x y ln =

1

a-1

b

x

y

图1 例题3

n

x f x f x f x f x f x f n n

n )

()()()()()(2121+++≤

.

从而

dx x f a

b e

b a dx

x f a

b b

a ?-≤?-)(1

)(ln 1. 2. 积分的几何意义在不等式证明中的应用

我们知道,定积分、二重积分等积分都有其几何意义,对于某些特殊的不等式,就可以从积分的几何意义出发,进行比较,从而给出证明。

例题3:若1,≥b a 时.试证:b b e ab a ln 1+≤-. 证明:.1,1ln ln 1

11+=+-=?

?--dx e e b xdx b b a x a b

如图1,可以看出矩形的面积()b a 1-一定不会超过1s 和2s 的面积之和,即

().ln ln 111

1

--+-=+≤-?

?

a a y b

e b b b dy e xdx b a

从而.ln 1b b e ab a +≤- 例题4:若dx x x I ?

-=1

22,(){}

1,,)1(2222≤+=+-=??y x y x D dxdy y x J D

.

试证:J I <.

证明:dx x dx x x I ??

--=-=1

2

10

2

112)( .

又由于10,11102

≤≤--=?x dx x y )(的几何意义表示圆心为()0,1,半径为1的圆

的面积的四分之一,故由积分的几何意义知4

π

=

I .

同理,由二重积分的几何意义知,J 表示高和底面半径都为1的圆锥的体积,故可知3

π

=

J .

从而J I <.

3. 积分中值定理在不等式证明中的应用

当所要求证的不等式中同时出现了形如)(x f 和dx x f b

a ?)(的式子,其中)(x f 是

[]b a ,上的连续函数,此时可以考虑利用积分中值定理。

定理1[1]:设)(x f 是[]b a ,上的函数连续,则至少存在一点[]b a ,∈η,使得

).)(()(a b f dx x f b

a

-=?

η

定理2[1]:设)(x f 和)(x g 是[]b a ,上的函数连续,且)(x g 在[]b a ,上不变号,则至

少存在一点[]b a ,∈η,使得

.)()()()(dx x g f dx x g x f b

a

b

a

??

定理3[1]:设)(x f 是[]b a ,上的可积函数,

(1) 若函数)(x g 在[]b a ,上递减,且0)(≥x g ,则存在一点[]b a ,∈η,使得

dx x f a g dx x g x f a

b

a

??

)()()()(,

(2) 若函数)(x g 在[]b a ,上递增,且0)(≥x g ,则存在一点[]b a ,∈ξ,使得

dx x f b g dx x g x f b

b

a

??

)()()()(.

例题5:求证不等式11083+>+.[3]

试题分析:此题若用一般的方法证明也比较简单,这里我们可以用积分中值定理来证明,首先我们需要将其转换成可以利用积分中值定理的形式。

证明:不等式11083+>+可变形为81013->-.

由于??==-313

11

2113dx x x d ,又因为[]3,11)(在x

x f =上连续,故由定理1

可得,[]3,11∈?η,使得dx x

f ?=

=

311

11

211

)(ηη. 同理可知,[]10,82∈?η,使得

??=

=-10810

81

21810dx x x d 2

1η=. 由于211ηη<<,故

2

1

1

1

ηη>

,即81013->-.

从而11083+>+.

例题6:设)(x f 是[]b a ,上的递增连续函数,试证:

??

+≥

b

a

b

a

dx x f b a dx x xf )(2)(. 证明:???+++-++-=+-b b a b

a a b

a dx x f

b a x dx x f b a x dx x f b a x 2

2)()2()()2()()2( .

又由于)(x f 在[]b a ,上连续,且??

?

???+∈?2,b a a x ,有02≤+-b a x ,故由定理2可知,??

?

???+∈?2,1b a a η,使得 ??

+++-=+-212)2

()()()2(b

a a b

a a

dx b a x f dx x f b a x η,

同理,??

?

???+∈?b b a ,22η,使得

??++

+-=+-b b a a

b a dx b

a x f dx x f

b a x 222)2()()()2(η. 从而

=+-++-??

++b b a b

a a

dx x f b

a x dx x f

b a x 22)()2()()2(

?

++-

21)2()(b a a

dx b a x f η?++-+b b a dx b

a x f 2

2)2()(η

)]()([2

)(122ηηf f a b --=.

又 )(x f 在[]b a ,上递增,且12ηη>,故0)()(12≥-ηηf f .

0)()2

(≥+-

∴?b

a dx x f b

a x . 从而

??

+≥

b

a

b

a

dx x f b a dx x xf )(2)(. 例题7:若0>c .试证:当0>x 时有不等式

x

dt t c

x x

1sin 2≤

?

+. 证明:若令2t u =,则du u dt u t 21

2

1

,==,则

??

++=2

2

)(2

.2sin sin c x x

c

x x

du u

u dt t

设[]

0)()(,)(,21)(,sin )(22>+=

=u g c x x u f u

u g u u f 上连续,在则且递减,故由定

理3可知,[]

22)(,c x x +∈?ξ,使得

??

++=2

2

)(2

2sin sin c x x

c

x x

du u

u dt t ?

=

ξ

2

sin 212

x udu x

)cos (cos 21

2ξ-=

x x

. 从而

x

x x dt t c

x x

1cos cos 21sin 22≤-=

?

+ξ. 4. 积分的性质在证明不等式中的应用

利用积分的性质证明不等式时,我们首先要判断出需要证明的不等式是否存在基本初等函数的积分值。其次,根据题意设出相应的积分不等式和定义区间。最后,运用相应的积分性质对已设积分不等式在定义区间内求值。证明这种类型的题目需要掌握一定的初等不等式的积分公式。

定理4[1]:设)(x f 和)(x g 是在[]b a ,上的两个可积函数。若 , )()(x g x f ≥[]b a x , ∈,

.)( )(??

≥b

a

b

a

dx x g dx x f

例题8: 若试证 , b a 0≤<:ab

a

b -≤ a b ln .

试题分析:积分本身具有保不等式性,关键的问题在于如何把需要证明的不等式的两边同时构造出积分的形式,然后再运用Newton-Leibniz 公式,并结合定理4即可证明。

证明:∵dx x x d a b a

b

b a b a ??==-=1)(ln 1ln ln ln ,?=-b a dx a b 1且.

若令[]b a x x g x

x f ,,1)(,1

)(∈==,又由于b a ≤<0,故)(x f 和)(x g 都是在[]b ,a 上

的连续可积函数。

又∵012

≥??? ??+x t ,由定理4知,012

≥??

?

??+?dx x t b a ,即

0112122≥++???

b a b a b

a

dx dx x

t dx x t . 若令???

++=b a b a b

a

dx dx x

t dx x t t f 1121

)(22,则)(t f 是关于t 的一元二次函数,且0)(≥t f ,故方程0)(=t f 的根的判别式0≤?,即

???≤-??

? ??

=?b a

b a b

a dx dx x dx x 01141222

.

∴0)11)((4ln 42

≤---??

?

??b a a b a b ,即

()ab a b b a a b a b 2

2

)11)((ln -=--≤?

?

?

??. 又由于b a ≤<0,且0ln

≥a b .从而 a b ln ab

a

b -≤. 例题9:试证不等式:6ln 34≤≤?

dx x

x e e

e

.

试题分析:当所需求证的不等式中有形如dx x f b

a

?)(的式子时,可以运用积分的各

种性质来证明,此题可以运用积分的保不等式性来证明。

证明:设x x x f ln )(=

,则x

x x

x f 2ln 2)(-=',故当0)(='x f 时)(x f 有唯一的极值点,即2e x =.易知它是极大值点,而可导函数唯一的极大值必是最大值。

e

e f 2

)(2=

∴为函数)(x f 在[]e e 4,上的最大值。又由于 022)4ln()()4(,2)4ln()4(,1)(>-=

-=

=e

e e

f e f e

e e

f e

e f ,

[]上的最小值在为e e x f e

e f 4,)(1)(=∴, []e e x e

x

x e

4,,2

ln 1∈≤

∴,由定理4得 62

ln 13444=≤≤=?

?

?

dx e

dx x

x dx e

e e

e

e

e

e

e

. 本题还可证明6ln 34<

dx x x e e

e

,因为x

x x f ln )(=在[]e e 4,上并不是定值,故可用反证法证明此不等式可取严格不等号。

不等式证明是一个难点,同时也是一门艺术,它具有自己独特的方法。在不等式证明中要充分利用数形结合的思想以及函数的思想,同时充分利用微积分的知识来证明不等式,尤其要重视积分的各种性质在证明不等式中的应用,使一些比较复杂的不等式能够得到更加方便的证明。因而,我们在证明不等式时需要充分抓住不等式自身的特点,才能够更加有效地解决问题。

参考文献:

[1] 华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001.217-222. [2] 华中师范大学数学系.数学分析[M].北京:高等教育出版社,2000.210-213. [3] 同济大学应用数学系.高等数学[M].北京:高等教育出版社,2001.153-156. [4] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.321-332. [5] 张海山.高等数学知识在不等式证明中的运用[J].甘肃教育学院学报,2000.14(2):70. [6] 高进青,蒋学明.利用微积分证明不等式[J].河南教育学院学报, 2010.19(2):44-47.

积分不等式的若干证明技巧

题目:积分不等式的若干证明技巧 学院:数学科学学院 专业班级:数学07-4实验班 学生姓名:努尔艾拉.阿西木 指导教师:塔实甫拉提副教授 答辩日期:2011年5月10日 新疆师范大学教务处

目录 1引言 (1) 2 利用有些定义证明积分不等式 (1) 2.1利用定积分的定义证明积分不等式 (1) 2.2利用积分和及凸函数的性质证明积分不等式 (2) 3 利用函数的单调性证明积分不等式 (4) 4利用微分中值定理证明积分不等式 (4) 5利用积分中值定理证明积分不等式 (6) 6利用一些基本不等式证明积分不等式 (7) 7利用泰勒展开式证明积分不等式 (7) 8利用将单积分化为重积分的方法 (8) 9利用分部积分法来证明积分不等式 (9) 10 结论 (10) 参考文献: (11) 致谢 (12)

积分不等式的若干证明技巧 摘要:不等式是高等数学和近代数学分析的重要内容之一,它反映了各变量之间很重要的一种联系。论证不等式的方法很多,本文的目的主要是利用徽积分学原理归纳、总结“高等数学”中证明积分不等式的常用方法.由于积分具有较大的灵活性,故积分不等式的证明往往富有很强的技巧性,是理工科学生学习的一个难点,以下我们仅从讨论过程中的关键步骤出发,大致地分成若干种方法,介绍有关证题的技巧和规律。 关键词:积分不等式,积分中值定理;Rolle中值定理;Cauchy中值定理;Lagrange中值定理 Integral inequality of several proof skills Abstracts:inequality is higher mathematics and the important content of modern mathematics analysis, it reflects the one between the variables a contact is very important. Demonstrates many methods, this paper the inequality in the main purpose of the principle is to use badge integral calculus "advanced mathematics synthesized and summarized in" the commonly used method proved integral inequality. Because integral has greater flexibility, so integral inequality proof often rich strong skilled, an engineering student learning a difficulty, below we only from a critical step in discussion, starting into several ways roughly, introduces relevant papers topic the skills and law. Keywords: integral inequality, integral mean-value theorem; Rolle mid-value theorem; Cauchy mid-value theorem; Lagrange mid-value theorem 。

用变限积分函数证明不等式

用变限积分函数证明不等式 院系:数学与计算科学学院 班级:应数5班 姓名:谭晶晶学号:201040510534 【摘要】证明不等式,方法多种多样。构造变限积分来证明不等式是非常巧 妙的方法之一。本文介绍了利用变限积分和被积函数的不等式的方法解决不等 式的证明。 【关键字】变限积分;辅助函数;不等式;被积函数的不等式 提出问题:变限积分是一类重要的函数,在微积分领域应用广泛。本文我们探讨:如何运用变限积分函数证明不等式。 分析问题:对于形如的积分,我们可以写成, 的形式;对于简单函数也可表示为的积分形式。 由此可以看出不管是积分表达式还是一般表达式都可以用变限积分 表示出来那么我们便可将证明不等式问题转化为研究变限积分函数 的问题中来,再结合具体情况根据函数的性质最终证出不等式。 解决问题:在解决此类问题关键是构造变限积分形式的辅助函数。大致步骤可分三步:构造辅助函数根据所构造的辅助函数性质结合题目 进一步处理,多数采用求导的方法;还原到原来形式,不等式得 证。 一.变限积分的定义 设f(x)在,上可积,根据定积分性质,对任意x∈,,f在,上 也可积。于是,由 ? 定义了一个以积分上限x为自变量的函数,称为变上限的定积分。类似地,又 可以定义变下限的定积分 ?与统称为变限积分。注意,在变限积分中,不可再把积分变量写成x。 二﹑变限积分函数的应用

一通过变限积分函数构造辅助函数证明不等式 在解题中构造辅助函数后,要对函数求导,我们简单介绍一下变限 积分函数的求导问题。 定义在,上, 设φ ψ ’φφ’ψψ’ 注:若被积函数中含x,不能直接用公式求导,应先作变代换使被积函数不含 x, 再求导。 在构造辅助函数时,又可根据不等式的特征分为两类构造方法将不等式两边相减的方法,即:要证形如的不等式,可设。 例一:设f(x)是,上的单调递增函数,且f(x)在,上连续,求证: 分析:在此证明不等式题中,可以先运用变限积分构造辅助函数F(x),由于 f(x)在,上连续,得知F(x)可导,求出F(x)的导函数,再由f(x)是,上的单调递增函数推出F(x)的单调性,从而证出不等式。 证明:令 () 由f(x)在,上连续得知F(x)可导。 且 ‘ 又因为f(x)是,上的单调递增函数,故在,上有, , 则 ()

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

积分在不等式证明中的应用

积分在不等式证明中的应用 摘 要:本文是根据积分的有关概念与性质,采用举例的方法归纳并总结了积分在不等式证明中的几种比较常见的技术和手法,同时重点突出了积分在不等式证明中的基本的思想与方法。 关键词:积分 不等式 应用 Application of integral in proving inequality Abstract:This article is based on concepts and properties about integral, several common techniques and practices of the integral in the proving inequalities are concluded and summarized using the example of the way, while highlighting the integral in the proving inequalities of basic ideas and methods. Keywords:integral; inequality; application 不等式证明不但是初等数学的重要课题,同时也是解决其他相关数学问题的基础知识。在初等数学领域中有许多种证明不等式的方法,比如综合法、分析法、放缩法、归纳法、函数法、几何法等,但用这些初等方法证明不等式时证明过程比较繁琐,而常用的高等方法如微分法,则往往忽略了积分在不等式证明中的重要作用,本文着重从积分的一些定理和相关性质的方面来说明不等式证明的几种技术和手法,以便于从整体上更好地掌握证明不等式基本的思想方法。 1. 积分的定义在不等式证明中的应用 从积分的定义出发来证明不等式,是很容易被忽略的一种方法,但是这种比较原始的证明方法有时却是一种很有效的证明方法。 例题1:设)(x ψ是[]a ,0上的连续函数,)(x f 二阶可导,0)(≥''x f ,试证: ))(1()]([100dt t a f dt t f a a a ??≥ψψ. 证明:由题意知,0)(≥''x f ,故对于[]a x x x n ,0,,,21∈? ,有

几类定积分不等式的证明

万方数据

万方数据

几类定积分不等式的证明 作者:王阳, 崔春红 作者单位:河北农业大学中兽医学院,河北定州,073000 刊名: 和田师范专科学校学报 英文刊名:JOURNAL OF HOTAN TEACHERS COLLEGE 年,卷(期):2009,28(3) 被引用次数:0次 参考文献(4条) 1.白银凤微积分及其应用 2001 2.刘连福.许文林高等数学 2007 3.詹瑞清高等数学全真课堂 2003 4.沈燮吕.邵品宗数学分析纵横谈 1991 相似文献(10条) 1.期刊论文杜红敏.Du Hong-min浅谈定积分在不等式证明与因式分解中应用-中国科教创新导刊2009,""(3) 定积分是高中新课程体系中一个新增加的重要内容,很多教师在该部分内容的教学时都与高中其他知识点割裂开未,殊不知,定积分在高中阶段解题中具有广泛的应用,本文以定积分在不等式证明和因式分解中应用为例,探讨定积分在高中解题中的应用. 2.期刊论文陈欢定积分的一个不等式及其应用-福州大学学报(自然科学版)2003,31(6) 线性是定积分最重要的性质之一,在此基础上定性地分析了形如gfn的函数的定积分的随着n的变化趋势,得到一个定理,并利用这个定理重新证明了Holder不等式. 3.期刊论文嵇国平.Ji Guoping定积分在不等式上的应用-常州师范专科学校学报2003,21(2) 不等式的证明是中学教学的一个重要内容,同时也是一个数学难点.由于微积分部分内容逐步渗透到中学数学中,用定积分方法解决不等式证明已成为可能. 4.期刊论文张惠玲.ZHANG Hui-ling定积分中不等式性质的研究-西安航空技术高等专科学校学报2009,27(3) 关于不等式的性质结论中等号成立的问题,在定积分中,进行了研究与探讨,并举例说明了它的应用. 5.期刊论文冯其明含∑nk=1f(k/n)的不等式的一种证法-高等数学研究2003,6(4) 利用定积分的定义及其几何意义可证明一些含∑nk=1f(k)/(n)的不等式. 6.期刊论文侯晓星.HOU Xiao-xing含定积分的不等式证明-泰州职业技术学院学报2005,5(4) 定积分不等式的证明是常见的一种题型.通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法. 7.期刊论文程仁华.李丽定积分的定义与某些重要不等式的推广应用-景德镇高专学报2004,19(4) 本文通n个正数的调和平均值、几何平均值、算术平均值及k次幂平均值的关系,并利用定积分的定义和连续函数极限的性质推导出函数的上述四种平均值之间的类似关系. 8.期刊论文沈凤英.孙存金.SHEN Feng-ying.SUN Cun-jin Schwarz不等式及旋转体侧面积的计算问题-苏州市职业大学学报2006,17(4) 文章应用Schwarz不等式的知识,给出了旋转体侧面积计算公式的一个新颖的证明,并同时指出用定积分计算旋转体侧面积时应该避免发生的错误. 9.期刊论文林银河关于Minkowski不等式的讨论-丽水师范专科学校学报2003,25(5) 在有关定积分不等式中,Minkowski不等式占有重要地位.将<数学分析>中提到的Minkowski不等式推广到更加一般的情形,从而改进已有的结论. 10.期刊论文刘放不等式(1/n+1+1/n+2+…+1/2n)2《1/2的六种不同证法-宜宾学院学报2003,6(6) 给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法. 本文链接:https://www.docsj.com/doc/1f10669031.html,/Periodical_htsfgdzkxxxb-hwb200903135.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:05ca550e-ea59-4c55-8af2-9da600b00ff2,下载时间:2010年7月 1日

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

数形结合在不等式证明中的应用

数形结合在不等式证明中的应用 摘要主要研究“初等数学研究教程”教学,简单介绍如何运用数形结合思想证明不等式,有助于高等师范学校数学教育专业学生提高思维能力和中学数学教育能力。 关键词数形结合;不等式;证明 1引言 “初等数学研究教程”是高等师范学校数学教育专业的一门重要的专业基础课程,是从事中学数学教育必须掌握的基础理论。本文在“初等数学研究教程”教学中简单介绍如何运用数形结合思想证明不等式,以提高高等师范学校数学教育专业学生思维能力和中学数学教育能力。 数形结合的思想方法是中学数学的一大特点,而在中学数学教学中,不等式的证明历来是教学的一个重点和难点。合理、灵活地运用数形结合思想来证明不等式往往可以收到事半功倍的效果。我们首先看下面一道例题: 例1:若锐角α、β、γ满足cos2α+cos2β+cos2γ=1,求证: 。 证明思路:借助已知条件可构造一长 方体,使它的三边分别为a、b、c,且 记相交一点的三条棱a、b、c分别与AC’ 交成α、β、γ角。于是原有的三角证式就变成代数证式: 2利用数形结合证明不等式 由上例可见利用数形结合证明不等式的确可以使复杂问题简单化、形象化。在数学上,数和形是中学数学的两块基石,是研究数学的最基本方法之一。它体现了抽象思维与形象思维的结合,数学问题大体上都是围绕着“数”和“形”提炼、演变,发展而展开的。在中学数学中数形结合应用于证明不等式主要有三方面:用平面几何或立体几何的性质证明不等式,用解析几何的性质和方法证明不等式,用三角函数的性质和方法证明不等式。 2.1利用平面几何或立体几何的方法证明不等式 由于许多数量关系源于平面几何(或立体几何),诸如三角形的边长关系、边角

积分不等式的证明及应用论文

广西科技大学毕业论文 题目:积分不等式的证明及应用 英文题目:The integral inequality proof and application.所在学院:理学院 所在专业:信息与计算科学 学号:200900901071 作者姓名:朱伟 指导老师:张明俊 二零一三年五月

摘要 积分不等式是学习高等数学中的一个重要内容,在数学分析中的应用也很广泛,也经常会在考研试卷中出现.有很多积分不等式的证明方法,一些方法综合性和技巧性也很强。利用导数和积分的相关知识去证明不等式,可以降低技巧性,使证明的思路变得简单,在此总结出可用于证明不等式的知识点。文中涉及到的知识有积分不等式、柯西不等式、拉格朗日中值定理、泰勒公式等高等数学中的内容。 【关键词】积分不等式、函数、拉格朗日中值定理、柯西不等式、泰勒公式

Abstract Mathematical analysis is an important information and calculation science specialized basic course,integral inequality is important content of mathematical analysis,using the integral inequality can solve many problems,thus the application of integral inequality is very wide.Proof of integral inequality and applications has always been a difficulty in mathematical analysis,it's proved that erected a bridge for different branches of mathematics,greatly improved our creative thinking.It's proof and application is also very cleverly,can solve some difficult problems.So,a deep understanding, to grasp the method of integral inequality proof, and its different applications in mathematical analysis,can improve our understanding of theoretical knowledge and application,at the same time also is good for our future study,to improve our thinking ability, innovation ability, and skill also has the very big help. 【Key words】Integral inequality, Probability mass function, Lagrange's mean value theorem, Cauchy inequality, Taylors formula.

定积分不等式

第三章 一元积分学 第三节 定积分值的估计及不等式 定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。总的说来: (1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的: (i )若]),[( )()(b a x x g x f ∈≤,则?? ≤b a b a dx x g dx x f )()( . (ii )? ?≤b a b a dx x f dx x f |)(||)(| . (iii )若b d c a b a x x f ≤≤≤∈≥]),,[( 0)(,则?? ≤b a d c dx x f dx x f )()(. (iv)(柯西不等式)??? ≤b a b a b a dx x g dx x f dx x g x f )()(])()([ 222 (2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法. (3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法. 例1.判断积分 ? π 20 2sin dx x 的符号 分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数2 sin x 在积分区间上有正、有负,先作换元:2 x t =,把积分变为 dt t t dx x ?? =ππ 2020 2 sin 21sin 后,问题更清晰,因而想到 dt t t dx x ?? = ππ 2020 2sin 21sin +=?π0sin (21dx t t )sin 2?π π dt t t 至此积分的符号凭直觉已经能判断了.但严格说明还需做一些工作,上式右端两个积分 的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较.有了这些分析和思路后,解答就容易了. 解:令2 x t =,则 dt t t dx x ?? = ππ 2020 2sin 21sin = +=?π0sin (21dx t t )sin 2?π π dt t t 对上式右端后一积分换元π+=u t 得 ? ? ?+-=+-=π π π π π π 2sin sin sin dt t t du u u dt t t 从而 =? π 20 2sin dx x -= ?π0sin (21dx t t )sin 0 ? +π π dt t t

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

中值定理在不等式证明中的应用

摘要 本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍. 关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式 Abstract This paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function. in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality. And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussed Key words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用 【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分 不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。 【关键词】积分不等式 Schwarz 不等式 Ho .. lder 不等式 Gronwall 不等式 Young 不等式 1 引言 在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如2 1 0x e dx -?),这时我们只能用其它方法对积分值进行估计,或近似计 算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1 '20()f x dx ?),因此我们希 望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式. ? ? ≤ 2 1 2 1 ln ln xdx x xdx x , ()() 2 2 ()cos ()sin 1b b a a f x kxdx f x kxdx +≤? ? 都是积分不等 式. 2积分不等式的证明方法 2.1 定义法 我们根据定积分的定义,把积分区间n 等分,得出积分和,再由离散型式子,得出积分和之间的大小关系,再令∞→n ,取极限即可. 例1设函数)(x f 在区间 []0,1上可积 .试证明有不等式1 12 00 ()()f x dx f x dx ≤ ?? . 证 先用Jensen 不等式法证明不等式 : 对 R x x x n ∈?,,,21 , 有不等式

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

函数的凹凸性在不等式证明中的应用

学年论文 题目凹凸函数及其在证明不等式中的应用学院数学与计算机科学学院 专业数学与应用数学 级别10级 姓名洪玉茹 学号101301040

摘 要 首先给出了凸函数的定义,.接着给出了凸函数的一个判定定理 以及Jesen 不等式.通过例题展示了凸函数在不等式证明中的应用.凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用. 关键词 凸函数,凸函数判定定理Jensen 不等式。 下面我们主要研究凸函数,凹函数由读者自行探索。 一、 凸函数的等价定义 定义1 若函数()f x 对于区间(,)a b 内的任意12,x x 以及(0,1)λ∈,恒有 []1212(1)()(1)()f x x f x f x λλλλ+-≤+-, 则称()f x 为区间(,)a b 上的凸函数. 其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间的 线总在曲线之上. 定义2 若函数()f x 在区间(,)a b 内连续,对于区间(,)a b 内的任意12,x x ,恒有 []12121 ( )()()22 x x f f x f x +≤+, 则称()f x 为区间(,)a b 上的凸函数. 其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间割线的中点总在曲线上相应点(具有相同横坐标)之上. 定义3 若函数()f x 在区间(,)a b 内可微,且对于区间(,)a b 内的任意x 及0x , 恒有 000()()()()f x f x f x x x '≥+-, 则称()f x 为区间(,)a b 上的凸函数.

证明数列不等式之放缩技能及缩放在数列中的应用全套整合

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12n n n +<. 证法一:令)6(2 ) 2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时,2 (2) 1.2 n n +< 证法二:可用数学归纳法证.(1)当n = 6时,6 6(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即 (2) 1.2k k k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++ 由(1)、(2)所述,当n ≥6时, 2 (1) 12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明: ()23 11112 3 n n N a a a *++++ <∈. 证明:n n n n n a a 121121************?=-?=-<-=+++ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S . 例3. 已知函数f(x)= 52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <1 4(2n -1).

导数在不等式证明中的应用

导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学习的重要内容之一,也是难点之一。其常用的证明方法有: 比较法、综合法、分析法、重要不等法、数学归纳法等等,然而有一些问题用上面的方法来解决是很困难的,我们在学完导数及其应用这一内容以后,可以利用导数的定义、函数的单调性、最值性(极值性)等相关知识解决一些不等式证明的问题。导数也是微积分的初步基础知识,是研究函数、解决实际问题的有力工,它包括微分中值定理和导数应用。不等式的证明在数学课题中也是一个很重要的问题,此类问题能够培养我们理解问题、分析问题的能力。本文针这篇论文是在指导老师的悉心指导和严格要求下完成的。这篇论文是在指导老师的悉心指导和严格要求下完成的。对导数的定义、微分中值定理、函数的单调性、泰勒公式、函数的极值、函数的凹凸性在不等式证明中的应用进行了举例。 一、利用导数的定义证明不等式 定义 设函数()f f x =在点0x 的某领域内有定义,若极限 ()() 000 lim x x f x f x x x →-- 存在 则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作()'0f x 令 0x x x =+?,()()00y f x x f x ?=+?-,则上式可改写为 ()()()00'000lim lim x x f x x f x y f x x x ?→?→+?-?==?? 所以,导数是函数增量y ?与自变量增量x ?之比 y x ??的极限。这个增量比称为函数关于自变量的平均变化率( 又称差商),而导数()'0f x 则为f 在0x 处关于x 的变化率。 以下是导数的定义的两种等价形式:

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有 ? a dx x f 0 )(≥ ?1 )(dx x f a . 证明:由原不等式变形得? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?10 )(dx x f a , 对左式,)(x f 在[0,1]上连续, 故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(2 1 ξ f a a dx x f a -=?,

显然,ξ1<ξ2又f(x)在[0,1]上单调不增, ∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证:2b )() (1 )(a b dx x f dx x f a b a -≥?? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --=? ? (将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()(' = ??? -+x a x a x a dt dt x f t f dt t f x f 2) ()()() ( =dt x f t f t f x f x a )2) ()()()((-+? ∵)(x f >0,∴ 02) () ()()(≥-+x f t f t f x f , 又a

相关文档