文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学压轴题专练

高考数学压轴题专练

高考数学压轴题专练
高考数学压轴题专练

题型突破练——压轴题专练

压轴题专练(一)

建议用时:40分钟

1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0),

且经过点?

??

???1,22. (1)求椭圆E 的方程;

(2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3PA →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程.

解 (1)由题意知c =1,2a -2

2

22

+? ??

??

?222

,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 2

2

+y 2=1.

(2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2.

设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2

m 2+2.②

由PB →=3PA

→,得y 2=3y 1.③

由①②③解得m 2=4,符合m 2>2.

不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -2

3

,则

所求圆的圆心为? ??

??

-13,0.又B (0,1),

∴圆的半径r =10

3

.

∴圆的方程为?

????x +132+y 2

=109.

2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足

f (0)=1,f (1)=0.

(1)求实数a 的取值范围;

(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值.

解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x ,

f ′(x )=[ax 2+(a -1)x -a ]e x .

依题意知,对任意的x ∈[0,1],有f ′(x )≤0.

当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件.

故实数a 的取值范围是[0,1].

(2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.

②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.

③当0<a <1时,由g ′(x )=0得x =1-a

2a

>0.

a .当1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )

在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.

b .当1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a

处取得最大值

g ? ??

??1-a 2a =2a e 1-a 2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)

=1+a ;当e -1

e +1

<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.

3.选做题

(1)[选修4-1:几何证明选讲]如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:

①BE =EC ; ②AD ·DE =2PB 2.

(2)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线

C 1的参数方程为?

??

??

x =2cos α

y =2+2sin α(α为参数),M 为C 1上的动点,P

点满足OP →=2OM

→,点P 的轨迹为曲线C 2. ①求C 2的参数方程;

②在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π

3

与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. (3)[选修4-5:不等式选讲]已知函数f (x )=|x -m |+|x +6|(m ∈R ).

①当m =5时,求不等式f (x )≤12的解集;

②若不等式f (x )≥7对任意实数x 恒成立,求m 的取值范围. 解 (1)证明:①∵PC =2PA ,PD =DC ,∴PA =PD ,△PAD 为等腰三角形.

连接AB ,则∠PAB =∠DEB =β,∠BCE =∠BAE =α, ∵∠PAB +∠BCE =∠PAB +∠BAD =∠PAD =∠PDA =∠DEB +∠

DBE ,

∴β+α=β+∠DBE ,即α=∠DBE ,即∠BCE =∠DBE ,所以

BE =EC .

②∵AD ·DE =BD ·DC ,PA 2=PB ·PC ,PD =DC =PA ,

BD ·DC =(PA -PB )PA =PB ·PC -PB ·PA =PB ·(PC -PA ), PB ·PA =PB ·2PB =2PB 2.

(2)①设P (x ,y ),则由条件知M ? ??

??

x 2,y 2.由于

M 点在C 1上,所以

?????

x

2=2cos αy 2=2+2sin α

,即???

??

x =4cos α

y =4+4sin α

.

从而C 2的参数方程为

?????

x =4cos α

y =4+4sin α

(α为参数).

②曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为

ρ=8sin θ.

射线θ=π3与C 1的交点A 的极径为ρ1=4sin π

3,

射线θ=π3与C 2的交点B 的极径为ρ2=8sin π

3.

所以|AB |=|ρ2-ρ1|=2 3.

(3)①当m =5时,f (x )≤12即|x -5|+|x +6|≤12, 当x <-6时,得-2x ≤13, 即x ≥-

132,所以-13

2

≤x <-6; 当-6≤x ≤5时,得11≤12成立,所以-6≤x ≤5; 当x >5时,得2x ≤11, 即x ≤112,所以5<x ≤11

2

.

故不等式f (x )≤12的解集为???

x ?????

?

-132

≤x ≤112.

②f (x )=|x -m |+|x +6|≥|(x -m )-(x +6)|=|m +6|, 由题意得|m +6|≥7,则m +6≥7或m +6≤-7,解得m ≥1或m ≤-13,

故m 的取值范围是(-∞,-13]∪[1,+∞).

压轴题专练(二)

建议用时:40分钟

1.如图,F 是椭圆x 2a 2+y 2

b

2=1(a >b >0)的左焦点,A ,B 是椭圆的

两个顶点,椭圆的离心率为1

2,点C 在x 轴上,BC ⊥BF ,B ,C ,F 三

点确定的圆M 恰好与直线x +3y +3=0相切.

(1)求椭圆的方程;

(2)过F 作一条与两坐标轴都不垂直的直线l 交椭圆于P ,Q 两点,在x 轴上是否存在点N ,使得NF 恰好为△PNQ 的内角平分线,若存在,求出点N 的坐标,若不存在,请说明理由.

解 (1)由题意可知F (-c,0),

∵e =12,∴b =3c ,即B (0,3c ),∵k BF =3c 0-(-c )=3,

又∵k BC =-3

3,∴C (3c,0),

圆M 的圆心坐标为(c,0),半径为2c , 由直线x +3y +3=0与圆M 相切可得|c +3|1+(3)

2

=2c ,∴c =1.

∴椭圆的方程为x 24+y 2

3

=1.

(2)假设存在满足条件的点N (x 0,0)

由题意可设直线l 的方程为y =k (x +1)(k ≠0), 设P (x 1,y 1),Q (x 2,y 2) ∵NF 为△PNQ 的内角平分线, ∴k NP =-k NQ ,即y 1

x 1-x 0

=-

y 2

x 2-x 0

k (x 1+1)x 1-x 0=-k (x 2+1)

x 2-x 0

?(x 1+1)(x 2-x 0)=-(x 2+1)(x 1-

x 0).∴x 0=x 1+x 2+2x 1x 2

x 1+x 2+2

.

又?????

y =k (x +1)x 2

4+y

2

3

=1,∴3x 2+4k 2(x +1)2=12.

∴(3+4k 2)x 2+8k 2x +4k 2-12=0. ∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.

∴x 0=-8k 23+4k 2+

8k 2-243+4k 2

2-

8k 2

3+4k 2

=-4,

∴存在满足条件的点N ,点N 的坐标为(-4,0).

2.[2015·沈阳质监(一)]已知函数f (x )=a ln x (a >0),e 为自然对数的底数.

(1)若过点A (2,f (2))的切线斜率为2,求实数a 的值;

(2)当x >0时,求证:f (x )≥a ?

????

1-1x ;

(3)在区间(1,e)上f (x )

x -1>1恒成立,求实数a 的取值范围.

解 (1)f ′(x )=a x ,f ′(2)=a

2

=2,a =4.

(2)令g (x )=a ? ????

ln x -1+1x ,g ′(x )=a ? ????1x -1x 2.

令g ′(x )>0,即a ? ??

??

1x -1x 2>0,解得x >1,

所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.

所以g (x )的最小值为g (1)=0,所以f (x )≥a ?

????

1-1x .

(3)令h (x )=a ln x +1-x ,则h ′(x )=a

x

-1,令h ′(x )>0,解

得x <a .

当a >e 时,h (x )在(1,e)上单调递增,所以h (x )>h (1)=0. 当1<a ≤e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e -1.

当a ≤1时,h (x )在(1,e)上单调递减,则需h (e)≥0, 而h (e)=a +1-e <0,不合题意. 综上,a ≥e -1.

3.选做题

(1)[选修4-1:几何证明选讲]

如图所示,AB 为圆O 的直径,CD 为圆O 的切线,切点为D ,AD ∥OC .

①求证:BC 是圆O 的切线; ②若AD ·OC =2,试求圆O 的半径. (2)[选修4-4:坐标系与参数方程]

以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,并在两种

坐标系中取相同的单位长度.设圆C :???

??

x =2cos θy =2sin θ(θ为参数)

上的点到直线l :ρcos ?

????

θ-π4=2k 的距离为d .

①当k =3时,求d 的最大值;

②若直线l 与圆C 相交,试求k 的取值范围. (3)[选修4-5:不等式选讲] 设f (x )=|x -3|+|2x -4|. ①解不等式f (x )≤4;

②若对任意实数x ∈[5,9],f (x )≤ax -1恒成立,求实数a 的取

值范围.

解 (1)①证明:如图,连接BD 、OD . ∵CD 是圆O 的切线,∴∠ODC =90°. ∵AD ∥OC ,∴∠BOC =∠OAD . ∵OA =OD ,∴∠OAD =∠ODA . ∴∠BOC =∠DOC .

又∵OC =OC ,OB =OD ,∴△BOC ≌△DOC . ∴∠OBC =∠ODC =90°,即OB ⊥BC . ∴BC 是圆O 的切线.

②由①知∠OAD =∠DOC ,∴Rt △BAD ∽Rt △COD ,

∴AD AB =OD OC

. AD ·OC =AB ·OD =2r ×r =2,∴r =1.

(2)①由l :ρcos ?

????

θ-π4=32,得

l :ρcos θcos π

4

+ρsin

θsin π

4

=32,整理得l :x +y -6=0.

则d =|2cos θ+2sin θ-6|2=

?????

?2sin ?

????θ+π4-62

∴d max =

8

2

=4 2. ②将圆C 的参数方程化为普通方程得x 2+y 2=2,直线l 的极坐标方程化为普通方程得x +y -k =0.

∵直线l 与圆C 相交,∴圆心O 到直线l 的距离d <2,

即|-k |2

<2,解得-2<k <2.

(3)①当x <2时,f (x )=7-3x ≤4,得1≤x <2; 当2≤x ≤3时,f (x )=x -1≤4,得2≤x ≤3; 当x >3时,f (x )=3x -7≤4,得3<x ≤11

3

.

综上可得不等式f (x )≤4的解集为??????

???

?x ?

??

1≤x ≤

113 ②∵x ∈[5,9],∴f (x )≤ax -1即3x -7≤ax -1, ∴a ≥3-6x ,即a ≥3-69=7

3

.

压轴题专练(三)

建议用时:40分钟

1.[2015·河南洛阳统考]已知椭圆的中心是坐标原点O ,焦点在x 轴上,离心率为2

2,坐标原点O 到过右焦点F 且斜率为1的直

线的距离为2

2

.

(1)求椭圆的标准方程;

(2)设过右焦点F 且与坐标轴不垂直的直线l 交椭圆于P ,Q 两点,在线段OF 上是否存在点M (m,0),使得|MP |=|MQ |?若存在,求出m 的取值范围;若不存在,请说明理由.

解 (1)设椭圆方程为x 2a 2+y 2

b

2=1(a >b >0),F (c,0)(c >0),由坐

标原点O 到直线x -y -c =0的距离为2

2

得|0-0-c |2

=22,解得c =1.

又e =c a =2

2

,故a =2,b =1.

∴所求椭圆方程为x 2

2

+y 2=1.

(2)假设存在点M (m,0)(0<m <1)满足条件,则以MP ,MQ 为邻边的平行四边形是菱形.

∵直线l 与x 轴不垂直,

∴设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2).

由?????

x 2+2y 2

=2y =k (x -1)

可得(1+2k 2)x 2-4k 2x +2k 2-2=0,

Δ>0恒成立,∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.

设线段PQ 的中点为N (x 0,y 0), 则x 0=

x 1+x 2

2=2k 21+2k 2,y 0=k (x 0-1)=-k

1+2k 2

. ∵|MP |=|MQ |,∴MN ⊥PQ ,∴k MN ·k PQ =-1, 即-k

1+2k 2

2k 2

1+2k 2-m ·k =-1,

∴m =k 21+2k 2

1

2+

1k 2

.∵k 2

>0,∴0<m <1

2

. 2.[2015·九江一模]设函数f (x )=12x 2

-(a +b )x +ab ln x (其中

e 为自然对数的底数,a ≠e ,b ∈R ),曲线y =

f (x )在点(e ,f (e))处的切线方程为y =-12

e 2

.

(1)求b ;

(2)若对任意x ∈????

??

1e ,+∞,f (x )有且只有两个零点,求

a 的取

值范围.

解 (1)f ′(x )=x -(a +b )+ab x =(x -a )(x -b )

x

∵f ′(e)=0,a ≠e ,∴b =e.

(2)由(1)得f (x )=12x 2

-(a +e)x +a eln x ,f ′(x )=

(x -a )(x -e )

x

①当a ≤1e 时,由f ′(x )>0得x >e ;由f ′(x )<0得1

e

<x <e.

此时f (x )在? ??

??

1e ,e 上单调递减,在(e ,+∞)上单调递增.∵f (e)

=12e 2-(a +e)e +a elne =-12

e 2

<0, f (e 2

)=12e 4-(a +e)e 2+2a e =12e(e -2)(e 2

-2a )≥12

e(e -

2)?

????

e 2-2e >0,

(或当x →+∞时,f (x )>0亦可)

∴要使得f (x )在????

??

1e ,+∞上有且只有两个零点,

则只需f ? ????1e =12e

2-a +e e +a eln 1e =(1-2e 2)-2e (1+e 2)a

2e 2

≥0,即a ≤1-2e 2

2e (1+e 2)

. ②当1e <a <e 时,由f ′(x )>0得1

e

<x <a 或x >e ;由f ′(x )

<0得a <x <e.此时f (x )在(a ,e)上单调递减,在? ??

??

1e ,a 和(e ,+∞)

上单调递增.

f(a)=-1

2

a2-a

e+a eln a<-

1

2

a2-a e+a elne=-

1

2

a2<0,∴此

时f(x)在

?

?

?

?

?

?

1

e

,+∞上至多只有一个零点,不合题意.

③当a>e时,由f′(x)>0得

1

e

<x<e或x>a,由f′(x)<0

得e<x<a,此时f(x)在

?

?

?

?

?

1

e

,e和(a,+∞)上单调递增,在(e,a)上单调递减,且f(e)=-

1

2

e2<0,∴f(x)在

?

?

?

?

?

?

1

e

,+∞上至多只有一个

零点,不合题意.

综上所述,a的取值范围为

?

?

?

?

?

-∞,

1-2e2

2e(1+e2)

.

3.选做题

(1)[选修4-1:几何证明选讲]

如图,四边形ABCD内接于圆O,∠BAD=60°,∠ABC=90°,BC=3,CD=5.求对角线BD、AC的长.

(2)[选修4-4:坐标系与参数方程]

已知直线l的参数方程为

??

?

??x=12t,

y=1+

3

2

t

(t为参数),曲线C

的极坐标方程为ρ=22sin

?

?

?

?

?

θ+

π

4

,直线l与曲线C交于A,B两点,与y轴交于点P.

①求曲线C 的直角坐标方程; ②求1

|PA

|+1

|PB |的值.

(3)[选修4-5:不等式选讲]

已知实数m ,n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .

①求m ,n 的值;

②若a ,b ,c ∈R +,且a +b +c =m -n ,求证:a +b +c ≤ 3. 解 (1)如图,延长DC ,AB 交于点E .

∵∠BAD =60°,∴∠ECB =60°, ∵∠ABC =90°,BC =3,CD =5, ∴∠EBC =90°,∴∠E =30°,

∴EC =2BC =2×3=6,∴EB =3BC =33, ∴ED =DC +EC =5+6=11, ∵EC ×ED =EB ×(EB +AB ),

则6×11=33×(33+AB ),解得AB =1333,

∴AC =

32

+? ??

???13332=1433. ∵∠EDB =∠EAC ,∠E =∠E ,

∴△EDB ∽△EAC ,∴BD AC =BE

CE

∴BD =AC ·BE

CE =143

3×336

=7.

(2)①利用极坐标公式,把曲线C 的极坐标方程ρ=22

sin ?

????

θ+π4化为ρ2=2ρsin θ+2ρcos θ,

∴普通方程是x 2+y 2=2y +2x , 即(x -1)2+(y -1)2=2.

②∵直线l 与曲线C 交于A ,B 两点,与y 轴交于点P ,

把直线l 的参数方程?????

x =1

2

t ,y =1+3

2t

代入曲线C 的普通方程

(x -1)2+(y -1)2=2中,得t 2-t -1=0,

∴?

??

??

t 1·t 2=-1,

t 1+t 2=1,

∴1

|PA |+1|PB |=1|t 1|+1|t 2| =

|t 1-t 2|

|t 1t 2|

=(t 1+t 2)2-4t 1t 2 =12-4×(-1)= 5.

(3)①由于解集为R ,那么x =3,x =-1都满足不等式,即有

?????

|9+3m +n |≤0|1-m +n |≤0

即?????

9+3m +n =0

1-m +n =0

,解得m =-2,n =-3,

经验证当m =-2,n =-3时,不等式的解集是R .

②证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , ∴(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +

c )=3,

故a +b +c ≤3(当且仅当a =b =c =1

3

时取等号).

压轴题专练(四)

建议用时:40分钟

1.[2015·九江一模]已知椭圆C 的中心在坐标原点,右焦点为

F (7,0),A 、B 分别是椭圆C 的左、右顶点,D 是椭圆C 上异于A 、B 的动点,且△ADB 面积的最大值为12.

(1)求椭圆C 的方程;

(2)求证:当点P (x 0,y 0)在椭圆C 上运动时,直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,并求直线l 被圆O 所截得的弦长L 的取值范围.

解 (1)设椭圆的方程为x 2a 2+y 2

b

2=1(a >b >0),

由已知可得(S △ADB )max =1

2·2a ·b =ab =12,①

∵F (7,0)为椭圆右焦点,∴a 2=b 2+7,②

由①②可得a =4,b =3,∴椭圆C 的方程为x 216+y 2

9=1.

(2)证明:∵P (x 0,y 0)是椭圆上的动点,∴

x 2016+y 2

9

=1, ∴y 2

0=9-9x 2016

∴圆心O 到直线l :x 0x +y 0y =2的距离d =2x 20+y 20

=2x 20

+9-916

x 2

2

716

x 2

0+9<1(0≤x 20≤16), ∴直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,

L =2r 2-d 2

=2

1-

4

716

x 2

0+9(r 为圆x 2+y 2=1的半径), ∵0≤x 20

≤16,∴9≤716

x 2

0+9≤16,

∴253

≤L ≤ 3.

2.[2015·唐山统考]已知函数f (x )=a e x +x 2,g (x )=sin x +bx ,直线l 与曲线C 1:y =f (x )切于点(0,f (0)),且与曲线C 2:y =g (x )

切于点? ????

π2

,g ? ????π2.

(1)求a ,b 的值和直线l 的方程;

(2)证明:除切点外,曲线C 1,C 2位于直线l 的两侧. 解 (1)f ′(x )=a e x +2x ,g ′(x )=cos x +b ,

f (0)=a ,f ′(0)=a ,

g ? ????π2=1+π

2b ,g ′? ??

??π2=b ,

曲线y =f (x )在点(0,f (0))处的切线方程为y =ax +a ,

曲线y =g (x )在点? ????

π2,g ? ????π2处的切线方程为y =

b ?

????x -π2+1+π

2b ,即y =bx +1.

依题意,有a =b =1,直线l 的方程为y =x +1. (2)证明:由(1)知f (x )=e x +x 2,g (x )=sin x +x .

设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F ′(x )=e x +2x -1, 当x ∈(-∞,0)时,F ′(x )<F ′(0)=0; 当x ∈(0,+∞)时,F ′(x )>F ′(0)=0.

F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,

故F (x )≥F (0)=0.

设G (x )=x +1-g (x )=1-sin x ,则G (x )≥0,

当且仅当x =2k

π+π

2

(k ∈Z )时等号成立.

综上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此

f (x )>

g (x ).

所以除切点外,曲线C 1,C 2位于直线l 的两侧. 3.选做题

(1)[选修4-1:几何证明选讲]

在Rt △ABC 中,∠B =90°,AB =4,BC =3,以AB 为直径作圆O 交AC 于点D .

①求线段CD 的长度;

②点E 为线段BC 上一点,当点E 在什么位置时,直线ED 与圆O 相切,并说明理由.

(2)[选修4-4:坐标系与参数方程]

在平面直角坐标系xOy 中,直线l 的参数方程为?????

x =-5+2

2t ,y =5+22t

(t 为参数),以O 为极点,x 轴的正半轴为

极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.

①求曲线C 的直角坐标方程及直线l 的普通方程;

②将曲线C 上的所有点的横坐标缩短为原来的1

2,再将所得曲线

向左平移1个单位,得到曲线C 1.求曲线C 1上的点到直线l 的距离的

最小值.

(3)[选修4-5:不等式选讲]

已知a +b =1,对?a ,b ∈(0,+∞),1a +4

b

≥|2x -1|-|x +1|

恒成立,求x 的取值范围.

解 (1)

①连接BD ,在直角三角形ABC 中,易知AC =5,∠BDC =∠ADB =90°,

所以∠BDC =∠ABC ,又因为∠C =∠C , 所以Rt △ABC ∽Rt △BDC ,

所以CD BC =BC AC ,所以CD =BC 2AC =95

.

②当点E 是BC 的中点时,ED 与⊙O 相切;

证明:连接OD ,∵DE 是Rt △BDC 的中线,∴ED =EB , ∴∠EBD =∠EDB ,∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODE =∠ODB +∠BDE =∠OBD +∠EBD =∠ABC =90°, ∴ED ⊥OD ,∴ED 与⊙O 相切.

(2)①曲线C 的直角坐标方程为:x 2+y 2=4x ,即:(x -2)2+y 2

=4,

直线l 的普通方程为x -y +25=0.

②将曲线C 上的所有点的横坐标缩为原来的1

2,得

(2x -2)2+y 2=4,即(x -1)2

+y 2

4

=1.

再将所得曲线向左平移1个单位,得C 1:x 2

+y 2

4

=1.

又曲线C 1的参数方程为?

??

??

x =cos θ

y =2sin θ(θ为参数),

设曲线C 1上任一点P (cos θ,2sin θ),

则d p →l =|cos θ-2sin θ+25|2=|25-5sin (θ-φ)|

2≥

102(其中tan φ=1

2

), ∴点P 到直线l 的距离的最小值为102

. (3)∵a >0,b >0且a +b =1,

∴1a +4b =(a +b )? ??

??1a +4b =5+b a +4a

b

≥9,

故1a +4

b

的最小值为9,

因为对a ,b ∈(0,+∞),使1a +4

b

≥|2x -1|-|x +1|恒成立,

所以|2x -1|-|x +1|≤9,

当x ≤-1时,2-x ≤9,∴-7≤x ≤-1, 当-1<x <12时,-3x ≤9,∴-1<x <1

2,

当x ≥12时,x -2≤9,∴1

2

≤x ≤11,∴-7≤x ≤11.

高考数学玩转压轴题专题4.4立体几何中最值问题

专题4.4 立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。 二.解题策略 类型一距离最值问题 AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2 ⊥,则边CG长度的最小值为() 使得GP BP A. 4 B. 43 C. D. 23 【答案】D

又22002B G a (,,),(,,),所以2,2,,,2,.2 2ax ax BP x GP x a ???? =--=-- ? ?????u u u r u u u r () 24022ax ax PB PG x x a ?? =-++-= ??? u u u n r u u u r .显然0x ≠且2x ≠.所以22 1642a x x =--. 因为()0,2x ∈,所以(]2 20,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a 的最小值为23. 故选D. 【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP u u u r u u u r 与的坐标, 根据两向量垂直,数量积为0,得到函数关系式22 16 42a x x = --,利用函数求其最值。 举一反三 1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。 【答案】 3254 2?? ??

高考数学中的放缩技巧

高考数学中的放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学选择题之压轴题

高考数学压轴选择题 _________班______号姓名_________________ 一、2007年以来广东高考数学压轴选择题的基本情况 1、(2007广东8)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a b S ∈,,对于有序元素对(a b ,),在S 中有唯一确定的元素*a b 与之对应).若 对任意的a b S ∈,,有()**a b a b =,则对任意的a b S ∈,,下列等式中不恒成立的是( ) A .()**a b a a = B .[()]()****a b a a b a = C .()**b b b b = D .()[()]****a b b a b b = 2、(2008广东8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) A . 1142+a b B .2133+a b C .11 24 +a b D .1 233 + a b 3、(2009广东8)已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A .在1t 时刻,甲车在乙车前面 B .1t 时刻后,甲车在乙车后面 C .在0t 时刻,两车的位置相同 D .0t 时刻后,乙车在甲车前面 4、(2010广东8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁。在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是 ( ) A .1205秒 B .1200秒 C .1195秒 D .1190秒 5、(2011广东) 8.,,,,.,,.,,,,,,,.:( ) A. T,V B.T,V C. T,V S Z a b S ab S S T V Z T V Z a b c T abc T x y z V xyz V ?∈∈=?∈∈?∈∈设是整数集的非空子集如果有则称关于数的乘法是封闭的若是的两个不相交的非空子集且有有则下列结论恒成立的是中至少有一个关于乘法是封闭中至多有一个关于乘法是封闭中有且只有一个关于乘法是封闭 D.T,V 中每一个关于乘法是封闭

高考数学 玩转压轴题 专题4.2 与球相关的外接与内切问题

专题4.2 与球相关的外接与内切问题 一.方法综述 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体。 与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积来求球的半径。 二.解题策略 类型一构造法(补形法) 【答案】 9 【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解。长方体的外接球即为该三棱锥的外接球。 【例2】一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为() 【答案】A 【解析】

【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可。 【举一反三】 1、如图所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=3,若AD=R(R为球O的半径),则球O的表面积为( ) A.πB.2πC.4πD.8π 【答案】D 【解析】因为AB,AC,AD两两垂直,所以以AB,AC,AD为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB=AC=3,所以AE=6,AD=R,DE=2R,则有R2+6=(2R)2,解得R=2,所以球的表面积S=4πR2=8π.故选D。 2、如图所示,已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为( ) A.12π B.7π C.9π D.8π 【答案】A

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

高考数学压轴题专练

题型突破练——压轴题专练 压轴题专练(一) 建议用时:40分钟 1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0), 且经过点? ?? ???1,22. (1)求椭圆E 的方程; (2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3PA →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程. 解 (1)由题意知c =1,2a -2 2 = 22 +? ?? ?? ?222 ,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 2 2 +y 2=1. (2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2 m 2+2.② 由PB →=3PA →,得y 2=3y 1.③

由①②③解得m 2=4,符合m 2>2. 不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -2 3 ,则 所求圆的圆心为? ?? ?? -13,0.又B (0,1), ∴圆的半径r =10 3 . ∴圆的方程为? ????x +132+y 2 =109. 2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足 f (0)=1,f (1)=0. (1)求实数a 的取值范围; (2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )=[ax 2+(a -1)x -a ]e x . 依题意知,对任意的x ∈[0,1],有f ′(x )≤0. 当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件. 故实数a 的取值范围是[0,1]. (2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e. ②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.

2018高考理科数学选填压轴题专练32题(含详细答案)

学校 年级 姓名 装 装 订 线 一.选择题(共26小题) 1.设实数x ,y 满足 ,则z= +的取值范围是( ) A .[4,] B .[,] C .[4,] D .[,] 2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3, 则该三棱锥的外接球的体积等于( ) A . B . C . D . 3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形, 则该三棱锥外接球的表面积为( ) A . B .4π C .8π D .20π 4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( ) A .(﹣∞,﹣2)∪(4,+∞) B .(﹣6,﹣3)∪(0,4) C .(﹣∞,﹣6)∪(4,+∞) D .(﹣6,﹣3)∪(0,+∞) 5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( ) A . B . C D . 6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则 的取值范围是( ) A .[1,2 ] B . [ , ] C .[ ,2] D .[1, ] 7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多 织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26 8.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A . B . C . D . 9.将函数 的图象向左平移 个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1﹣x 2|min = ,则φ的值是( ) A . B . C . D . 10.在平面直角坐标系xOy 中,点P 为椭圆C :+=1(a >b >0)的下顶点, M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈ (,],则椭圆C 的离心率的取值范围为( ) A .(0, ] B .(0 , ] C .[ , ] D .[ , ]

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

高考数学玩转压轴题专题4.1复杂的三视图问题

专题4.1 复杂的三视图问题 一.方法综述 三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题. 三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据. 还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱 柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观图.对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.解题时一定耐心加细心,观察准确线与线的位置关系,区分好实线和虚线的不同. 根据几何体的三视图确定直观图的方法: (1)三视图为三个三角形,对应三棱锥; (2)三视图为两个三角形,一个四边形,对应四棱锥; (3)三视图为两个三角形,一个带圆心的圆,对应圆锥; (4)三视图为一个三角形,两个四边形,对应三棱锥; (5)三视图为两个四边形,一个圆,对应圆柱。 对于几何体的三视图是多边形的,可构造长方体(正方体),在长方体(正方体)中去截得几何体。二.解题策略 类型一构造正方体(长方体)求解

【例1】如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体三视图,则该几何体的体积为( ) 64.A 364.B 16.C 3 16.D 【答案】 D 【指点迷津】由三视图求几何体的体积是高考常考内容,关键有三视图得到原几何体。由三视图可在棱长为4的正方体中截得该几何体三棱锥。 【举一反三】 1、某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A. 16 B.13 C.1 2 D.1 【答案】 B 【解析】在长、宽、高分别为2、1、1的长方体中截得三棱锥P-ABC ,其中点A 为中点,所以 6 1 1112131V ABC -P =????=。故选B 。 2、如图是某几何体的三视图,则该几何体的体积为( )

高考数学玩转压轴题专题7.3临界知识问题

专题7.3 临界知识问题 一.方法综述 对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查。 另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等。 二.解题策略 类型一定义新知型临界问题 【例1】用C(A)表示非空集合A中的元素个数,定义A*B= ()()()() ()()()() , { , C A C B C A C B C B C A C A C B -≥ -< 若A={1,2},B ={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值组成的集合是S,则C(S)等于( ) A. 1 B. 3 C. 5 D. 7 【答案】B 【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。对于此题中的新概念,对阅读理解能力有一定的要求。但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

【举一反三】设a ,b ∈R,定义运算“∧”和“∨”如下:a ∧b =,{ ,a a b b a b ≤>,a ∨b =,{ ,b a b a a b ≤>若正数a , b , c , d 满足ab ≥4,c +d ≤4,则( ) A . a ∧b ≥2,c ∧d ≤2 B. a ∧b ≥2,c ∨d ≥2 C . a ∨b ≥2,c ∧d ≤2 D. a ∨b ≥2,c ∨d ≥2 【答案】C 【解析】不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c . 若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2. 若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2. 本题选择C 选项. 类型二 高等数学背景型临界问题 【例2】设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a + b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ?T ?R 的任意集合T 也是封闭集.其中真命题是________.(写出所有真命题的序号) 【答案】①② 【举一反三】【辽宁省沈阳市郊联体2018届上学期期末】定义行列式运算 1214233 4 a a a a a a a a =-,将函数 ()3sin 1cos x f x x = 的图像向左平移(0)n n >个单位,所得图像关于y 轴对称,则n 的最小值为( ) A . 6π B . 3π C . 23π D . 56 π 【答案】D 【解析】函数()3sin 32cos 61cos x f x cosx sinx x x π? ?= =-=+ ?? ?的图象向左平移n (n >0)个单位,

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考数学玩转压轴题专题7.1与数学文化相关的数学考题

专题7.1 与数学文化相关的数学考题 一、方法综述: 关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导. 二、解答策略: 类型一、取材数学游戏 游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。 例1、五位同学围成一圈依次循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和; ②若报出的数是3的倍数,则报该数的同学需拍手一次。 已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。 探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。 举一反三:回文数是指从左到右与从右到左读都一样的正整数。如22,,11,3443,94249等。显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。则 (Ⅰ)4位回文数有______个; (Ⅱ)2n+1(n∈N+)位回文数有______个。

从高考数学试题看高考备考复习

从高考数学试题看高考备考复习 一、试题整体分析 考试中心明确要求:数学要考查关健能力,强调数学应用,助推素质教育。 1聚集主干内容,突出关键能力; 2理论联系实际,强调数学应用; 3.考查数学思维,关注创新意识; 4.增强文化浸润,体现育人导向; 5.探索内容改革,助推素质教育。 2019年全国Ⅱ卷高考数学试题,很好的印证和释了上述主旨。全国卷以教育部发的“2019年高考考试大纲”为依据。试卷在结构、试题难度方面和往年相比有一定的调整,有利于不同水平的学生发挥,有较好的信度和区分度,有利于高校选拔人才。试卷重视对考生数学素养和探究意识的考查,注意体现新课改之后新增知识的考査要求,注重学科间的内在联系和知识的综合运用,对能力的考査强调探究性,应用性,多视点、多角度、多层次地考査了考生学习数学所具备的素养和潜力。这种命题的思路既有利于正确引导高中数学教学的方向,揭示数学概念的本质,注重通性通法,倡导用数学的思维进行教学,引导学生掌握用数学的思维解决数学问题,感受数学的思维过程,又有利于破解僵化的应试教育和题海战术。 二、试题特点

1.立足基础知识,考查主干知识。今年试题仍然延续了全国高考数学卷立足基础知识,考查主干知识的风格,理科在大題部分题目顺序上有较大改变,但是概率、立体几何和数列的难度和考察方向与往年区別不大。 数学文科试题在立足稳定的基础上进行创新,稳定是指内容上的稳定、难度上的稳定,比如第1,2,5,6,10,13,18,21题渉及代数知识,具体内容包含集合与逻辑、函数的概念与性质、指数函数、对数函数、导数的几何意义及其应用、数列、不等式与线性规划等;第7,16,17是立体几何方面的题目,具体包含空间线面关系、空间几何体,空间几何体的体积等;第4,14,19考概率统计;第3,9,12是涉及解析几何的试题,具体内容包括双曲线、圆、椭圆、抛物线、平面向量等,第22,23分别是坐标系与参数方程,以及不等式选讲的选做题。 数学理科试卷立足基础知识,考查主干内容,突出通性通法,坚持多角度、多层次的考查数学能力,推理论证能力、空间想象能力、探索能力、分析和解决间题的能力。如理科卷的第1,2,3,4,6,12,14,19,20题涉及代数知识,具体包含集合与逻辑,函数概念与性质、幂函数、指数与对数函数、导数及其应用、数列、复数、不等式等;第9,10,15题是关于三角函数知识的题目,具体包括三角函数的图象与性质、三角求值,解三角形等;第8,16,17题是关于立体几何的题目,具体包括空间线面关系,空几何体的关系、空间角;第4,5,13,18题涉及统计概率;第3,8,11,

相关文档
相关文档 最新文档